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Abstract— Orthogonal Neighborhood Preserving Projections
(ONPP) is a linear dimensionality reduction technique which
attempts to preserve both the intrinsic neighborhood geometry
of the data samples and the global geometry. The proposed
technique constructs a weighted data graph where the weights are
constructed in a data-driven fashion, similarly to Locally Linear
Embedding (LLE). A major difference with the standard LLE
where the mapping between the input and the reduced spaces
is implicit, is that ONPP employs an explicit linear mapping
between the two. As a result, and in contrast with LLE, handling
new data samples becomes straightforward, as this amounts to a
simple linear transformation. ONPP shares some of the properties
of Locality Preserving Projections (LPP). Both ONPP and LPP
rely on a k-nearest neighbor graph in order to capture the
data topology. However, our algorithm inherits the characteristics
of LLE in preserving the structure of local neighborhoods,
while LPP aims at preserving only locality without specifically
aiming at preserving the geometric structure. This feature makes
ONPP an effective method for data visualization. We provide
ample experimental evidence to demonstrate the advantageous
characteristics of ONPP, using well known synthetic test cases as
well as real life data from computational biology and computer
vision.

Keywords: Linear dimensionality reduction, Locally Lin-
ear Embedding.

I. I NTRODUCTION

The problem of dimensionality reduction appears in many
fields including data mining, machine learning and computer
vision, to name just a few. The goal of dimensionality re-
duction is to map the high dimensional samples to a lower
dimensional space such that certain properties are preserved.
Usually, the property that is preserved is quantified by an
objective function and the dimensionality reduction problem is
formulated as an optimization problem. For instance, Principal
Components Analysis (PCA) is a traditional linear technique
which aims at preserving the global variance and relies on
the solution of an eigenvalue problem involving the sample
covariance matrix. Locally Linear Embedding (LLE) [9], [11]
is a nonlinear dimensionality reduction technique which aims
at preserving the local geometries at each neighborhood.

While PCA is good at preserving the global structure, it
does not preserve the locality of the data samples. In this
paper, we propose alinear dimensionality reduction tech-
nique, named Orthogonal Neighborhood Preserving Projec-
tions (ONPP), which preserves the intrinsic geometry of the
local neighborhoods. The high dimensional data samples are
projected on a lower dimensional space by means of a linear
transformationV . The dimensionality reduction matrixV is

obtained by minimizing an objective function which captures
the discrepancy of the intrinsic neighborhood geometries in
the reduced space. Experimental evidence suggests that this
feature is crucial in preserving the global geometry as well, via
the interaction of overlapping neighborhoods. Thus, one could
argue that ONPP can be effectively used for data visualization
purposes and that it may be viewed as a synthesis of PCA and
LLE.

ONPP constructs a weightedk-nearest neighbor (k-NN)
graph which models explicitly the data topology. Similarly
to LLE, the weights are built to capture the geometry of
the neighborhood of each point. The linear projection step is
determined by imposing the constraint that each data samplein
the reduced space is reconstructed from its neighbors by the
same weights used in the input space. However, in contrast
to LLE, ONPP computes an explicit linear mapping from
the input space to the reduced space. Note that in LLE the
mapping is implicit and it is not clear how to embed new data
samples (see e.g. research efforts by Bengio et al. [4]). In our
case, the projection of a new data sample is straightforward
and it simplifies to a matrix vector product.

ONPP shares some properties with Locality Preserving
Projections (LPP) [6]. Both are linear dimensionality reduc-
tion techniques which construct the k-NN graph in order to
model the data topology. However, our algorithm uses the
optimal data-driven weights of LLE which reflect the intrinsic
geometry of the local neighborhoods, whereas the uniform
weights (0/1) used in LPP aim at preserving locality without
explicit consideration to the local geometric structure. Note
that Gaussian weights can be used in LPP but these are
somewhat artificial and require the selection of an appropriate
value of the parameterσ, the width of the Gaussian envelope.
Although this issue is often overlooked, it is crucial for the
performance of the method and remains a serious handicap
when using Gaussian weights. Experimental results suggest
that ONPP is effective in conveying meaningful local and
global geometric information from high dimensional samples
to low dimensional ones.

Before starting, it is useful to define in general terms the
problem of dimensionality reduction. Given a datasetX =
[x1, x2, . . . , xn] ∈ Rm×n and the dimensiond of the reduced
space, withd ≪ m, the goal of dimensionality reduction is to
determine a matrixV ∈ Rm×d such that the projected vectors
yi = V ⊤xi in the reduced space satisfy a certain property.
For instance, PCA computesV such that the variance of the
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projected vectors is maximized i.e,
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, yi = V ⊤xi.

Our algorithm determinesV such that the local geometry
of the neighborhoods is preserved. This can be captured by
a certain objective function and we show that optimizing
this function results in an eigenvalue problem whose solution
yields the matrixV . The next section describes the proposed
method in more detail.

II. ORTHOGONAL NEIGHBORHOODPRESERVING

PROJECTIONS

Consider a dataset represented by the columns of a matrix
X = [x1, x2, . . . , xn] ∈ Rm×n. The first part of ONPP is iden-
tical with that of LLE [9], [11] and consists of computing some
optimal weights in each neighborhood. The basic assumption
is that each data sample along with itsk nearest neighbors
(approximately) lies on a locally linear manifold. Hence, each
data samplexi is reconstructed by a linear combination of its
k nearest neighbors. The reconstruction errors are measured
by minimizing the objective function

E(W ) =
∑

i

‖xi −
∑

j

Wijxj‖
2
2. (1)

The weightWij represent the linear coefficient for reconstruct-
ing the samplexi from its neighbors{xj}. The following
constraints are imposed on the weights:

1) Wij = 0, if xj is not one of thek nearest neighbors of
xi;

2)
∑

j Wij = 1, that is xi is approximated by a convex
combination of its neighbors.

Note that the optimization problem (1) can be recast in
matrix form asminW ‖X(I −W⊤)‖F , whereW is ann×n

sparse matrix which has a specific sparsity pattern (condition
(1)) and satisfies the constraint that its row-sums be equal to
one (condition (2)). The weights for a specific data pointxi

are computed as follows. Define

Cpl = (xi − xp)
⊤(xi − xl) ∈ Rk×k, (2)

the local Gram matrix containing the pairwise inner products
among the neighbors ofxi, given that the neighbors are
centered with respect toxi. It can be shown that the weights
of the above constrained least squares problem are given in
closed form [9] using the inverse ofC,

wi =

∑

p C−1
ip

∑

pl C
−1
pl

, (3)

where wi represents thei-th column of W . The weights
Wij satisfy certain optimality properties. They are invariant
to rotations, scalings and translations. A direct consequence
of these properties is that the weights preserve the intrinsic
geometric characteristics of each neighborhood.

Consider now the second part of projecting the data samples
X to the reduced spaceY = [y1, y2, . . . , yn] ∈ Rd×n. ONPP

Algorithm: Orthogonal Neighborhood Preserving Projections
Input : DatasetX ∈ Rm×n andd: dimension of reduced space.
Output : Embedding vectorsY ∈ Rd×n.
1. Compute thek nearest neighbors of data pointx1, · · · , xn.
2. Compute the weightsWij which give the best linear

reconstruction of each data pointxi by its neighbors (Equ. (3))
3. Compute the projected vectorsyi = V ⊤xi, i = 1, . . . , n

whereV is determined by computing thed + 1 eigenvectors of
M̃ = X(I − W⊤)(I − W )X⊤

associated with smallest eigenvalues

TABLE I

THE ONPPALGORITHM .

imposes an explicit linear mapping fromX → Y such that
yi = V ⊤xi, i = 1, . . . , n for an appropriately determined
matrix V ∈ Rm×d. In order to determine the matrixV , ONPP
imposes the constraint that each data sampleyi in the reduced
space is reconstructed from itsk neighbors by exactly the
same weights as in the input space. This leads to the solution
of the following optimization problem, where we setM =
(I − W⊤)(I − W ) andM̃ = XMX⊤

min
Y

Φ(Y ) = min
Y

∑

i

‖yi −
∑

j

Wijyj‖
2
2

= min
V ∈Rm×d

∑

i

‖V ⊤xi −
∑

j

WijV
⊤xj‖

2
2

= min
V ∈Rm×d

‖V ⊤X(I − W⊤)‖2
F

= min
V ∈Rm×d

tr(V ⊤XMX⊤V )

= min
V ∈Rm×d

tr(V ⊤M̃V ) . (4)

If we impose the additional constraint that the columns ofV

are orthonormal, i.e.V ⊤V = I, then the solutionV to the
above optimization problem is the basis of the eigenvectors
associated with thed smallest eigenvalues of̃M . We observed
in practice that ignoring the smallest eigenvector ofM̃ is
helpful. This is an issue to be investigated in future work.
Note that the embedding vectors of LLE are obtained by
computing the eigenvectors of matrixM associated with its
smallest eigenvalues.

New data points. Consider now a new test data samplext

that needs to be projected. The test sample is projected onto
the subspaceyt = V ⊤xt using the dimensionality reduction
matrix V . Therefore, the computation of the new projection
simplifies to a matrix vector product.

Computational cost. The first part of ONPP consists of
forming thek-NN graph. This scales as O(n2). Its second part
requires the computation of a few of the smallest eigenvectors
of M̃ . Observe that in practice this matrix is not computed
explicitly. Rather, iterative techniques are used to compute the
corresponding smallest singular vectors of matrixX(I−W )⊤

[10]. The inner computational kernel of these techniques is
the matrix-vector product which scales quadratically withthe
dimensions of the matrix at hand.

III. SUPERVISEDONPP

It is possible to implement ONPP in either an unsupervised
or a supervised setting. Note that in the later case where the
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class labels are available, ONPP can be modified appropriately
and yield a projection which carries not only geometric infor-
mation but discriminating information as well. In a supervised
setting we first build the data graphG = (N,E), where
the nodesN correspond to data samples and an edgeeij =
(xi, xj) exists if and only ifxi and xj belong to the same
class. In other words, we make adjacent those nodes (data
samples) which belong to the same class. Notice that in this
case one does not need to set the parameterk, the number of
nearest neighbors, and the method becomes fully automatic.

Denote byc the number of classes andni the number of
data samples which belong to thei-th class. The data graphG
consists ofc cliques, since the adjacency relationship between
two nodes reflects their class relationship. This implies that
with an appropriate reordering of the columns and rows, the
weight matrixW will have a block diagonal form where the
size of thei-th block is equal to the sizeni of the i-th class.
In this caseW will be of the following form,

W = diag(W1,W2, . . . ,Wc).

The weightsWi within each class are computed in the usual
way as described by equation (3). The rank ofW defined
above, is restricted as is explained by the following proposi-
tion.

Proposition 3.1: The rank ofW is at mostn − c.
Proof: Recall that the row sum of the weight matrix

Wi is equal to 1, because of the constraint (2). This implies
that Wiei = 0, ei = [1, . . . , 1]⊤ ∈ Rni . Thus, the followingc
vectors





e1 0 · · · 0
0 e2 · · · 0
0 0 · · · ec



 ,

are linearly independent and belong to the null space ofW .
Therefore, the rank of W is at mostn − c.

Consider now the casem > n where the number of samples
(n) is less than their dimension (m). This case is known as the
undersampled size problem. A direct consequence of the above
proposition is that in this case, the matrix̃M ∈ Rm×m will
have rank at mostn − c. In order to ensure that the resulting
matrix M̃ will be nonsingular, we may employ an initial PCA
projection that reduces the dimensionality of the data vectors
to n − c. Call VPCA the dimensionality reduction matrix of
PCA. Then the ONPP algorithm is performed and the total
dimensionality reduction matrix is given by

V = VPCAVONPP,

whereVONPP is the dimensionality reduction matrix of ONPP.

IV. K ERNEL ONPP

It is possible to formulate a kernelized version of ONPP.
Kernels have been extensively used in the context of Sup-
port Vector machines (SVMs) [12]. Essentially, we em-
ploy a nonlinear mappingΦ : Rm → H. Denote by
Φ(X) = [Φ(x1),Φ(x2), . . . ,Φ(xn)] the transformed dataset
in the feature spaceH. Denote also byKij = k(xi, xj) =
〈Φ(xi),Φ(xj)〉 the Gram matrix induced by the kernelk(x, y)
associated with the feature space. Consider the cased = 1
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Fig. 1. Results of applying ONPP and LPP on thes-curve.
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Fig. 2. Results of applying ONPP and LPP on theswissroll.

i.e., the data samples are projected on a lineyi = v⊤xi. Then,
observe that the optimization problem (4) in the feature space
is formulated as follows

min
v

v⊤Φ(X)MΦ(X)⊤v,

where v =
∑n

i=1 αiΦ(xi) = Φ(X)α. Then, the above
optimization problem is rewritten as follows

min
α

α⊤Φ(X)⊤Φ(X)MΦ(X)⊤Φ(X)α =

min
α

α⊤KMKα. (5)

Therefore,α should be the eigenvector ofKMK associated
with its smallest eigenvalue. For the general case of an
arbitrary dimensiond of the reduced space, we compute the
eigenvectorsα(1), α(2), . . . , α(d) of KMK associated with its
smallest eigenvalues. Then, the projection of a new pointxt

is computed by computing its components along thev(i)’s. In
particular, the dot product ofxt with v(i) is computed as

〈v(i),Φ(xt)〉 = 〈

n
∑

j=1

α
(i)
j Φ(xj),Φ(xt)〉 =

n
∑

j=1

α
(i)
j k(xj , xt).

Now consider again for simplicity the cased = 1. Con-
cerning the training points, observe that the projections along
the eigenvectorv are given byy = Ka. Then, notice that the
optimization problem (5) is rewritten asminy y⊤My which
is exactly the eigenvalue problem solved by LLE. Therefore,
LLE (nonlinear) could be viewed as performing ONPP (linear)
implicitly in the feature spaceH.

V. D ISCUSSION

Principal Components Analysis (PCA) computes the eigen-
vectors of the sample covariance matrix

C = (X − µe⊤)(X − µe⊤)⊤,
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Fig. 3. Results of applying ONPP and LPP on thepunctured sphere.

associated with its largest eigenvalues. In the above formula
we usedµ =

∑n

i=1 Xi which is the mean vector of the data.
The data points are projected using the principal eigenvectors
of C. PCA projects along the axes of maximum variance [13].
Therefore, PCA tends to preserve the global characteristics of
the dataset. Recall that ONPP preserves the local geometries
in each neighborhood. Notice that due to the overlapping
neighborhoods, the combination of the local geometric infor-
mation is expressed as preserving the global geometry as well.
Moreover, the columns ofV are orthonormal and this causes
ONPP to tend to preserve the angles as much as possible.
Therefore, one could argue that ONPP can be effectively used
for data visualization purposes.

ONPP shares some of the properties of Locality Preserving
Projections (LPP) [6], a recently proposed linear dimensional-
ity reduction technique which aims at preserving the locality
of the data samples. The locality information is quantified by
the following objective function

∑

ij

(yi − yj)
2Wij .

In particular, LPP employs the same objective function with
Laplacian Eigenmaps [3] which is a nonlinear technique for
dimensionality reduction. However, LPP is linear and employs
an explicit linear mapping fromX → Y .

Both ONPP and LPP tend to preserve the locality of the
data samples. However, ONPP is designed to preserve not only
the locality (neighborhood graph) but also the local geometry.
This is because the local geometric characteristics are captured
by the optimal weightsWij (see 3). In contrast, LPP does
not consider the local geometries explicitly. Furthermore, the
Gaussian weights used in LPP are somewhat artificial and do
not necessarily reflect the underlying geometry. Recall also
that a suitable value for the parameterσ, the width of the
Gaussian envelope, must be determined. This parameter tuning
is crucial for the performance of the algorithm.

Note also that ONPP is semi-automated since it only
requires one parameterk, the number of nearest neighbors.
Finally, note that the dimensionality reduction matrixV has
orthonormal columns, and so ONPP amounts to an orthogonal
projection of the data. In contrast, the dimensionality reduction
matrix of LPP does not have orthonormal columns since these
are the solutions of a generalized eigenproblem.

VI. EXPERIMENTAL RESULTS

In this section we evaluate our algorithm in an unsupervised
setting and compare it with PCA and LPP, which are linear
dimensionality reduction methods. We use an implementation
of LPP which is publicly available1.

A. Synthetic data

We use three well known synthetic datasets from [11]: the
s-curve, theswissroll and thepunctured sphere.
Figures 1 and 2 illustrate the two dimensional projections
obtained by the ONPP and LPP methods in thescurve and
swissroll datasets. We usek = 12 in both algorithms.
Observe that both methods preserve locality and this is indi-
cated by the color shading. However, ONPP preserves local
and global geometric characteristics as well, since it gives a
faithful projection which conveys information about how the
manifold is folded in the high dimensional space.

Figure 3 illustrates the outcome of both algorithms on the
punctured sphere. This dataset verifies that although
LPP preserves locality (illustrated by color shading) it seems
to perturb the local geometries of the neighborhoods. On the
other hand, ONPP respects not only the locality but the local
geometries as well. This feature of ONPP is crucial for data
visualization purposes.

B. Digit visualization

The next experiment involves digit visualization. We use
20 × 16 images of handwritten digits which are publically
available from S. Roweis’ web page2. The dataset contains 39
samples from each class (digits from ’0’-’9’). Each digit image
sample is represented lexicographically as a high dimensional
vector of length 320. We project the dataset in the two
dimensional space and the results are depicted in Figure 4. We
usek = 6 for both ONPP and LPP. The left panels corresponds
to digits ’0’-’4’ and the right panels corresponds to digits’5’-
’9’.

Observe that the projections of PCA are spread out since
PCA aims at maximizing the variance. However, the classes of
different digits seem to heavily overlap. This means that PCA
does not do well at discriminating between data. On the other
hand, observe that ONPP and LPP yield more meaningful
projections since samples of the same class are mapped close
to each other. This is because these methods aim at preserving
the locality. Finally, ONPP seems to provide slightly better
projections than LPP since the clusters of the former appear
more cohesive.

C. Face recognition

In this experiment we employ ONPP and LPP in a su-
pervised setting (see Section III for more details) for face
recognition. Note that in this case we employ LPP with
Gaussian weights. We determined the value of the widthσ of
the Gaussian envelope as follows. First, we sample 1000 points

1http://people.cs.uchicago.edu/∼xiaofei/LPP.m
2http://www.cs.toronto.edu/∼roweis/data.html
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Fig. 4. Two dimensional projections of digits. Left panel: ‘+’ denotes 0, ‘x’ denotes 1, ‘o’ denotes 2, ‘△’ denotes 3 and ‘�’ denotes 4. Right panel: ‘+’
denotes 5, ‘x’ denotes 6, ‘o’ denotes 7, ‘△’ denotes 8 and ‘�’ denotes 9. Top panels: PCA, middle: LPP and bottom: ONPP.

randomly and then compute the pairwise distance among them.
Then σ is set equal to half the median of those pairwise
distances. This gives a good and reasonable estimate for the
value ofσ.

We use a subset of the AR face database [8] which contains
126 subjects under 8 different facial expressions and variable
lighting conditions for each individual. We form the training
set by a random subset of 4 different facial expressions/poses
per subject and use the remaining 4 as a test set. We plot the

average error rate (%) across 20 random realizations of the
training/test set, ford = [30 : 10 : 100] (in MATLAB notation).

The results are illustrated in Figure 5. Observe that ONPP
outperforms the other methods. Furthermore, Table II reports
the best achieved error rate by each method and the corre-
sponding dimensiond of the reduced space. It appears that
PCA (unsupervised) has inferior performance versus the other
methods which are supervised. Notice that ONPP is the best
of all the methods tested, with a clear margin of superiority.
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dim error (%)
PCA 100 17.53
LPP 90 7.96
ONPP 90 5.05

TABLE II

THE BEST ERROR RATE ACHIEVED BY ALL METHODS ON THEAR

DATABASE.

Additionally, recall that the supervised version of ONPP is
fully automated, since the number of nearest neighborsk is
determined by the class membership and the user need not
set any parameters. In contrast, LPP with Gaussian weights
requires to determine the parameterσ.

D. Tissue visualization using gene expression data

The evolution of DNA microarray technology has resulted
in an abundance of gene expression data. Those data sets
need to be analyzed in a meaningful way to improve our
understanding and knowledge of the functional role of genes
in the development of diseases and malignancies. Each entry
of the DNA microarray hybridization experiment is the ratioof
the expression level of a particular gene under two different
conditions. Usually, the numerator measures the expression
level of a certain gene at the condition of interest and the de-
nominator corresponds to the reference condition. The results
of n DNA microarray experiments acrossm genes, is am×n

data matrix whose rows correspond to the expression levels of
a particular gene and each column corresponds to a specific
tissue sample experiment.

The goal of the experiments in this section is to use gene ex-
pression data for tissue visualization using unsupervisedONPP
and LPP. We use a subset of the datasets in [14] for tissue
classification. Table III summarizes the main characteristics
of the datasets. Details on each of these are provided next.

Leukemia: TheLeukemia dataset [5] consists of two dif-
ferent types of acute leukemias: acute lymphoblastic leukemia
(ALL) and acute myeloblastic leukemia (AML). It is available
athttp://www.genome.wi.mit.edu/MPR. The dataset
contains 72 leukemia tissue samples of which 47 are ALL
samples and 25 are AML samples. The number of genes

Dataset No of tissues No of genes
Leukemia 72 7129
Lymphoma 62 4026
Colon 62 2000

TABLE III

MAIN CHARACTERISTICS OF THE GENE EXPRESSION DATASETS.

included at the microchip is 7129. We employ both ONPP and
LPP withk = 6 and illustrate the two dimensional projections
of all tissue samples in Figure 6. Observe that in ONPP the
tissues of the same type of leukemia cluster together and the
clusters are cohesive. On the other hand, in the case of LPP
the ALL cluster seems to be separated in two parts.

Lymphoma: The Lymphoma dataset [1] comes from
a study of discrimination among different types of non-
Hodgkins lymphoma using gene expression data. It is available
at http://genome-www.stanford.edu/lymphoma.
There are three classes of lymphoma: B-cell chronic lym-
phocytic leukemia (CLL), follicular lymphoma (FL) and dif-
fuse large B-cell lymphoma (DLCL). In particular, there 11
samples of CLL-type, 9 samples of FL-type and 42 samples
of DLCL-type lymphoma. The number of genes used in the
‘Lymphochip’ is 4026. We employ ONPP and LPP withk = 8
and project the tissue samples on a two dimensional space.
The resulting projections are shown at Figure 7. Observe
that although both methods are used in unsupervised mode,
the tissues of the same type cluster together in the reduced
space. However, in ONPP the FL-type lymphoma samples
seem to be spread out and this may be due to the geometry
of those samples in the high dimensional space. Additionally,
the observed elongated cluster of the CLL-type lymphoma
samples may convey information about how those samples
are arranged in the high dimensional space.

Colon: The Colon dataset [2] consists of colon
tissue samples. In particular, it contains 40 tumor
and 22 normal colon tissues. It is available at
http://microarray.princeton.edu/oncology.
The total number of genes included at the microchip is 2000.
We employ ONPP and LPP withk = 6 and illustrate the
two dimensional projections of all tissue samples in Figure
8. Observe that ONPP respects the intrinsic geometries in
the local neighborhoods in the higher dimensional space. On
the other hand, LPP appears to disturb the local geometries.
Furthermore, the projections of this dataset suggest that
ONPP respects the class information of the tissue samples as
well.

E. Face manifold visualization

In the last experiment we use a collection of face images
from the ISOMAP [7] web-page3. The face images contain
a virtual face under different degrees of freedom including
rotation/pose and lighting/shading. There are 698 facial im-
ages of size64 × 64. In the pre-processing step each face
image is downsampled to32 × 32 to reduce computational
complexity. We then use ONPP withk = 12 to project the high

3http://isomap.stanford.edu/datasets.html
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Fig. 6. Two dimensional projections of theLeukemia tissue samples using ONPP (left panel) and LPP (right panel).
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Fig. 8. Two dimensional projections of theColon tissue samples using ONPP (left panel) and LPP (right panel).

dimensional facial images in two dimensional space. Figure9
illustrates the two dimensional projection obtained. Nextto
some of the projected samples we place the corresponding

facial image. Observe that the images are organized in two di-
mensional space according to the intrinsic degrees of freedom
(underlying pose and lighting condition). For instance, facial
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Fig. 9. Two dimensional projections of the face manifold usingONPP withk = 12 nearest neighbors.

images with similar head orientation are projected close by.

VII. C ONCLUSION

The Orthogonal Neighborhood Preserving Projections
(ONPP) introduced in this paper is a linear dimensionality
reduction technique, which will tend to preserve not only the
locality but also the local and global geometry of the high
dimensional data samples. It can be extended to a supervised
method and it can also be combined with kernel techniques.
We showed that ONPP can be very effective for data visual-
ization, and that it can be implemented in a supervised setting
to yield a robust recognition technique. Experimental results
spanning a few application areas from pattern recognition,
computational biology and computer vision demonstrated the
versatility and effectiveness of the proposed scheme.
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