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Abstract— Orthogonal Neighborhood Preserving Projections obtained by minimizing an objective function which capgire
(ONPP) is a linear dimensionality reduction technique which the discrepancy of the intrinsic neighborhood geometnies i
attempts to preserve both the intrinsic neighborhood geometry the reduced space. Experimental evidence suggests tiat thi

of the data samples and the global geometry. The proposedf t - ol | ina the alobal i al
technique constructs a weighted data graph where the weights ar '€3tUr€ IS crucial in preserving the giobal geometry as,w

constructed in a data-driven fashion, similarly to Locally Linear the interaction of overlapping neighborhoods. Thus, ondcto
Embedding (LLE). A major difference with the standard LLE  argue that ONPP can be effectively used for data visuatizati

where the mapping between the input and the reduced spacespurposes and that it may be viewed as a synthesis of PCA and
is implicit, is that ONPP employs an explicit linear mapping LLE

between the two. As a result, and in contrast with LLE, handling '

new data samples becomes straightforward, as this amounts toa ONPP constructs a weightek-nearest neighbork¢NN)
simple linear transformation. ONPP shares some of the properties graph which models explicitly the data topology. Similarly
of Locality Preserving Projections (LPP). Both ONPP and LPP to LLE, the weights are built to capture the geometry of
rely on a k-nearest neighbor graph in order to capture the - . . o .
data topology. However, our algorithm inherits the characteristics the “e'thothOd Of_eaCh point. The linear projection §1Ep !
of LLE in preserving the structure of local neighborhoods, determined by imposing the constraint that each data sample
while LPP aims at preserving only locality without specifically the reduced space is reconstructed from its neighbors by the
aiming at preserving the geometric structure. This feature makes sgme weights used in the input space. However, in contrast
ONPP an effective method for data visualization. We provide to LLE, ONPP computes an explicit linear mapping from

ample experimental evidence to demonstrate the advantageous . .
characteristics of ONPP, using well known synthetic test cases asthe input space to the reduced space. Note that in LLE the

well as real life data from computational biology and computer Mapping is implicit and it is not clear how to embed new data
vision. samples (see e.g. research efforts by Bengio et al. [4])uin o

case, the projection of a new data sample is straightforward

Keywords: Linear dimensionality reduction, Locally Lin- Do .
A y y and it simplifies to a matrix vector product.

ear Embedding.
ONPP shares some properties with Locality Preserving

I. INTRODUCTION Projections (LPP) [6]. Both are linear dimensionality redu

The problem of dimensionality reduction appears in marﬂ?” techniques which construct the k-NN graph in order to

fields including data mining, machine learning and comput8todel the data topology. However, our algorithm uses the
vision, to name just a few. The goal of dimensionality reoptimal data-driven weights of LLE which reflect the intims

duction is to map the high dimensional samples to a low8fOmetry of the local neighborhoods, whereas the uniform

dimensional space such that certain properties are pemsery/eights (0/1) used in LPP aim at preserving locality without
Usually, the property that is preserved is quantified by &xplicit consideration to the local geometric structureateN

objective function and the dimensionality reduction pesblis that Gaussian weights can be used in LPP but these are
formulated as an optimization problem. For instance, faic somewhat artificial and require the selection of an appabgri

Components Analysis (PCA) is a traditional linear techeiqu/@Ue of the parameter, the width of the Gaussian envelope.

which aims at preserving the global variance and relies Aithough this issue is often overlooked, it is crucial foeth

the solution of an eigenvalue problem involving the sampRerformance of the method and remains a serious handicap
covariance matrix. Locally Linear Embedding (LLE) [9], [11 when using Gaussian weights. Experimental results suggest

is a nonlinear dimensionality reduction technique whiahgi that ONPP s effective in conveying meaningful local and
at preserving the local geometries at each neighborhood. global geometric information from high dimensional sansple

While PCA is good at preserving the global structure, [ 10w dimensional ones.
does not preserve the locality of the data samples. In thisBefore starting, it is useful to define in general terms the
paper, we propose #near dimensionality reduction tech- problem of dimensionality reduction. Given a datasét—
nique, named Orthogonal Neighborhood Preserving Projéeq, zo,...,x,] € R™*™ and the dimensiod of the reduced
tions (ONPP), which preserves the intrinsic geometry of trepace, withd < m, the goal of dimensionality reduction is to
local neighborhoods. The high dimensional data samples aetermine a matrix” ¢ R™*< such that the projected vectors
projected on a lower dimensional space by means of a lingar= V "z; in the reduced space satisfy a certain property.
transformationV. The dimensionality reduction matriX is For instance, PCA computd8 such that the variance of the



projected vectors is maximized i.e, Algorithm: Orthogonal Neighborhood Preserving Projections
Input: DatasetX € R™*™ andd: dimension of reduced space.
n 2 Output: Embedding vectory” € R4 x™,
1 —yT 1. Compute thek nearest neighbors of data point, - - -, z,.
max YT n Z Yill » Y= Li- 2. Compute the weight®;; which give the best linear
VeR j=1 9 reconstruction of each data point by its neighbors (Equ. (3))
Viv=I 3. Compute the projected vectogs =V Txz;, i=1,...,n
] ) whereV is determined by computing thé+ 1 eigenvectors of
Our algorithm determined” such that the local geometry M=XT-WHI-wW)XT
of the neighborhoods is preserved. This can be captured by associated with smallest eigenvalues
a certain objective function and we show that optimizing TABLE |
this function results in an eigenvalue problem whose smruti THE ONPPALGORITHM.

yields the matrix\”. The next section describes the proposed
method in more detail.

Il. ORTHOGONAL NEIGHBORHOODPRESERVING imposes an explicit linear mapping frold — Y such that
y; = V'a;, i = 1,...,n for an appropriately determined

PROJECTIONS i |
Consid q d by th | ; matrix V€ R™*?, In order to determine the matrix, ONPP
onsider a dataset represented by the columns of a mam?boses the constraint that each data sampla the reduced

X = [21,23,...,2,] € R™*". The first part of ONPP is iden- space is reconstructed from ifs neighbors by exactly the
tical with that of LLE [9], [11] and consists of computing Sém g, o \weights as in the input space. This leads to the solution

optimal weights in each neighborhood. The basic assumptigh . following optimization problem, where we s&f —
is that each data sample along with isnearest neighbors (I—-WT)I—-W)andM =XMXT

(approximately) lies on a locally linear manifold. Hencacle

data sample; is reconstructed by a linear combination of its Irgn oY) = Irgnz lyi — Z Wijy;l5
k nearest neighbors. The reconstruction errors are measured i J
L I . _ - .
by minimizing the objective function = mmin Z VT2 — Z WiV a2
EW) =) llwi— Y Wi;l3. 1) ' ’
22 Wil = min [VTX(-WT)}
VGRm xXd
The weightWW;; represent the linear coefficient for reconstruct- = min (V' XMX'V)
ing the samplez; from its neighbors{z;}. The following VeRrmxd ~
constraints are imposed on the weights: =, rr};in dtr(VTMV) . 4)
. . . eRmX
1) W;; =0, if z; is not one of thek nearest neighbors of

If we impose the additional constraint that the columnd/of
—— .
2) Zj Wi, = 1, that isz; is approximated by a convex &€ orthon.or'mal', ieV'Vv = I then thg solutloriV.to the
combination of its neighbors. above optimization problem is the basis of the eigenvectors
N hat th L bl 1 b associated with the smallest eigenvalues dff. We observed
tqteft at t e' optm;z?tmr%/gro emh( );?r) e recast i practice that ignoring the smallest eigenvector Mdf is
matrix form asminy | X (I — W 7)||r, whereW is ann x n _helpful. This is an issue to be investigated in future work.
sparse matrix which has a specific sparsity pattern (camrnl|t|,\|0te that the embedding vectors of LLE are obtained by

(1)) and satisfies the constraint that its row-sums be eG‘ualctomputing the eigenvectors of matrid associated with its
one (condition (2)). The weights for a specific data paipnt smallest eigenvalues
are computed as follows. Define New data points. Consider now a new test data sample
Cpi = (z; — ij)T(jS —x;) € RF*F, 2) that needs to be projected. The test sample is projected onto

) o o the subspace, = V "z, using the dimensionality reduction
the local Gram matrix containing the pairwise inner produck,atrix V. Therefore, the computation of the new projection
among the neighbors of;, given that the neighbors aregimplifies to a matrix vector product.
centered with respec'g t@;. It can be shown that the weights _Computational cost. The first part of ONPP consists of
of the above constrained least squares problem are giverydhming thek-NN graph. This scales as &%). Its second part

Ti,

closed form [9] using the inverse @f, requires the computation of a few of the smallest eigenvscto
>, CZ_;1 of M. Observe that in practice this matrix is not computed

w; = S o1 (3) explicitly. Rather, iterative techniques are used to cot@ple

pl —pl corresponding smallest singular vectors of mafi/ — W) "

where w; represents the-th column of W. The weights [10]. The inner computational kernel of these techniques is
W;, satisfy certain optimality properties. They are invariarthe matrix-vector product which scales quadratically wita
to rotations, scalings and translations. A direct consegeie dimensions of the matrix at hand.
of these properties is that the weights preserve the imtrins
geometric characteristics of each neighborhood. l1l. SUPERVISEDONPP

Consider now the second part of projecting the data sampledt is possible to implement ONPP in either an unsupervised
X to the reduced spacg = [y1, %2, ...,y,] € RYX". ONPP or a supervised setting. Note that in the later case where the



class labels are available, ONPP can be modified approlgriat . A ar
and yield a projection which carries not only geometric info 37
mation but discriminating information as well. In a supsed
setting we first build the data grapfi = (N, F), where
the nodesN correspond to data samples and an edge=
(x;,z;) exists if and only ifx; and z,; belong to the same
class. In other words, we make adjacent those nodes (d
samples) which belong to the same class. Notice that in tl
case one does not need to set the paramigtdre number of
nearest neighbors, and the method becomes fully automatic. _
Denote byc the number of classes and the number of Fig. 1. Resdits of applying ONPP and LPP on thecur ve.
data samples which belong to ti¢h class. The data graph
consists of: cliques, since the adjacency relationship betwet s ONEF
two nodes reflects their class relationship. This impliest th
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with an appropriate reordering of the columns and rows, tl * {{,{ . s
weight matrix W will have a block diagonal form where the 5y ! 0
size of thei-th block is equal to the size; of the i-th class. R 1';‘§ el s

",
Wi

In this caselW will be of the following form, s

W = diag(Wy, Wa, ..., Wo). = \/
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The weightsiV; within each class are computed in the usuc.
way as_ descrl.bed by e.quatlon. (3) The ranka_ defm?d Fig. 2. Results of applying ONPP and LPP on th& ssrol | .
above, is restricted as is explained by the following propos
tion.
Proposition 3.1: The rank of /" is at mostn — c. i.e., the data samples are projected on ajine: v ' z;. Then,

Proof: Recall that the row sum of the weight matrix s i
W, is equal to 1, because of the constraint (2). This impl observe that the optimization problem (4) in the featurecspa

58 formul foll
that Wie; = 0,e; = [1,...,1]T € R™. Thus, the followingc $ formulated as follows

vectors minv " ®(X)M®(X) v,
et 0 -+ 0 v
0 e -~ 0|, where v = Y7 a;®(z;) = ®(X)a. Then, the above
0 0 - e optimization problem is rewritten as follows
are linearly independent and belong to the null spac&/of min a’ ®(X)TO(X)MP(X) ®(X)a =
Therefo.re, the rank of W is at most— c. [ ] minaT KMKa. )
Consider now the case > n where the number of samples @

(n) is less than their dimensiomi). This case is known as theTherefore,a should be the eigenvector df M K associated
undersampled size problem. A direct consequence of the abovaith its smallest eigenvalue. For the general case of an
proposition is that in this case, the matd{ € R™>*™ will  arbitrary dimensioni of the reduced space, we compute the
have rank at most — c. In order to ensure that the resultingeigenvectorsy™), o, ... (¥ of K MK associated with its
matrix M will be nonsingular, we may employ an initial PCAsmallest eigenvalues. Then, the projection of a new peint
projection that reduces the dimensionality of the dataorsct is computed by computing its components alongdfi&s. In
to n — c. Call Vpca the dimensionality reduction matrix of particular, the dot product of, with v(9) is computed as
PCA. Then the ONPP algorithm is performed and the total n n
dimensionality reduction matrix is given by (WD ®(z)) = (Z ay)@(xj),(b(xt)} = Zay)k(xﬁxt).
j=1 j=1
V' = VecaVoner, Now consider again for simplicity the cage= 1. Con-
whereVonpp is the dimensionality reduction matrix of ONPPcerning the training points, observe that the projectidoag
the eigenvectop are given byy = Ka. Then, notice that the
IV. KERNELONPP optimization problem (5) is rewritten asin, y ' My which
It is possible to formulate a kernelized version of ONPIB.S exactly_the eigenvalue problem solved by LLE. Ther_efore,
Kernels have been extensively used in the context of S _E_(rjonl_mear) could be viewed as performing ONPP (linear)
port Vector machines (SVMs) [12]. Essentially, we em" plicitly in the feature space{.
ploy a nonlinear mappingb : R™ — H. Denote by V. DISCUSSION
O(X) = [®(z1), P(x2),...,P(x,)] the transformed dataset
in the feature spacé{. Denote also byK;; = k(z;,z;) =
(®(z;), ©(z;)) the Gram matrix induced by the kerriglz, y)
associated with the feature space. Consider the dasel C=(X—pe")(X —pe")T,

Principal Components Analysis (PCA) computes the eigen-
vectors of the sample covariance matrix



LPP

ir VI. EXPERIMENTAL RESULTS

In this section we evaluate our algorithm in an unsupervised
setting and compare it with PCA and LPP, which are linear
dimensionality reduction methods. We use an implememtatio
of LPP which is publicly availabfe

A. Synthetic data

We use three well known synthetic datasets from [11]: the
s-curve, theswi ssrol | and thepunct ured sphere.
Figures 1 and 2 illustrate the two dimensional projections
obtained by the ONPP and LPP methods in sloair ve and
swi ssrol | datasets. We usé = 12 in both algorithms.
associated with its largest eigenvalues. In the above flarm@bserve that both methods preserve locality and this is indi
we usedu = Y27, X; which is the mean vector of the datacated by the color ghading. Ho_vvgver, ONPP preserves local
The data points are projected using the principal eigeovect@nd global geometric characteristics as well, since itg&e
of C. PCA projects along the axes of maximum variance [13f]zg|thful projection Wh|ch conveys mfo'rmatlon about howeth
Therefore, PCA tends to preserve the global charactesisfic Manifold is folded in the high dimensional space.
the dataset. Recall that ONPP preserves the local geometrieFigure 3 illustrates the outcome of both algorithms on the
in each neighborhood. Notice that due to the overlappify/nctured sphere. This dataset verifies that although
neighborhoods, the combination of the local geometricrinfo-PP preserves locality (illustrated by color shading) irse
mation is expressed as preserving the global geometry s wi§ perturb the local geometries of the neighborhoods. On the
Moreover, the columns of are orthonormal and this cause$ther hand, ONPP respects not only the locality but the local
ONPP to tend to preserve the angles as much as possig%qmgtrigs as well. This feature of ONPP is crucial for data
Therefore, one could argue that ONPP can be effectively uségualization purposes.
for data visualization purposes.

ONPP shares some of the properties of Locality PreserviBg Digit visualization
Projections (LPP) [6], a recently proposed linear dimemsio  The npext experiment involves digit visualization. We use
ity reduction technique which aims at preserving the lagalioy « 15 images of handwritten digits which are publically
of the data samples. The locality information is quantifigd by5ilaple from S. Roweis’ web pafjeThe dataset contains 39

Fig. 3. Results of applying ONPP and LPP on thenct ur ed sphere.

the following objective function samples from each class (digits from '0’-'9"). Each digitdge
sample is represented lexicographically as a high dimeakio
Z(yi — ;)W vector of length 320. We project the dataset in the two
ij dimensional space and the results are depicted in Figuree4. W

usek = 6 for both ONPP and LPP. The left panels corresponds
In particular, LPP employs the same objective function witto digits '0’-'4’ and the right panels corresponds to digis
Laplacian Eigenmaps [3] which is a nonlinear technique f&@'.
dimensionality reduction. However, LPP is linear and empplo  Observe that the projections of PCA are spread out since
an explicit linear mapping fronX — Y. PCA aims at maximizing the variance. However, the classes of

Both ONPP and LPP tend to preserve the locality of th@fferent digits seem to heavily overlap. This means thaAPC
data samples. However, ONPP is designed to preserve not gidgs not do well at discriminating between data. On the other
the locality (neighborhood graph) but also the local geoynethand, observe that ONPP and LPP yield more meaningful
This is because the local geometric characteristics ateieap Projections since samples of the same class are mapped close
by the optimal weights¥;; (see 3). In contrast, LPP doeslo each other. This is because these methods aim at pregervin
not consider the local geometries explicitly. Furthermahe the locality. Finally, ONPP seems to provide slightly bette
Gaussian weights used in LPP are somewhat artificial and @®jections than LPP since the clusters of the former appear
not necessarily reflect the underlying geometry. Recalb al§rore cohesive.
that a suitable value for the parameter the width of the
Gaussian envelope, must be determined. This parametegtunt:  Fgce recognition
is crucial for the performance of the algorithm.

Note also that ONPP is semi-automated since it onB/e
requires one parametér, the number of nearest neighbors
Finally, note that the dimensionality reduction matfix has
orthonormal columns, and so ONPP amounts to an orthogo
projection of the data. In contrast, the dimensionalityuctthn
matrix of LPP does not have orthonormal columns since thesent ¢ p: // peopl e. cs. uchi cago. edu/ ~xi aof ei / LPP. m
are the solutions of a generalized eigenproblem. 2htt p: // www. cs. t or ont 0. edu/ ~r owei s/ dat a. ht m

In this experiment we employ ONPP and LPP in a su-
rvised setting (see Section Il for more details) for face
fecognition. Note that in this case we employ LPP with
Gaussian weights. We determined the value of the widtf

Gaussian envelope as follows. First, we sample 100@g0in
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Fig. 4. Two dimensional projections of digits. Left panel: genotes 0, ‘X’ denotes 1, ‘0’ denotes 2)\' denotes 3 and[I' denotes 4. Right panel: ‘+'
denotes 5, ‘X’ denotes 6, ‘0’ denotes 7)\* denotes 8 and[J' denotes 9. Top panels: PCA, middle: LPP and bottom: ONPP.

randomly and then compute the pairwise distance among theaverage error rate (%) across 20 random realizations of the
Then o is set equal to half the median of those pairwistraining/test set, fod = [30 : 10 : 100] (in MATLAB notation).
distances. This gives a good and reasonable estimate for the
value ofo. The results are illustrated in Figure 5. Observe that ONPP
outperforms the other methods. Furthermore, Table Il itspor
We use a subset of the AR face database [8] which contathe best achieved error rate by each method and the corre-
126 subjects under 8 different facial expressions and biria sponding dimensionl of the reduced space. It appears that
lighting conditions for each individual. We form the traigi PCA (unsupervised) has inferior performance versus theroth
set by a random subset of 4 different facial expressionsfposnethods which are supervised. Notice that ONPP is the best
per subject and use the remaining 4 as a test set. We plot tfiaall the methods tested, with a clear margin of superiority



AR Dataset No of tissues| No of genes
301 Leukemia 72 7129
- LPP Lymphoma 62 4026
Colon 62 2000
25+
TABLE Il

MAIN CHARACTERISTICS OF THE GENE EXPRESSION DATASETS

N
o

=
1

error rate (%)

included at the microchip is 7129. We employ both ONPP and

106 e N LPP withk = 6 and illustrate the two dimensional projections
Te. . T T e of all tissue samples in Figure 6. Observe that in ONPP the
5 L Yrme--ce--el . tissues of the same type of leukemia cluster together and the
0 A mnsion o redusd spacs. . ° clusters are cohesive. On the other hand, in the case of LPP

the ALL cluster seems to be separated in two parts.
Fig. 5. Error rate with respect to the reduced dimengion the AR database. Lymphoma: The Lymphoma dataset [1] comes from
a study of discrimination among different types of non-
dim | error (%) Hodgkins lymphoma using gene expression data. It is availab
PCA 100 | 1753 at http://genome-ww. st anford. edu/ | ynphona.

LPP 90 7.96
ONPP || 90 5.05

TABLE Il
THE BEST ERROR RATE ACHIEVED BY ALL METHODS ON THEAR

There are three classes of lymphoma: B-cell chronic lym-
phocytic leukemia (CLL), follicular lymphoma (FL) and dif-
fuse large B-cell lymphoma (DLCL). In particular, there 11
samples of CLL-type, 9 samples of FL-type and 42 samples
of DLCL-type lymphoma. The number of genes used in the
‘Lymphochip’ is 4026. We employ ONPP and LPP with= 8
and project the tissue samples on a two dimensional space.
Additionally, recall that the supervised version of ONPP i%he resulting projections are shown gt Figure 73 Observe

. : . at although both methods are used in unsupervised mode,
fully automated, since the number of nearest neighliois : :

the tissues of the same type cluster together in the reduced

determined by the class membership and the user need noéce. However, in ONPP the FL-type lymphoma samples

set any parameter;. In contrast, LPP with Gaussian Welg@esem to be spread out and this may be due to the geometry
requires to determine the parameter : . ) " e

of those samples in the high dimensional space. Additignall
the observed elongated cluster of the CLL-type lymphoma
D. Tissue visualization using gene expression data samples may convey information about how those samples

The evolution of DNA microarray technology has resulte@re arranged in the high dimensional space.
in an abundance of gene expression data. Those data sets Colon: The Colon dataset [2] consists of colon
need to be analyzed in a meaningful way to improve otissue samples. In particular, it contains 40 tumor
understanding and knowledge of the functional role of gen@8d 22 normal colon tissues. It is available at
in the development of diseases and malignancies. Each etk P: // i croarray. pri ncet on. edu/ oncol ogy.
of the DNA microarray hybridization experiment is the ratfo The total number of genes included at the microchip is 2000.
the expression level of a particular gene under two difiere/e employ ONPP and LPP withk = 6 and illustrate the
conditions. Usually, the numerator measures the expressf@o dimensional projections of all tissue samples in Figure
level of a certain gene at the condition of interest and the & Observe that ONPP respects the intrinsic geometries in
nominator corresponds to the reference condition. Theltsesiihe local neighborhoods in the higher dimensional space. On
of n DNA microarray experiments across genes, is an xn  the other hand, LPP appears to disturb the local geometries.
data matrix whose rows correspond to the expression levelshsirthermore, the projections of this dataset suggest that
a par[icu|ar gene and each column Corresponds to a Spedﬁmpp respects the class information of the tissue Samples as
tissue sample experiment. well.
The goal of the experiments in this section is to use gene ex-

pression data for tissue visualization using unsupen@s&B8P E. Face manifold visualization
and LPP. We use a subset of the datasets in [14] for tiSSU§y, the |ast experiment we use a collection of face images
classification. Table Ill summarizes the main characfesst from the ISOMAP [7] web-page The face images contain

of the datasets. Details on each of these are provided next, yirya| face under different degrees of freedom including

Leukemia: TheLeukemia dataset [5] consists of two dif- oiation/pose and lighting/shading. There are 698 factal i
ferent types of acute leukemias: acute lymphoblastic leike ages of sizeb4 x 64. In the pre-processing step each face

(ALL) and acute myeloblastic leukemia (AML). It is availabl image is downsampled t82 x 32 to reduce computational

athttp:// wwv. genone. wi . mi t. edu/ MPR The dataset mpjexity. We then use ONPP with= 12 to project the high
contains 72 leukemia tissue samples of which 47 are ALL

samples and 25 are AML samples. The number of geneshttp://isomap. stanford. edu/ dat aset s. ht ni

DATABASE.
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Fig. 6. Two dimensional projections of theeukemia tissue samples using ONPP (left panel) and LPP (right panel).
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Fig. 7. Two dimensional projections of thymphoma tissue samples using ONPP (left panel) and LPP (right panel).
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Fig. 8. Two dimensional projections of tl&olon tissue samples using ONPP (left panel) and LPP (right panel).

dimensional facial images in two dimensional space. Figurefacial image. Observe that the images are organized in two di
illustrates the two dimensional projection obtained. N&xt mensional space according to the intrinsic degrees of émreed
some of the projected samples we place the correspond{ngderlying pose and lighting condition). For instanceida



0.3

0.2

0.1

S
e
T

-0.8 -0.6 -04 -0.2 0 02

Fig. 9. Two dimensional projections of the face manifold usbi§PP withk = 12 nearest neighbors.

images with similar head orientation are projected close by [2] U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Macand
A. Levine. Broad patterns of gene expression revealed bsteding
VII. CONCLUSION analysis of tumor and normal colon tissues probed by oligaiicle
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