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Abstract

The most expensive part of all Electronic Structure Calculations based on Density Functional The-
ory, lies in the computation of an invariant subspace associated with some of the smallest eigenvalues
of a discretized Hamiltonian operator. The dimension of this subspace typically depends on the total
number of valence electrons in the system, and can easily reach hundreds or even thousands when
large systems with many atoms are considered. At the same time, the discretization of Hamiltonians
associated with large systems yields very large matrices, whether with plane-wave or real space dis-
cretizations. The combination of these two factors results in one of the most significant bottlenecks in
Computational Materials Science. In this paper we show how to efficiently compute a large invariant
subspace associated with the smallest eigenvalues of a Hermitian matrix using polynomially filtered
Lanczos iterations. The proposed method does not try to extract individual eigenvalues and eigen-
vectors. Instead, it constructs an orthogonal basis of the invariant subspace by combining two main
ingredients. The first is a filtering technique to dampen the undesirable contribution of the largest
eigenvalues at each matrix-vector product in the Lanczos algorithm. This techniques employs a well-
selected low pass filter polynomial, obtained via a conjugate residual-type algorithm in polynomial
space. The second ingredient is the Lanczos algorithm with partial reorthogonalization. Experiments
are reported to illustrate the efficiency of the proposed scheme compared to state-of-the-art implicitly
restarted techniques.
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1 Introduction

A number of scientific and engineering applications require the computation of a large number of eigen-
vectors associated with the smallest eigenvalues of a large symmetric/hermitian matrix. An important
example is in electronic structure calculations where the charge density o(r) at a point r in space is
calculated from the eigenfunctions ¥; of the Hamiltonian A via the formula

o) =3 W), (1)
1=1

where the summation is taken over all occupied states (n,) of the system under study. This is a crucial
calculation in Density Functional Theory since the potential V of the Hamiltonian A4 = V24V, depends
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on the charge density o, which in turn depends on the eigenvectors v; of A (see (1)), and as a result, an
iterative loop is required to achieve self-consistence. Computing the charge density o(r) via (1), requires
eigenvectors, though it is more accurate to say that what is needed is an orthogonal basis of the invariant
subspace associated with the n, algebraically smallest eigenvalues. This is because o(r) is invariant
under an orthogonal transformations of the basis of eigenfunctions {¥;}. If the symmetric matrix A
is the discretization of the Hamiltonian A and the vectors v; are the corresponding discretizations of
the eigenfunctions W;(r) with respect to r, then, the charge densities are the diagonal entries of the
“functional density matrix”

P=Q,Q, with Qu, =[1,...,¥n,]. (2)

Specifically, the charge density at the j-th point r; is the j-th diagonal entry of P. In fact, any
orthogonal basis Q which spans the same subspace as the eigenvectors ¥;, i = 1,...,n, can be used.
This observation has lead to improved schemes which do not focus on extracting individual eigenvectors.
For example, [4] showed that the semi-orthogonal basis computed by the Lanczos algorithm with partial
reorthogonalization can be used in order to extract accurate approximations to the charge density. This
scheme results in substantial savings relative to schemes which rely on the full reorthogonalization of the
Lanczos vectors.

In simple terms, the problem considered in this paper can be stated as follows. Given a real symmetric
(or complex Hermitian) matrix A € R™*" with eigenvalues Ay < Ay < ... < A, compute the invari-
ant subspace S, associated with the eigenvalues which do not exceed a certain limit 7. In electronic
structures, 7 is the Fermi energy level and the interval [a,~y] contains the (algebraically) smallest occu-
pied eigenstates eigenvalues Mg, ..., \, . We assume that we are given an interval [, 3] which (tightly)
contains the spectrum of A. The nature of the algorithms used also requires that a > 0. If this is not
satisfied, we shift matrix A by a scalar o so that A+ ol does not have any negative eigenvalues. Methods
for computing an interval [«, §] when this is not readily available are discussed in section 3.1.

This well known problem received much attention in the past few decades, as can be seen from the
survey [2]' which provides a good illustration of the wealth of algorithmic research in this field. For a
comprehensive theoretical discussion of the problem one can to refer to Parlett’s classic book [24] and
the references therein.

When the number of desired eigenvalues is rather small, in the order of a few dozens, a variety of
algorithms successfully address the problem. The most general purpose and extensively used method is
based on implicitly restarted Lanczos iterations [36] and is implemented in the software package ARPACK
[16]. However, the problem becomes particularly demanding in the cases when we seek to compute a large
number of eigenvalues that reach deep into the interior of the spectrum of the matrix at hand. Indeed,
in electronic structure calculations, the dimension of the corresponding invariant subspace is equal to the
number of occupied states n, which typically depends upon the number of free electrons of the system
under study. Current state of the art calculations may involve hundreds or even thousands of states. In
addition, the dimension n of the Hamiltonian A also depends on the number of atoms and the topology
of the system and is almost always in the order of a few hundred thousands.

There is a rather rich variety of ways to compute bases of large eigenspaces. Of all methods, the sub-
space iteration algorithm is probably the simplest [24]. This algorithm computes the dominant eigenspace,
i.e., the one associated with the largest modulus of A, by simply computing an orthogonal basis of the
span of A*X, where X is an n X p initial approximation to the egenbasis. This method can be easily
modified to compute the eigenspace associated with the algebraically smallest eigenvalues by shifting the
matrix. In fact, the subspace iteration algorithm is often used with Chebyshev acceleration [26] which
replaces the projection subspace A*X by Cy(0I + (A — oI)/n)X, where Cj is the Chebyshev polyno-
mial of degree k of the first kind and 6, 0,n are scaling and shifting parameters. This method was one
of the first to be used in electronic structure calculations [17, 18] and this might be attributed to its
simplicity and to the availability of an old ALGOL procedure published in the Wilkinson and Reinsch
collection of algorithms [38] (which later lead to the development of the EISPACK package). In subsequent
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codes based on density functional theory and planewave bases, diagonalization was replaced by “direct
minimization”, which in effect amounted to compute the subspace of minimum trace, i.e., an orthogonal
basis Q = [q1,. - -, qn,] such that tr(QT AQ) is minimum. In fact, many publications of the mid 1990s
focussed on avoiding orthogonality, which turned out to be hard to achieve. A method that was explicitlly
based on “trace-minimization” was proposed by Sameh and Wisniewski [32] as far back as 1982. Many
methods used in planewave codes, are variants of the same theme and are similar to subspace iteration
and trace-min iteration. They begin with a certain subspace of size n, (or close) and then improve each
vector individually while the others are fixed. Clearly, when iterating on the i-th vector, orthogonality
must be enforced against the first i — 1 vectors. While this does not refer directly to eigenvectors, the
algorithm implicitly computes these eigenvectors individually.

Later, many codes offered an alternative to this type of scheme in the form of the Block-Davidson
algorithm. When planewave bases are used, it is easy to precondition the eigenvalue problem for a number
of reasons [25]. In real-space methods, the situation is different, and we found that preconditioning the
eigenvalue problem is much harder [31]. The small gains one can expect from employing a preconditioner
must be weighed against the loss of the 3-term recurrence of the Lanczos procedure. Specifically, one
can potentially use the Lanczos procedure with an inexpensive form of reorthogonalization. This is no
longer possible with the Davidson approach which requires a full orthogonalization at each step. In [4]
we explored this approach. The Lanczos algorithm was adapted in a number of ways. First, we replaced
the re-orthogonalization step by a partial reorthogonalization scheme [15, 24, 33, 34]. Then, individual
eigenvectors were de-emphasized in the sense that they are not explicitly computed. Instead, a test based
on the convergence of the desired trace was incorporated. This required only to compute the eigenvalues
of the tridiagonal matrix at regular intervals during the iteration.

The method proposed in this paper exploits two distinct and complementary tools to solve the problem
stated above. The first is a filtering technique which is used to dampen the undesirable contribution of
the largest eigenvalues at each matrix-vector product in the Lanczos algorithm. This techniques employs
a well-selected low pass filter polynomial, obtained via a conjugate residual-type algorithm in polynomial
space. The second ingredient is the Lanczos algorithm with partial reorthogonalization. The main
rationale for this approach is that filtering will help reduce the size of the Krylov subspace required for
convergence, and this will result in substantial savings both in memory and in computational costs.

2 Krylov methods and the filtered Lanczos procedure

The Lanczos algorithm [14] (see also [6, 9, 24, 28]) is without a doubt one of the best known methods for
computing eigenvalues and eigenvectors of very large and sparse matrices. The algorithm, which is deeply
rooted in the theory of orthogonal polynomials, builds an orthonormal sequence of vectors which satisfy
a 3-term recurrence. These vectors form an orthonormal basis Q,, € R"*™ of the Krylov subspace

]Cm(Aa (J1) = SPaIl{Qh AQ17 A2q17 s 7Am71q1}a (3)

where ¢ is an arbitrary (typically random) initial vector with ||¢1]] = 1. An algorithmic outline of the
method is shown in Fig. 1. Note that each step of the Lanczos algorithm requires the matrix A only in
the form of matrix-vector products which can be quite appealing in some situations, such as when A is
available in stencil form.

It is not difficult to verify that the sequence of vectors that are computed during the course of the
Lanczos algorithm satisfy the 3-term recurrence

Bix1Gi+1 = Agi — ;g — Bigi—1 - (4)

The scalars ;41 and «; are computed to satisfy two requirements, namely that ¢;+; be orthogonal to
¢; and that ||g;y+1]]2 = 1. As it turns out, this ensures, in theory at least, that g;y; is orthogonal to
q1,---,q;. Therefore, in exact arithmetic the algorithm would build an orthonormal basis of the Krylov
subspace, and this is very appealing. In practice, however, orthogonality is quickly lost after convergence
starts taking place for one or a few eigenvectors [22].



Lanczos

(*Input*) Matrix A € R™*"| starting vector ¢q1, [|q1]l2 = 1, scalar m
(*Output*) Orthogonal basis @, € R™*™ of K,,(4, ¢1),
unit norm vector ¢,,+1 such that Q,—;qmﬂ =0

1. Setﬂlzo, qon
2. fori=1,...,m
3. w; = Ag; — Biqi1
o =< Wi, q; >
w; = w; — g
Bit1 = [Jwill2
if (Bi+1 == 0) then stop
qi+1 = wi/ﬁi+1
end

© XN

Figure 1: The Lanczos algorithm. The inner product for vectors is denoted by < .,. >.

If Q. =1[q1, "+, qm] and if T,, denotes the symmetric tridiagonal matrix
ap o
B2 a2
ﬁm—l Om—1 ﬁm
Bm Om

where the scalars «;,3; are computed by the Lanczos algorithm (Fig. 1), then the following matrix
relation can be easily verified

AQm = Qme +5m+1vm+1e;; . (6)

Here e, is the m-th column of the canonical basis and v,,+1 is the last vector computed by the Lanczos
algorithm.

The Lanczos algorithm approximates part of the spectrum of the original matrix A with that of the
much smaller (typically m <« n) and simpler tridiagonal matrix T,,. Of course, only a small number
of the eigenvalues of A, typically only a small fraction of m, can be approximated by corresponding
eigenvalues of T;,,. This leads the discussion to the next section.

2.1 The Lanczos algorithm for computing large eigenspaces

As is well-known the Lanczos algorithm quickly yields good approximations to extremal eigenvalues of A.
In contrast, convergence is typically much slower for the interior of the spectrum [24]. Figure 2 illustrates
this phenomenon for a Hamitonian (n = 17,077) corresponding to the cluster SijoHis produced by a real
space pseudopotential discretization code [5].

For the typical situation under consideration in this paper, an invariant subspace associated with a
large number of the algebraically smallest eigenvalues of A is to be computed, reaching far into the interior
of the spectrum. So we expect the number m of Lanczos steps required for all the desired eigenvectors
to converge, to be very large. Therefore, if the Lanczos algorithm is to be applied without any form of
restarting or preconditioning, then we will have to deal with two related constraints: (1) we will need
to apply some form of reorthogonalization [4, 15, 24, 33, 34] to the Lanczos vectors and as a result
(2) we need to store the Lanczos basis @, because it is needed by the reorthogonalization steps. The
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Figure 2: Convergence behavior for the 20 smallest (left) and the 20 largest (right) eigenvalues of the
Hamiltonian (n = 17077) corresponding to SijoHie. Here, A (denoted by +) are the exact eigenvalues of
the Hamiltonian and \,,, m = 80,120,160 and 200 are the corresponding eigenvalues obtained from the
tridiagonal matrix T;,, constructed by the Lanczos procedure.

first constraint increases computational cost and some care must be exercised for the reorthogonalization
process not to become too expensive. The second, raises the issue of memory costs. Storing the Lanczos
basis @,, will require a large memory size, and may even force one to resort to secondary storage.

Note that reorthogonalization will ultimately require all basis vectors to be fetched in main memory
and that the cost of orthogonalizing the vector ¢ against all previous ones will incur a cost of O(kn),
which yields a quadratic total cost of O(m?n) when summed over m steps. This cost will eventually
overwhelm any other computation done and it is the main reason why so many attempts have been
made in the past to avoid or reduce the orthogonalization penalty in electronic structures codes, see, e.g.,
[7, 13, 19, 20].

Note also that there is an additional severe penalty due to memory traffic as the size of the system
increases, because modern processors work at a much faster rate than memory subsystems. It was
argued in [4] that memory requirements do not necessarily pose a significant problem for the matrix
sizes encountered and the machines typically in use for large calculations. For example, storing 2,000
vectors of length 1 million, “only” requires 16 GB of memory, which is certainly within reach of most
high-performance computers 2. However, for larger calculations this could be a burden and out-of-core
algorithms can help.

The above discussions strongly suggests that when computing large invariant subspaces, it is essential
to use a Lanczos basis that is as small as possible. In order to achieve this, we apply the Lanczos
process not on the original matrix A but rather on a matrix p;(A), where p;(¢) is a polynomial of small
degree designed to be close to zero for large eigenvalues and close to one for the eigenvalues of interest. Of
course, polynomial acceleration in Krylov techniques is not a new idea (see for example [28] and references
therein). Typically, the goal is to restart Lanczos after a fixed number of iterations with a starting vector
from which unwanted eigendirections have been filtered out. In this paper we follow a slightly different
approach. We do not employ any restarts, but rather filter each matrix-vector product in the Lanczos
process using a small number of Conjugate-Residual type iterations on matrix A. As can be expected,

2In modern high-performance computers this will typically be available in a single node



the proposed scheme will require a much smaller number of basis vectors than without filtering. However,
each matrix-vector product is now more costly. Experiments will show that the trade-off is in favor of
filtering.

We motivate our approach by first describing a naive idea that does not work, and then sketch a
remedy to make it work. The strategy discussed here is the basis for the proposed algorithm and it will
be further refined throughout the paper. For the discussion we first consider the Lanczos algorithm in
a hypotetical infinite precision implementation. Let A1, A2, -+, A, -+, Ay, be the eigenvalues of A and
Uy, Uz, -+, Un,, Uy their associated eigenvectors. Suppose now that we are given an initial vector ¢;
which is such that < ¢1,u; >= 0 for j > n,, i.e., such that ¢; has no components along the directions
uj,J > no. Then it is known that the Krylov subspace KC,,, will be exactly the invariant subspace which
we wish to compute, see, e.g., [28]. In other words, if the vector ¢; has zero components in the eigenvectors
associated with the undesired eigenvalues A, 41, ..., An, then in exact arithmetic,

Kn, =Sn, -

Of course, this is contingent on the condition that ¢; has nonzero components in the eigenvectors associ-
ated with the eigenvalues of interest A1,..., A,,, a property that will generally be true in practice. Then,
the idea is the following: Find a polynomial pj(t) of high enough degree such that

1 for i<n,
ph()\i)w{ 0 for 7>n,

and then filter the vector ¢; with this polynomial before applying the Lanczos procedure. In other words,
redefine ¢ := pp(A)q1 and apply n, steps of the Lanczos algorithm with this filtered ¢; as initial guess
to obtain KC,,, = S,,,. The polynomial p;, is a low-pass filter-polynomial and an actual example is shown
in Figure 3.

Poly. filter; Intervals: [0 1.7];[1.7 2.3];[2.3 8]; deg=70
12r

Figure 3: A sample filter polynomial of degree 70 which is built to be close to 1 in [0, 1.7], and 0 in [2.3,
8].

One can imagine performing a practical Lanczos algorithm with this approach, using partial or full
reorthogonalization. This, however, does not work because when the initial vector ¢; has no weight in
the largest eigenvectors, the Lanczos polynomial will tend to be extremely large in the interval of the
undesired eigenvalues and this makes the whole procedure rather unstable.

In this paper we propose a straightforward remedy which, as it will be shown, works very well in
practice. It consists of replacing matrix A in the Lanczos procedure by the matrix B = p;(A), where p;
is designed to have the same desirable characteristics as p;, but is of much smaller degree. Observe that
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Figure 4: Levels of orthogonality of the Lanczos basis for the Hamiltonian (n = 17077) corresponding
to SijoHig. Left: Lanczos without reorthogonalization. Right: Lanczos with partial reorthogonalization.
The number of reorthogonalizations was 34 with an additional 3400 inner vector products.

since p;(t) is small for ¢ > A, , pi(A) will not amplify any components associated with A;, j > n,. In fact,
pi(A) will act as if there are no components at all in the undesired subspace. This is, in a nutshell, the
heart of the proposed algorithm. Essentially, our goal is to trade a long Lanczos basis and the associated
expensive reorthogonalization steps with additional matrix-vector products induced by the application of
pi(A) at every step of Lanczos.

Given the high cost of orthogonalizing large bases, it is not difficult to imagine why this approach can
be economical. If A has un nonzero entries and if p; is of small degree, say 8, then each matrix-vector
product with B = p;(A) will cost about O(8un) floating point operations. In contrast, an orthogonaliza-
tion step costs O(2in) operations at step . If 7 is 1,000, and p = 10, we have a cost of 2,000n versus about
80n for the new approach. Though this may be compelling enough in the case of full reorthogonalization,
the situation is more complex to analyze when a form of partial reorthogonalization is used. However,
experiments (see Section 5) show that the procedure is superior to the straightforward use of the Lanczos
procedure with partial reorthogonalization: it saves not only memory but arithmetic as well.

2.2 The partially reorthogonalized Lanczos procedure

As is well-known, the standard Lanczos process is “unstable” in the sense that the column vectors of Q,,
will suddenly start loosing their orthogonality [22]. As an illustration, consider again the Hamiltonian
(n = 17,077) corresponding to SijoHie. We test the orthogonality of the bases Q;,i = 1,...,m, with
m = 200 by computing the norm ||Q, Q; — I;||2, where I; is the identity matrix of size i. The left plot in
Figure 4 illustrates the rapid deterioration of orthogonality among basis vectors.

A number of existing reorthogonalization schemes are often employed to remedy the problem. The
simplest of these consists of a full reorthogonalization approach, whereby the orthogonality of the basis
vector g; is enforced against all previous vectors at each step ¢. This means that the vector ¢;, which in
theory is already orthogonal against ¢, ..., ¢;—1, is orthogonalized (a second time) against these vectors.
In principle we no longer have a 3-term recurrence but this is not an issue as the corrections are small
and usually ignored (see however Stewart [37]). The additional cost at the m-th step will be O(nm).
So, if reorthogonalization is required at each step, then we require an additional cost of O(nm?) which
is consumed by the Gram-Schmidt process. In general, all basis vectors need to be available in main
memory, making this approach impractical for bases of large dimension.



An alternative to full reorthogonalization is partial reorthogonalization which attempts to perform
reorthogonalization steps only when they are deemed necessary. The goal is not so much to guarantee
that the vectors are exactly orthogonal, but to ensure that they are at least nearly orthogonal. Typically,
the loss of orthogonality is allowed to grow to roughly the square root of the machine precision, before
a reorthogonalization is performed. A result by Simon ([33]) ensures that we can get fully accurate
approximations to the Ritz values (eigenvalues of the tridiagonal matrix T;,) in spite of a reduced level
of orthogonality among the Lanczos basis vectors. Furthermore, a key to the successful utilization of this
result is the existence of clever recurrences which allow us to estimate the level of orthogonality among
the basis vectors [15, 34]. It must be stressed that the cost of updating the recurrence is very modest. Let
Wi = q;'— g; denote the “loss of orthogonality” between any basis vectors ¢; and g;. Then, the following
is the so called w-recurrence [34]:

Biwit1,; = (o —)wij+ Bj—1wij—1 — fi—1wi—1,5, (7)

where the scalars «; and (3,7 =1, ..., are identical to the ones computed by the Lanczos algorithm (see
Fig. 1).

Thus, we can cheaply and efficiently probe the level of orthogonality of the current vector (say ¢;)
and determine whether a reorthogonalization step against previous basis vectors is required. The left
plot in Figure 4 illustrates the corresponding level of orthogonality when partial reorthogonalization is
applied. Observe that only 34 reorthogonalization steps are required, compared to 200 that would have
been required if full reorthogonalization was employed.

It was shown in [4] that partially reorthogonalized Lanczos combined with techniques that avoid
explicit computation of eigenvectors can lead to significant savings in computing charge densities for
electronic structure calculations. Partial reorthogonalization will play a key role in the algorithm to be
described in the next section.

2.3 Polynomial acceleration and restarting techniques

Classical convergence theory for Lanczos (see [11], [27]) predicts that if §(1);, ¢1) is the acute angle between
the starting vector g; and the eigenvector 1; associated with ¢-th eigenvalue \;, then

K
tan 0(v;, Kp) < ————tan (v, q1), 8
(i Kon) < s tam B0, ) (5)
where -
I— m %
0 ) — arcsin 10 = @@Ll
[l
is the acute angle between the eigenvector ¢; and the Krylov subspace K,,, and
Ai — Aig1
g = 14+2— - 9
gt MW (9)
1—1 A — A

K, = Ulﬁ if i#1 and K, = 1. (10)

With Ty (t) we denote the Chebyshev polynomial of the first of kind of order k, T (t) = cos(k arccos(t)).
This result suggests that in order for the Krylov subspace K, to converge to the wanted invariant
subspace, the initial vector ¢; must be “rich” in eigendirections associated with the wanted eigenvalues
Aly..y An,. The rate of convergence depends on the “gap” |\, — An, 41| and on the “spread” of the
spectrum |A; — Ap|.

Observe that in exact arithmetic, if the starting vector ¢; is orthogonal to an eigenvector 1;, then
the Krylov subspace K,, will never have any components in %;, regardless of the number of steps m.
Restarting techniques utilize this property to speed up the computation of the desired invariant subspace.

The goal is to progressively construct a starting vector qgk), which at each restart k will have larger



components in desired eigendirections, and smaller ones in undesired eigendirections. In contrast to the
standard Lanczos procedure, the dimension of the Kyrlov subspace is not allowed to grow indefinitely.
When a maximum number of iterations m is reached, a new starting vector qgkﬂ) is selected and the
process is restarted.

Restarting can be either explicit or implicit. In explicit restarting (see for example [28]) the next
starting vector qikﬂ) is selected by applying a certain polynomial p(¢) on A such that qgkﬂ) = p(A)qyc).
The polynomial p(¢) can be selected in order to minimize a discrete norm on the set of eigenvalues of the
tridiagonal matrix Tﬁf ), or in order to minimize a continuous norm in a certain interval. In both cases
the goal is to filter out of the next starting vector any undesired eigendirections.

In implicit restarting the goal of properly filtering the next starting vector remains the same, however
there is not an explicit application of the polynomial filter (see [36]). Instead, a sequence of implicit QR

steps is applied to the tridiagonal matrix T,Sf ) resulting to a new Lanczos factorization of length p < m
AQF = QN TF + FT, (11)

which is the one that would have been obtained with starting vector qu) = p(A)qgk). The roots of
polynomial p(t) can be selected to be eigenvalues of Tk (exact shifts). However, other alternatives have
been considered, such as Leja points, refined shifts, and harmonic Ritz values [1, 10, 23, 35] to name a
few. Factorization (11) is expanded to a maximum length m by applying m — p additional Lanczos steps,
resulting to the factorization

AQUTY = QUITITY + BT vy, (12)

m m

Thus, restarting can be designed to filter out eigendirections corresponding to eigenvalues A; > A, .
The goal is to accelerate convergence towards the algebraically smallest eigenvalues. However, round-
off will cause eigendirections in the largest eigenvalues to quickly reappear into the iteration. This
is illustrated in Fig. 5. The matrix that is tested corresponds to a second order finite differences
approximation of the two dimensional Laplace differential operator. The starting vector is the sum

no
@=> i
k=1

of the eigenvectors corresponding to the smallest n, = 200 eigenvalues of the matrix. The left plot of
Figure 5 illustrates that at the first step of Lanczos vector ¢ is orthogonal (up to machine precision) to
the unwanted eigenvectors. However, it only takes m = 13 steps of Lanczos for the coefficients in the
largest eigenvectors to start dominating the last basis vector g,.

What happened can be easily explained. Let e denote the machine precision. Assume that <
q1,phi; >= €, for a given eigenvector phi; with ¢ > n,. Recall that the Lanczos vector ¢,11 is of
the form ¢, 11 = pm(A)q1 where p,,, is a polynomial of degree m, called the (m + 1) — st Lanczos poly-
nomial. The sequence of polynomials py is orthogonal with respect to a certain discrete inner product.
Since the initial vector has very small components in the eigenvectors associated with eigenvalues i > n,,
it is to be expected that the Lanczos polynomial, p,, is such that p,,(\;) > 1 for ¢ > n,. Therefore, we
will have

<Gm+1,%i > = < pm(A)q, P >
= <qu,pm(A); >
= pm(N) < qu,b >
= pm(Ni)e. (13)
As a result the small component e will be amplified by the factor p()\;) which is likely to be very large.
The situation can be remedied by replacing A by an operator of the form B = p(A) where p();) is

small. If B is used in the Lanczos algorithm, then note that every time we multiply ¢ by B, a component
in the direction v; that is small (relative to the others), will remain small.
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Before we state the result with detail, we must recall that in inexact arithmetic, the Lanczos relation
(4) is replaced by a relation of the form:

Aqi = Biy1qiv1 + @iqi + Bigi-1 — 2i - (14)
where z; is an error vector which, in general, remains small.

Lemma 2.1 Consider any eigenvalue X > A, and let v be its associated eigenvector and § = p(A).
Assume that the sequence {q;} satisfies the model (14) and define e? =< 1,z >. Then the scalar
sequence o; =< q;,% > satisfies the recurrence,

Bit10ip1 + (a; — 8)oy + Bioy =€) (15)
and, assuming Bmy1e] (T — 61) Ye,, # 0 then the component 01 0f Gy along ¥, can be expressed

as
el (Tm — 51)7161 — 01

_Em 16
Om+1 ,8m+16;:l(Tm — 6_[)_161 ’ ( )
in which e = [V,€Y, -+, €2]T and T,, is the tridiagonal matriz (5).

Proof. We begin with the relation
Bqi = Bit1Gi+1 + aigi + Bigi—1 — zi -

Taking the inner product with ¥ yields

< Bgi, ¥ >= fit1 < qir1,% > oy < qis0 > +0; < qi1,1 > —€l.

Since Bt = 01, this readily yields the expression (15).
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Define the vector s,, = [01,02, -+, 0,] . We can rewrite the relations (15) for i = 1,...,m in matrix
form as
(Tm - 5I)5m =&m — ﬂm—&-lam—&-lem

which yields the relation, s, = (T}, — 61) ‘e — Bmns10ma1 (T — 6I) " Le,,. Now, we add the condition
that oy is known:

01 = elTSm = @I(Tm - 5—’)715m - ﬂm+1Um+1€1T(Tm - 51)—1€m’

from which we obtain the desired expression (16). [ |

The main point of the above lemma is that it explicitly provides the amplification factor for the
coefficient in the direction v, in terms of computed quantities. This factor is the denominator of the
expression (16). Note that in exact arithmetic, the vector &, is zero and the initial error of oy in the
direction of 1 is divided by the factor 3,4 1e{ (T), —6I) e,,. We can obtain a slightly simpler expression
by “folding” the term o into the vector €,,. This is helpful if oy is of the same order as the ej’s as it
simplifies the expression. Set

Em =em — 01(Ty — 81)ey .

Note that only €/ and €) are modified into ¢ = ¥ — (ay — 8)oy and ) = €} — 201, while the other
terms remain unchanged, i.e., é? = ef’ for ¢ > 2. Then, (16) becomes,

el (Tm — 51)7161

Tm+1 = ﬁerle;l;(Tm — 6[)_161 '

(17)

Let us consider the unfavorable scenario first. When B = A then T, is simply the tridiagonal matrix
obtained from the Lanczos algorithm and ¢ is an eigenvalue of A. Assume that A = ),, the largest
(unwanted) eigenvalue. Even if ¢; has very small components in the direction of A, convergence will
eventually take place, see (13), and T}, will tend to have an eigenvalue close to A, so (T, —61) " tey =y, is
close to an eigenvector of T, associated with its largest eigenvalue. As is well known, the last components
of (converged) eigenvectors of T,, will tend to be much smaller than the first ones. Therefore, if &, is
a small random vector, then o,, will become larger and larger because the numerator will converge to a
certain quantity while the denominator will converge to zero.

The use of an inner polynomial p(t) prevents this from happening early by ensuring that convergence
towards unwanted eigenvalues does not take place. In this situation J is an eigenvalue of B among many
others that are clustered around zero, so convergence is considerably slower toward the corresponding
eigenvector. By the time convergence takes place, the desirable subspace will have already been computed.

3 The filtered Lanczos procedure

Partial reorthogonalization can significantly extend the applicability of Lanczos in electronic structure
calculations (see [4]), but there are computational issues related to the use of very long Lanczos bases
when a large invariant subspace is sought. These issues can be addressed by employing polynomial
filtering in the Lanczos procedure.

In exact arithmetic, the ideal solution to this problem is to use an initial vector which is filtered so
that it has no eigencomponents associated with A;,7 > n,. However, we saw earlier that in the course of
the Lanczos procedure, components along the largest eigenvectors will quickly return. We discussed the
reasons for this behavior and suggested a simple remedy which consists of replacing the matrix-vector
product Ag; of the Lanczos algorithm (see line 3, Fig. 1) by p;(A)g;, where p;(¢) is a low degree polynomial
filter that approximates the Heaviside function (see Fig. 6). The interval [y, (] contains all the unwanted
(largest) eigenvalues, which are approximately mapped by p;(t) to zero.

All that is required to implement the proposed filtered Lanczos scheme is to substitute the matrix-
vector product Ag; with a function P(A4, ¢;,d) which evaluates the product of the matrix polynomial
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Figure 6: The Heaviside function for the interval [y, £].

pi(A) with the vector ¢;. Let d be the degree of the polynomial p;(t). Then, the cost per step of the
filtered Lanczos procedure, compared with the plain Lanczos procedure, is d additional matrix-vector
products.

Observe that the filtered Lanczos process constructs an approximate invariant subspace for matrix
pi1(A) which is also an invariant subspace for A itself. However, although the restriction of p;(A) on the
orthogonal Lanczos basis @.,,, will be a tridiagonal matrix, this is no longer true for A. Thus, while

;Lpl (A)Qm = Tm7 (18)
where Ty, is tridiagonal and defined as in (5), for A we have that
Q;AQm = va (19)

where T),, is in general dense. The eigenvalues of A are approximated by those of T,,,, while the eigenvalues
of T,,, approximate those of p;(A). However, A and p;(A) have the same eigenvectors. Thus, if we
consider the matrix of normalized eigenvectors Y of T, and Y of T,, respectively, then approximations
to the eigenvectors of A are given either by the columns of the matrices Q,,Y or Q,,Y. Furthermore,
approximations to the eigenvalues of A are available from the eigenvalues of

T, =YTQ} AQ,.Y. (20)

Similarly to the Lanczos procedure, the basis vectors ¢; in the filtered Lanczos procedure are also
expected to rapidly loose orthogonality. Thus, the partial reorthogonalization techniques of section 2.2
will prove to be particularly useful in the practical deployment of the method.

The larger the degree of the polynomial p;(t), the closer it can be made, to the Heaviside function. On
the other hand, using a larger degree d will induce a higher computational cost. It is important to note that
in practice we do not seek to approximate the Heaviside function everywhere on its domain of definition.
We would like the polynomial p;(t) to take small values on the region of the unwanted eigenvalues. The
goal is for the corresponding eigendirections, that have been with high accuracy removed from the starting
vector g1, not to be significantly amplified during the course of Lanczos. Section 4 discusses a Conjugate
Residual type iteration that achieves the aforementioned goal. For the time being, it suffices to consider
the application of the filtering polynomial as a “black box” function P (A, ¢;,d), to describe the Filtered
Lanczos iteration.
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3.1 The algorithm

In order to compute a basis for an invariant subspace S,,, for the n, algebraically smallest eigenvalues of
matrix A, we assume that we are given an interval (y, (], which contains all the unwanted eigenvalues
Aj > Ap,. Assuming that matrix A does not have any negative eigenvalues, it suffices to consider only
the left endpoint «y of the interval. In electronic structure calculations, the problem is often a variation of
this one, in that we wish to compute an invariant subspace associated with the n, smallest eigenvalues.
However, there is an outer loop and previous information can be used to obtain a good interval on which
to restrict the search. There are also instances where the number of eigenvalues n, is unknown, but
rather we are given an upper bound + for the eigenvalues that need to be considered.

Starting vector. It is important that the starting vector g; be free of components in the undesired
eigenvectors. To this end we apply a high degree polynomial filter p;, on a random vector ¢, such that
q1 = pn(A)G. The degree of this first polynomial can be quite high (say dj, = 200 or so) to get a good
elimination of the undesired components.

Bounding interval. If we are not given an interval [, (] that tightly contains the eigenvalues, then
we employ a number of unrestarted Lanczos iterations in order to obtain approximations for the bounds
« and (. In practice, the number of these iterations is kept low. Let r; and r, be the residual vectors
for the approximate extremal eigenvalues A1 and A, of matrix A after a number of Lanczos iterations.
Then, we use the practical bounds & = Ay — ||r1]| and 8 = A\, + ||rn|. If, & (or @) is negative, then we
shift the Hamiltonian so as to ensure that all its eigenvalues are positive.

Inner polynomial transformation. The main Lanczos iteration will be performed with a filter poly-
nomial of A, i.e., the Lanczos algorithm is run with B = p;(A). The degree d; of p; is much smaller than
that of pp, in order to reduce the overall cost. Typically d; = 8.

Convergence criterion. Equally important in order to restrain the computational cost is the conver-
gence test. Let (\;, ;) be an approximate eigenpair, where

T = Qmyi

and (\;,y) is an eigenpair of the dense matrix (19). Then, it is natural to monitor the norm of the
remainder r; = AZ; — A\;Z;. It is well-known (see, e.g., [24]) that

73l = |AZ; — Nl = |Bmra| 192",

where y" is the last element of the eigenvector y;. Monitoring the norm ||r;|| for all n, eigenvalues of
interest, at each step of the (filtered) Lanczos procedure entails computing the eigenvectors y; every time
a test is required. This, however, is expensive, since computing all eigenpairs of a dense k x k matrix will
be cubic in k, and this is to be summed for a total of m Lanczos steps.

We have chosen a significantly cheaper alternative. We monitor the sum of the eigenvalues of matrix
T;, that are smaller than the upper bound v, 8; = Zii<'y Ai- When s; converges we stop the iteration.
In order to further restrict the cost we conduct the convergence test at fixed intervals and not at every
step of the Filtered Lanczos iteration. If convergence is achieved after m steps, then the cost of the test
will be O(m?).

Computation of the projection matrix 7,,. Observe that

Qi1 AQiy1=[ Qi qir1 ] Al Qi qiy1 ] 41 AQ; g1 Agit

Thus, matrix T,,, can be computed incrementally during the course of the algorithm. Obviously, if Tpn
is updated at every step 4, then no additional memory is required. However, a more efficient BLAS 3
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Filtered Lanczos

(*Input*)

Matrix A € R™*" starting vector q1, ||q1||2 = 1, scalar m,

polynomial filter function F(A, g, d) that approximates the step function,
low and high polynomial degrees d;, dj, stride strd, upper bound ~

(*Output™®)
Eigenvalues of A smaller than v and orthogonal basis @ = [¢1, ¢, . ..] for
the invariant subspace associated with these eigenvalues

1 Setb’l:O,qo:O

2 Thoroughly filter initial vector ¢1 = F(A, q1,dn), 1 = ¢1/||laall
3 fori=1,...,m

4 w; :f(AaQMdl) _Biqi—l

5. o =< Wy, q; >

6. W; = W; — ;q;

7 Bit1 = [lwill2

8 if (8;+1 == 0) then stop

9. Git1 = w;/Biy1

10. if rem(i, strd) == 0 then

11. Compute last row/column of matrix T; = Q; AQ;
11. Compute all eigenvalues S\j of T; such that 5\j <7
12. Compute s; = 27\¢<~/ i

13. if (‘(Sl — si_l)/si_1| < tOl) then break

14. end

15. end

Figure 7: The Filtered Lanczos algorithm. The inner product for vectors is denoted by < .,. >.

implementation is possible if we postpone the update of T, and rather perform it at fixed intervals
(which can be made to coincide with the intervals at which convergence it checked). This will come at
the expense of a few additional vectors in memory. In particular, we will have to store the vectors Ag; i1
for a number of consecutive steps.

Figure 7 shows a high level algorithmic description of the Filtered Lanczos iteration.

4 Polynomial filters

This section focuses on the problem of defining the polynomial filter and applying it. Details on the
algorithms described here can be found in [30]. We begin with a brief summary of filtering techniques when
solving linear systems of equation by “regularization” [21]. In regularized solution methods, one seeks
to find an approximate solution to the linear system Az = b by inverting A only in the space associated
with the largest eigenvalues, leaving the other part untouched. As was explained in [30], computing a
filtered solution amounts to computing a vector s(A)b whose residual vector p(4)b = b — As(A)b is a
certain filter polynomial, typically one that is computed to be close to one for small eigenvalues and close
to zero for larger eigenvalues. In other words, it would resemble the desired filter polynomial, such as the
one shown in Figure 3.

The approximate solutions produced by Krylov subspace methods for solving a linear system Ax = b,
are of the form s;(A)ryp where s; is a polynomial of degree < j. The corresponding residual vector
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Generic Conjugate Residual Algorithm

1 Compute g := b — Axg, po := o, T =po =1

2 Compute Amg

3 for 7 =0,1,..., until convergence :

4 ;=< pj, Apj >q ] < AT AT >y

5. l'j+1 = ZL']‘ —+ Ctjpj

6. Tjiy1 =75 — OéjApj Pi+1 = Pj — O[j)\’ﬂ'j
7 Bj =< pjs1, Apj1 >g< pjs Apj >4

8 Pj+1 7= Tj+1 + B;p; Tjt1 = pj1 + 057;
9. Compute Amj 1
10. end

Figure 8: Generic Conjugate Residual algorithm

is pj+1(A) = 1 — Asj(A). This polynomial is of degree j 4+ 1 and has value one at A = 0. In standard
(unfiltered) methods one attempts to make the polynomial As;(A) close to the function 1 on the (discrete)
set of eigenvalues. Chebyshev methods attempt to make the polynomial As()\) close to the function 1,
uniformly, on the (continuous) set [«, (3] containing the spectrum (with 0 < a < 3). A number of other
methods have been developed which attempt to make the polynomial As(\) close to the function 1, in
some least-squares sense, on the interval [«, f].

In the standard Conjugate Residual algorithm (see, e.g., [29]), the solution polynomial s; minimizes
the norm ||(I — As(A))roll2 which is nothing but a discrete least-squares norm when expressed in the
eigenbasis of A:

N 1/2
(1 = As(A))roll2 = [Z(l - )\is(&'))ﬂ = 1= As(N)lp-
1
It is possible to write a CR-like algorithm which minimizes |1 — As())||, for any least-squares norm
associated with a (proper) inner product of polynomials

<p,q>g.

The related generic CR algorithm is given in Figure 8

It can be easily shown that the residual polynomial p; generated by this algorithm minimizes ||p())]|4
among all polynomials of the form p(A) = 1 —As(\), where s is any polynomial of degree < j—1. In other
words, p; minimizes ||p())||; among all polynomials p of degree < j, such that p(0) = 1. In addition, the
polynomials A7m; are orthogonal to each other.

In order to add filtering to the above algorithm, note that filtering amounts to minimizing some norm
of ¢(A) — As(A), where ¢ is the given filter function. One must remember that ¢(A)v is not necessarily
easy to evaluate for a given vector v. In particular, ¢(A)ry may not be available.

The relation between regularized filtered iterations and polynomial iterations, such as the one we are
seeking for the eigenvalue problem, may not be immediately clear. Observe that the residual polynomial
pm/(t) can be used as a filter polynomial for a given iteration. For example, the residual polynomial
shown in Figure 3, which is of the form p(A) = 1 — As(\), can be used for computing all eigenvalues in
the interval [0, 1.7]. The dual filter 1 — p(A) has small values in [0, 1.7] and it can be used to compute
the invariant subspace associated with the eigenvalues in the interval [2.3, 8], though this may possibly
require a large subspace. Notice that one of the main difficulties with this class of techniques is precisely
the issue of the dimension of the subspace, as there is no inexpensive way of knowing in advance how
many eigenvalues there are in a given interval.
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4.1 Corrected CR algorithm

The standard way of computing the best polynomial is to generate an orthogonal sequence of polynomials
and expand the least-squares solution in it. This approach was taken in [8] and more recently in [12].

The formulation of the solution given next is based on the following observation. The polynomials
associated with the residual vectors of the (standard) CR algorithm, are such that {\7;} is an orthogonal
sequence of polynomials and so it can be used as an intermediate sequence in which to express the solution.
We can generate the residual polynomial which will help obtain the p;’s: the one that would be obtained
from the actual CR algorithm, i.e., the same 7 vectors as those of the generic CR algorithm (see Fig. 8).
It is interesting to note that with this sequence of residual vectors, which will be denoted by 7;, it is easy
to generate the directions p; which are the same for both algorithms. The idea becomes straightforward:
obtain the auxiliary residual polynomials p; that are those associated with the standard CR algorithm
and exploit them to obtain the m;’s in the same way as in the CR algorithm. The polynomials Ar;
are orthogonal and therefore the expression of the desired approximation is the same. The algorithm is
described in Figure 9 where now p; is the polynomial associated with the auxiliary sequence 7.

The only difference with a generic Conjugate Residual-type algorithm (see, e.g. Figure 8) is that
the updates to x4 use different coefficients a; from the updates to the vectors 7;;1. Observe that the
residual vectors 7; obtained by the algorithm are just auxiliary vectors that do not correspond to the
actual residuals r; = b — Ax;. Needless to say, these actual residuals, the r;’s, can also be generated after
Line 5 (or 6) from ;41 =1; — o;jAp;. Depending on the application, it may or may not be necessary to
include these computations.

The solution vector x;41 computed at the j-th step of the corrected CR algorithm is of the form
Zjt1 = xo + 8;(A)ro, where s; is the j-th degree polynomial:

5;(A) = aomo(A) + -+ - + aym;(A) . (22)
The polynomials 7; and the auxiliary polynomials 5;11()) satisfy the orthogonality relations,
(A (A), ATy (A))w = (AP (A), pi(A))w =0 for @#j. (23)

In addition, the filtered residual polynomial ¢ — As;(\) minimizes ||¢ — As(A)||,, among all polynomials
s of degree < j — 1.
It is worth mentioning that there is an alternative formula for o; which is

<1 - (b, )\7Tj>

<)\7Tj,)\7Tj> ’ (24)

Oéj = Oéj —
whose merit, relative to the expression used in Line 4 of the algorithm, is that it clearly establishes the

new algorithm as a corrected version of the generic CR algorithm of Figure 8. In the special situation
when ¢ = 1, a; = &;, and the two algorithms coincide as expected.

4.2 The base filter function

The solutions computed by the algorithms just seen consist of generating polynomial approximations to
a certain base filter function ¢. It is generally not a good idea to use as ¢ the step function because
this function is discontinuous and approximations to it by high degree polynomials will exhibit very wide
oscillations near the discontinuities. It is preferable to take as a “base” filter, i.e., the filter which is
ultimately approximated by polynomials, a smooth function such as the one illustrated in Figure 10.

The filter function in Figure 10 can be a piecewise polynomial consisting of two pieces: A function
which increases from zero to one when A increases smoothly from 0 to 7, and the constant function unity
in the interval [y, §]. Alternatively, the function can begin with the value zero in the interval [0, 1], then
increase smoothly from 0 to one in a second interval [y1, 72|, and finally take the value one in [ys, f].
This second part of the function (the first part for the first scenario) bridges the values one and one by
a smooth function and was termed a “bridge function” in [8].
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Filtered Conjugate Residual Polynomials Algorithm

1 Compute 7 := b — Axg, po := 7o T = po =1

2 Compute Amg

3 for 5 =0,1,..., until convergence :

4 &j =< ﬁj,/\ﬁj >w/<>\7Tj,)\7Tj >w

5. o =< (b,)\ﬂ'j >w/<>\7Tj,>\7Tj >w

6. Z’j+1 = £Cj + ajpj

7 ’I:j+1 = ’I:j — depj ﬁjJrl = ﬁj — dj)\ﬂj
8 Bj =< Pjt1, Abj+1 >w [ < Pjs ADj >w

9. Pjt+1 = Tj41 + Bip; Tjt1 7= Pjt1 + 0;m;
10. Compute Amj 4y
11. end

Figure 9: The filtered Conjugate Residual polynomials algorithm

Figure 10: A typical filter function ¢ and its dual filter 1 — ¢

A systematic way of generating base filter functions is to use bridge functions obtained from Hermite
interpolation. The bridge function is an interpolating polynomial (in the Hermite sense) depending on
two integer parameters mg, m1, and denoted by O, m,] Which satisfies the following conditions:

—_0- _ _ (mo) _
Otmomi)(0) = 0; Oy ny(0) = -+ = GEmS,m](O) =0 (25)
@[mo,ml](’}/) =1 @Emo,ml](f}/) == 6[7n;,m1](7) =0

Thus, O,,,,m,) has degree mo+m1 +1 and mg, m; define the degree of smoothness at the points 0 and
« respectively. The ratio ™+ determines the localization of the inflexion point. Making the polynomial
increase rapidly from 0 to 1 in a small interval, can be achieved by taking high degree polynomials but
this has the effect of slowing down convergence toward the desired filter as it has the effect of causing
undesired oscillations. Two examples are shown in Figures 11 and 12.

Once the base filter is selected, the filtered CR algorithm can be executed. There remains however to
define the inner products. Details on the weight functions and the actual techniques for computing inner
products of polynomials can be found in [30]. We only mention that it is possible to avoid numerical
integration by defining the inner products by using classical weights (e.g., Chebyshev) in each sub-interval
of the whole interval where the base filter is defined. Since the base filter is a standard polynomial in each
of these sub-intervals, inner products in these intervals can be evaluated without numerical integration.
This, in effect, is equivalent to using Gaussian quadrature in each of these sub-intervals.
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Base filter; Intervals : [0 2];[2 8]; deg=7 Polynomial filter; Intervals : [0 2];[2 8]; deg=15

12r 12

Figure 11: The base filter © 4 in [0, 2] and one in [2, 8] and its polynomial approximation of degree 15.

There are a number of parameters which can be exploited to yield a desired filter polynommial. In
addition to the degrees of the polynomials mg, m1, one can also define the weight functions differently.
For example, more or less emphasis can be placed in each sub-interval. For now our codes use an equal
weighting for each sub-interval. A forthcoming report [3] will document various aspects related to the
selection of filter polynomials and other implementation issues.

5 Numerical Experiments

This section reports on a few numerical experiments with matrices taken from electronic structure calcu-
lations and from the Harwell-Boeing collection. Two good other references points for a useful comparison
would be both the partially reorthogonalized Lanczos (which was used in [4]) and the implicitly restarted
Lanczos iteration as it is implemented in the popular package ARPACK [16, 36]. We compare these two
algorithms with our current implementation of the the Filtered Lanczos (FLAN) algorithm with partial
reorthogonalization. We should begin by mentioning that we are aware of a number of possible improve-
ments to the current implementation of FLAN which can be viewed as preliminary in nature.

All the experiments which follow have been performed on SGI Origin 2000 system using a single
R12000 processor 300 MHz. The Filtered Lanczos code [3] is available from the authors upon request.
FLAN is implemented purely in C while ARPACK is implemented in Fortran 77. The Lanczos algorithm
with partial reorthogonalization is based in the Fortran 77 code PLANSO [39]. The convergence tolerance
was set to 10710 for all methods. For ARPACK the maximum dimension of the Lanczos basis was always
set equal to twice the number of requested eigenvalues.

In implicitly restarted techniques, such as the ones implemented in ARPACK, a basis of length equal to
the number of required eigenvalues is updated at each restart. Thus, such methods are not designed to
compute all eigenvalues in a given interval. This, of course, is in contrast to the Filtered Lanczos iteration,
as well as to the unrestarted Lanczos algorithm. In order to facilitate a performance comparison we have
used the following setting: for each test matrix we are interested in a given number of its algebraically
smallest eigenvalues. We compute these using ARPACK. Then, we use the Filtered Lanczos and the
unrestarted Lanczos iteration with partial reorthogonalization to compute all eigenvalues that are smaller
or equal to the largest of the requested eigenvalues computed by ARPACK. Of course, this comparison is not
carried out on completely equal terms. However, our goal is to demonstrate that a strategy of exchanging
memory accesses with additional matrix vector products can significantly lower the overall computational
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Base filter; Intervals : [0 2];[2 8]; deg=11 Polynomial filter; Intervals : [0 2];[2 8]; deg=15

12r- 12

Figure 12: The base filter O399 in [0, 2] and one in [2, 8] and its polynomial approximation of degree
15.

matrix | size n nnz nnz/n
SijoHig | 17077 | 875923 51.3
Ge99H100 94341 6332795 672
Geg7H7ze | 94341 | 5963003 63.2
SisgHzg | 97569 | 5156379 52.8
Andrews | 60000 760154 12.7

Table 1: Characteristics of test matrices: nnz is the total number of nonzeros, so the last column shows
the average number of nonzeros per row.

cost. This was previously shown in [4], however at the important expense of additional memory, relative
to implicitly restarted techniques. In this paper we show that the Filtered Lanczos iteration can achieve
both goals: it can operate on limited memory while significantly reducing the overall computational cost.

Test matrices. We have used four matrices from electronic structure calculations for the tests. These
are Hamiltonians obtained from a real space code [5]. In addition, we have also used a test matrix, namely
the Andrews matrix, from the University of Florida sparse matrix collection®. Table 1 provides the char-
acteristics of the test matrices. For the Hamiltonians the number of the requested eigenvalues generally
correspond to physical properties of the corresponding molecular system. For example, SijoHig has 28
occupied states, while SizqHzg has 86, GegyHzg has 212 and GeggHigo has 248. In order to test the scala-
bility of the methods under study we requested additional eigenvalues as well. For the matrix Andrews
we arbitrarily requested 100-400 eigenvalues. We point out that all statistics for the Filtered Lanczos
algorithm include an initial call to the unrestarted Lanczos algorithm, with partial reorthogonalization,
in order to approximate (upper and lower) bounds for the extremal eigenvalues.

Discussion. The experimental results clearly illustrate that the Filtered Lanczos algorithm achieves
significant improvements over the other two competing methods. The performance improvement becomes
more evident as the number of requested eigenvalues increases.

Shttp://www.cise.ufl.edu/research /sparse/
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All of our test matrices are sparse. However, the degree of sparsity (as measured by the average
number of nonzeros per row shown in the last column of Table 1) differs significantly between the “denser”
GegoHioo Hamiltonian and the “sparser” Andrews matrix. A careful look in the results illustrated in Table
2 clearly suggests that the improvements in run-times of the Filtered Lanczos algorithm over ARPACK is
more pronounced for the sparser test matrices. Thus, although the number of matrix-vector products in
the Filtered Lanczos algorithm increases relative to ARPACK, a significant gain results from avoiding to
update a large number of eigenvectors, which standard methods do at every step.

In comparison with the unrestarted partially reorthogonalized Lanczos procedure observe that the
Filtered Lanczos method always requires far less memory. In fact, the amount of additional memory
in comparison to ARPACK is quite modest. Typically, the new method will require a Lanczos basis with
length close to three times the number of computed eigenvalues. We also observe that for rather dense
matrices and small number of eigenvalues (i.e. SizgHss and SijoHyg) the unrestarted Lanczos method with
partial reorthogonalization is the fastest of the three methods. However, when a large invariant subspace
is sought, then the unrestarted Lanczos method will tend to require a long basis, ultimately causing even
infrequent reorthogonalizations to dominate the cost.

6 Conclusions

This paper presented a Filtered Lanczos iteration method (FLAN) for computing large invariant subspaces
associated with the algebraically smallest eigenvalues of very large and sparse matrices. In contrast to
restarted techniques (e.g. ARPACK) which repeatedly update a fixed number of basis vectors, FLAN is
allowed to augment the search subspace until all eigenvalues smaller than a predetermined upper bound
have converged. The loss of orthogonality of the Lanczos basis vectors is treated by a partial reorhtogo-
nalization scheme [33]. One technique which FLAN and explicit/implicit restarted Krylov subspace algo-
rithms have in common is the use of filtering polynomials, designed to dampen eigencomponents along
“unwanted” parts of the spectrum. However, while restarted techniques apply these polynomials period-
ically (i.e. at each restart), the FLAN procedure applies a fixed, pre-computed, low-degree polynomial of
A to the working Lanczos vector, which amounts to a polynomial preconditioning technique applied to
A. We showed that if the unwanted eigendirections are thoroughly filtered from the starting vector of
the Lanczos algorithm, then the application of the aforementioned small degree polynomial successfully
prevents the unwanted directions from reappearing into the iteration, thus significantly expediting con-
vergence towards the desired invariant subspace. Earlier work (see, e.g., [30]) showed how one can design
a Conjugate Residual type iteration that efficiently applies a low pass filter in order to solve regularized
linear systems. The low degree polynomial which is involved in this procedure is used in FLAN.

Experimental evidence clearly shows that FLAN achieves significant performance improvements over
the most sophisticated restarted technique (i.e. ARPACK) while at the same time incurring very mod-
est additional memory requirements. These gains in efficiency are obtained by essentially trading the
repeated and costly updates of the working eigenbasis which is inherit in restarted techniques for addi-
tional matrix-vector products. Thus, the method will work quite well whenever matrix-vector products
are not expensive.

Finally, we should point out that the filtering methods described here can be easily extended to the
cases where the desired spectrum corresponds to the algebraically largest eigenvalues, and perhaps more
importantly, to all eigenvalues in a given interval well inside the spectrum. This will be the subject of
the forthcoming report [3].

Acknowledgments This work would not have been possible without the availability of excellent source
codes for diagonalization. Specifically, our experiments made use of the PLAN code developed by Wu
and Simon [39] and the ARPACK code of Lehoucq, Sorensen, and Yang [16].
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Andrews
F. Lanczos Partial Lanczos ARPACK
No MV |RTH | MEM | ¢t MV |RTH | MEM | t MV | RES | MEM [ ¢
100 3320 (290) 130 | 133 330 1390 | 111 | 636 530 1616 | 24 92 2000
200 6110 (600) 186 | 275 803 2360 | 213 | 1080 | 1633 2769 | 21 183 | 6682
300 8270 (840) 224 | 385 | 1364 || 3120 | 298 | 1428 | 2976 3775 | 19 275 | 13572
400 || 10610 (1100) | 267 | 504 | 2274 || 3970 | 393 | 1817 | 4997 || 4978 | 19 | 366 | 23762
SiioHis
F. Lanczos Partial Lanczos ARPACK
Mo MV |RTH | MEM | ¢t MV |RTH | MEM | t MV | RES | MEM [ ¢
28 1144 (100) 21 13 48 539 16 72 24 592 27 7.5 58
50 1864 (180) 40 23 86 930 35 124 61 1039 | 31 | 13.3 187
150 4384 (460) 86 60 244 1940 | 97 259 273 2129 | 21 40 1111
200 5284 (560) 88 73 315 2190 | 114 | 292 360 2676 | 20 53 1847
SizqHse
F. Lanczos Partial Lanczos ARPACK
o MV | RTH | MEM | ¢ MV |[RTH| MEM | ¢ MV [RES | MEM | ¢
86 2317 (230) 42 171 778 1440 | 36 | 1098 605 1537 | 24 131 | 2877
100 3127 (320) 54 238 | 1105 || 1810 | 50 | 1380 907 2164 | 32 152 | 4800
150 4657 (490) 102 | 365 | 1799 || 2880 | 96 | 2195 | 2191 3085 | 32 229 | 9993
200 6007 (640) 134 | 476 | 2496 || 3580 | 129 | 2729 | 3431 3803 | 30 305 | 16099
GegrHre
F. Lanczos Partial Lanczos ARPACK
No MV | RTH | MEM | ¢ MV [RTH | MEM | ¢ MV | RES | MEM | ¢t
212 4476 (470) 88 338 | 1895 || 2710 | 88 | 1951 | 1993 2867 | 20 | 306 | 12145
300 8256 (890) 172 | 641 | 4130 || 4010 | 153 | 2887 | 4448 4673 | 25 432 | 28359
424 || 11406 (1240) | 240 | 893 | 6624 || 5740 | 252 | 4132 | 9804 6059 | 23 611 | 51118
GegoHio00
F. Lanczos Partial Lanczos ARPACK
no MV | RTH | MEM | ¢t MV |RTH | MEM | ¢ MV | RES | MEM | ¢
248 5194 (550) 102 | 396 | 2379 || 3150 | 109 | 2268 | 2746 3342 | 20 357 | 16454
350 8794 (950) 178 | 684 | 4648 || 4570 | 184 | 3289 | 5982 5283 | 24 | 504 | 37371
496 || 12934 (1410) | 270 | 1015 | 8374 || 6550 | 302 | 4715 | 13714 || 6836 | 22 714 | 67020

Table 2: Summary of experimental results for all 5 test matrices. MV denotes the total number of matrix-
vector products, which for the Lanczos algorithm with partial reorthogonalization is also the dimension
of the Lanczos basis used. For the Filtered Lanczos algorithm, the numbers in parentheses in the MV
column denote the dimension of the Lanczos basis. RTH denotes the number of reorthogonalization steps.

RES is the number of restarts for ARPACK. MEM denotes the required memory in Mbytes and t is the total

time in secs. Finally, n, is the number of requested eigenvalues.
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