
BLOCK KRYLOV-SCHUR METHOD FOR LARGE SYMMETRIC

EIGENVALUE PROBLEMS ∗

YUNKAI ZHOU †
AND YOUSEF SAAD †

Abstract. Stewart’s recent Krylov-Schur algorithm offers two advantages over Sorensen’s im-
plicitly restarted Arnoldi (IRA) algorithm. The first is ease of deflation of converged Ritz vectors,
the second is the avoidance of the potential forward instability of the QR algorithm. In this paper
we develop a block version of the Krylov-Schur algorithm for symmetric eigenproblems. Details of
this block algorithm are discussed, including how to handle the rank deficient cases and how to
use different block sizes. Numerical results on the efficiency of the block Krylov-Schur method are
reported.
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1. Introduction. Sorensen’s implicitly restarted Arnoldi (IRA) algorithm [25]
is one of the most successful eigenvalue methods and the ARPACK package[16] based
on IRA is the best-known public package and the workhorse for large eigenproblems
ever since its appearance in the late 90’s. In [28] Stewart proposed the Krylov-
Schur method which is mathematically equivalent to IRA but offers two practical
advantages. First, it is easier to deflate converged Ritz vectors; second, the potential
forward instability of the QR algorithm [18, 30] is avoided. This forward instability
can cause unwanted Ritz vectors to persist in the Arnoldi decomposition, hence one
needs to employ additional elaborate purging procedures to purge the unwanted Ritz
vectors [15, 26]. These two advantages are gained by giving up the strict upper
Hessenberg form in the Arnoldi decomposition. Instead a Rayleigh quotient matrix
is used, which leads to the Krylov decomposition. Stewart proposed more general
Krylov decomposition in [28]. For numerical consideration we restrict ourselves to
the orthonormal Krylov decomposition which may be considered as a general Arnoldi
factorisation. One performs the Schur decomposition on the Rayleigh quotient matrix.
The deflation and purging follow conveniently because the Ritz values are on the
diagonal of the (quasi)-triangular Schur factor. It is easier to decide how to move them
or truncate unwanted Ritz values than to perform similar tasks on a upper Hessenberg
matrix. The advantage is more obvious for symmetric eigenvalue problems because in
this case the (quasi)-triangular Schur factor is diagonal. Stewart called the method for
symmetric eigenvalue problems Krylov-Spectral [29] because the Schur decomposition
of the Rayleigh-Quotient matrix reduces to the spectral decomposition. As stated
in [28], for symmetric eigenproblems the Krylov-Spectral method is identical to the
thick restart method of Wu and Simon [31]. We also note that the advantages of
Krylov-Spectral are gained by losing one advantage of IRA— the flexibility in applying
different type of shifts.

In this paper we develop a block version of the Krylov-Schur method for symmetric
eigenproblems. We notice a third advantage of Krylov-Schur method over IRA: It
is relatively easier to develop a block version method based on the Krylov-Schur
structure. The reason is that in the contraction phase, the Krylov-Schur method
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does not use implicit shifted QR to filter unwanted Ritz values; while a genuine
block version IRA would require block implicit shifted QR decompositions to apply
unwanted Ritz values as shifts. Currently there are no known efficient methods which
perform a block implicit shifted QR decomposition. The IRBL method presented in
[1, 2] actually uses explicit shifted QR decomposition for this purpose, which may not
be as stable as the original IRA/IRL based on implicit QR decomposition, especially
when a shift is much larger than some of the diagonal elements of the matrix to be
shifted.

Two observations provided the motivation to develop a block version Krylov-Schur
package. The first is that the excellent properties of Krylov-Schur algorithm are not
implemented in a package yet. The second is the need for a block version eigensolver in
many applications. Block eigensolvers remain important throughout the development
of modern numerical linear algebra. Literature on block eigensolvers includes [1, 3,
6, 8, 9, 10, 11, 12, 19, 21, 22, 23, 24]. Both block methods and non-block methods
have their merits (see [17, pp.316-320] for a concise discussion). Block methods are
more efficient for multiple or clustered eigenvalues. Moreover, a block method is the
natural choice when more than one good initial vector are available. This situation
is very common for the self-consistent-loop in electronic structure calculations where
one obtains several good initial guesses from former loops. One other advantage of
a block method over a non-block method is better utilization of cache. This can
yield a significant gain for large dense matrix vector products; while for large sparse
matrix vector products, the cache performance gain comes from less frequent access
to the storage scheme (data structure) describing the sparse matrix; this gain may be
less significant if the matrix vector products can be directly coded without using any
storage schemes.

The advantages of block methods come with added complexities in algorithm de-
scription and coding. The most noticeable complexity is the so called rank deficient
case, which is the situation when some vectors in a new block become linearly depen-
dent. Even though much was written on block methods, detailed discussions on the
rank deficient case are lacking. It is likely that different authors have different imple-
mentations. A block Lanczos method was proposed in [8] with a detailed discussion of
deflation of linearly dependent Lanczos vectors, but the method can only use BLAS-2
and the block size keeps decreasing. In this paper we give a detailed discussion on how
to deal with rank deficiency. Rank revealing pivoted QR decomposition (BLAS-3) is
used for the rank deficient case. Within our approach the block size can be adapted
when necessary. We do not increase the block size in the block Lanczos code, but the
block Krylov-Schur method naturally allows increasing the block size when necessary
(similar idea as in [3]), as discussed in section 2.2.

In the next section we describe the block Krylov-Schur method for symmetric
eigenproblems. We continue to use the term Krylov-Schur instead of Krylov-Spectral
to follow the more common terminology initiated by Stewart. We present a detailed
discussion on the rank deficient case in section 2.1. The idea of adaptive block size is
discussed in section 2.2. Note that the adaptive idea in [3] only refers to increasing
block size for the Lanczos decomposition, while here we refer to both increasing and
decreasing block size adaptively inside the Krylov-Schur loop. In section 3 we discuss
the block Lanczos decomposition, which is an important step for the Krylov-Schur
method. Section 5 presents numerical results of block Krylov-Schur, including com-
parisons of our Matlab code to the Matlab codes IRBL [1, 2], LOBPCG [11] and
Matlab eigs, and comparisons of our Fortran code to ARPACK [16].
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2. Block Krylov-Schur for symmetric eigenproblems. We now describe
the Krylov-Schur method. The Krylov-Schur method belongs to the implicit restart
category, i.e., the restarting vector is obtained not by explicit polynomial filtering
but by implicit filtering. Sorensen [25] achieved the implicit polynomial filtering by
utilizing the property of the shifted QR algorithm. The implicit polynomial filtering of
Krylov-Schur is not obvious. It is the following theorem which shows the equivalence
between Krylov-Schur and IRA. We denote by IRA(k,m) the standard implicit restart
Arnoldi with maximum dimension m subspace which is contracted to dimension k at
restart. Similarly, we denote by KS(k,m) the Krylov-Schur method with maximum
dimension m subspace which is contracted to the dimension k at restart.

Theorem 2.1. Starting from the same initial vector, if at each restart, KS(k,m)
and IRA(k,m) filter away the same m− k Ritz values that are distinct from the
remaining k Ritz values, then the basis vectors after contraction of both methods span
the same subspace.

Proof: See [28] or [29, pp. 331-332].
We note that Theorem 3.4 in [27] contains essentially the same equivalence result

as the above Theorem 2.1 but the proof there is different. Theorem 2.1 holds true
for a general matrix, hence it is also true for the symmetric case in which we are
interested.

The block Krylov-Schur method is a natural block extension of the Krylov-Schur
method. From Theorem 2.1 we know the single vector Krylov-Schur method is math-
ematically equivalent to the highly successful IRA. As mentioned in the introduction,
the Krylov-Schur method has three advantages over IRA. So we expect the block
Krylov-Schur method to offer the efficiency of IRA, the ease of deflation, and the
advantages of a block method.

The general cycle of block Krylov-Schur method for symmetric H ∈ Rn×n
con-

tains four steps: (here b denotes the block size; ks denotes the starting basis size, it
is also the basis size after contraction; kf denotes the final basis size; ks < kf ; and V
denotes the orthonormal basis, T the Rayleigh-Quotient matrix)
1. Augment a size ks block Krylov decomposition, HVks

= Vks
Tks

+ FBT , where

F ⊥ Vks
, F ∈ Rn×b

, B ∈ Rks×b
, to a size kf block Krylov decomposition:

HVkf
= Vkf

Tkf
+ F̃ET

kf
, (F̃ ⊥ Vkf

);

(this is essentially a block Lanczos augmentation step);
2. Compute the Schur (spectral) decomposition of Tkf

: Tkf
Qkf

= Qkf
Dkf

,
where the Ritz values are ordered so that the first ks Ritz pairs are wanted pairs;

3. Contract the size kf orthogonal basis to size ks: Vks
← Vkf

Qkf
(:, 1 : ks);

4. The size ks Krylov decomposition now can be written as: HVks
= Vks

Dks
+ F̃BT ,

where BT = ET
kf

Qkf
(:, 1 : ks); repeat from step 1.

Actually, at the very beginning of the block Krylov-Schur cycle, one applies a
block Lanczos iteration to build a size kf Lanczos decomposition. The method then
iterates 2→ 3→ 4→ 1 as listed above. The multiplication by H at step 1 is usually
achieved via a user supplied external subroutine.

The augmentation of Krylov decomposition by block Lanczos at step 1 is very
important, and will be discussed in section 3. We devote a subroutine block lanczos()
(presented later in Algorithm 3.1) for this augmentation. The variable blkcontrol is
used to control the block size. With this block Lanczos decomposition ready, it is
relatively easy to describe the block Krylov-Schur method in a more detailed pseudo
code. We first call block lanczos() to get a size-kf Lanczos decomposition, then com-
pute the spectral decomposition of the size-kf Rayleigh-Quotient matrix T . Then the
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size-kf basis V is contracted into a size-ks basis, based on the selection criteria of the
computed Rayleigh-Ritz pairs.

In order to directly call the block Lanczos code we developed without changing
the interface of block lanczos(), in the block Krylov Schur code we add one block
of basis vectors to V and update T accordingly before calling block lanczos() again.
As seen from the first and third pictures in Figure 2.1, after the contraction and
after adding the residual terms to the last rows of T , we do one more step of block
augmentation, which adds the last block size columns to T and makes T symmetric
before passing it to block lanczos() for further augmentation.
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Fig. 2.1. Sample structure of the Rayleigh-Quotient matrix T (block size=3). The first figure
contains the diagonal term after the contraction phase, with residual terms added at the last block size
rows. One additional step block augmentation leads to the last block size columns which makes T

symmetric. The second figure is the contracted T augmented by block Lanczos. The third figure
also contains the diagonal term after the contraction phase with correction terms added. It is the
same as the first figure, except that the converged Ritz values at the beginning of the diagonal have
been deflated, so the active T only consists of the part with nonzero residuals (or off-diagonals).
The fourth figure is the deflated T augmented by block Lanczos. Note that the size of the active T

remains the same because the size of T increases after each deflation.

The detailed pseudo code is shown in Algorithm 2.1. Where max subspdim is the
maximum subspace dimension allowed; and blkcontrol=1 means the block size can
be increased when necessary. The seemingly complicated indexing in the pseudo code
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Algorithm 2.1. Pseudocode of Block Krylov-Schur method

Input Data: F, b, ks, kf , blkcontrol, nneed,max restart,max subspdim, tol
Output Data: V, T, nconv

I. Apply block Lanczos iteration to get a size kf Lanczos decomposition:
HV (:, 1 : kf ) = V (:, 1 : kf )T (1 : kf , 1 : kf ) + FET ,
s.t. V (:, 1 : kf )

T V (:, 1 : kf ) = Ikf
, FT V (:, 1 : kf ) = 0;

II. Set nc = nconv = 0;
III. Do while (max restart is not reached)

1. compute the full spectral decomposition of T (nc+ 1 : kf , nc+ 1 : kf ):
T (nc+ 1 : kf , nc+ 1 : kf )X = XD;

2. keep only the first ks columns of X; contract the basis
V (:, nc+ 1 : nc+ ks) = V (:, nc+ 1 : nc+ kf )X(:, 1 : ks);

3. compute rank revealing pivoted thin QR decomposition of F :
F (:, e) = V (:, nc+ ks + 1 : nc+ ks + b)R; set rankF = rank(F );

4. compute inve s.t. e(inve(j)) = j, for j = 1 : b;
5. compute the residuals R̂ = R(:, inve)X(kf−nc−b+1 : kf−nc, :); determine

convergence from the residuals. let nc0 be the number of converged Ritz pairs
in this step. if nc0 >0, set nconv = nconv + nc0;

6. if nconv >= nneed then exit.
7. update T to include the non-zero residual:

T (nc+ 1 : nc+ ks + b, nc+ 1 : nc+ ks) =

[

D̂

R̂

]

where D̂ = D(nc0 + 1 : nc0 + ks, nc0 + 1 : nc0 + ks).
8. if (rankF < b) then ortho-normalize

V (:, nc+ ks + rankF + 1 : nc+ ks + b) against V (:, 1 : nc+ ks + rankF );
9. if (blkcontrol==1), determine a new b based on clustering size of diag(D̂);

if b is increased, augment V and T according to (2.7);
10. compute F = HV (:, nc+ ks + 1 : nc+ ks + b);
11. compute h = V (:, 1 : nc+ ks + b)T F ;
12. get the diagonal block of T :

T (nc+ks+1 : nc+ks+b, nc+ks+1 : nc+ks+b) = h(nc+ks+1 : nc+ks+b, :);
13. compute new residual vectors that are orthogonal to V (:, 1 : nc+ ks),

F = F − V (:, 1 : nc+ ks + b)h,
do selected re-orthogonalization to make sure F ⊥ V (:, 1 : nc+ ks + b);

14. set k = nc+ ks + b, kf = min(nc+ kf ,max subspdim); set nc = nconv;
15. call block lanczos(V, T, F, k, kf , b, blkcontrol) to augment the size-k Krylov

decomposition to size-kf .
End Do.

handles the deflation of converged Ritz pairs. In the next subsections we provide more
details on Algorithm 2.1. One important detail of the block Krylov-Schur method is
how to handle the rank deficient case.

2.1. Handling the rank deficient case. Implementations of block methods
are more complicated than their non-block counterparts, partly (if not mainly) be-
cause vectors in a new block can become linearly dependent at some stage of the
iteration. This rank deficiency can appear in any block method. Hence what we
discuss in this subsection also treats the rank deficient case for the block Lanczos
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decomposition in section 3.

Suppose we already have a size-k block Krylov-Schur decomposition ofH ∈ Rn×n
,

HVk = VkTk + FBT ,(2.1)

V T
k Vk = Ik, FT Vk = 0, F ∈ Rn×b

.

The next step is to augment the size-k orthonormal basis Vk into a size-(k + b) or-
thonormal basis. Let the QR decomposition of F be F = QR. Then (2.1) can be
written as

HVk = [Vk, Q]

[

Tk

RBT

]

.(2.2)

If F is of full rank, then we know QT Vk = 0 and Q contains the wanted size-b new
augmentation vectors. In the case when F is rank deficient, we need a more careful
examination of the QR decomposition of F . A rank revealing pivoted QR decompo-
sition is more appropriate for this case. Let the pivoted thin QR decomposition of F
be FP = QR, where P is the permutation matrix. We express QR in the following
rank revealing form,

FP = QR = [Q1, Q2]

[

[R11, R12]
0

]

= Q1[R11, R12],(2.3)

where Q1 ∈ Rn×r
and R11 is a r × r non-singular upper triangular matrix (r :=

rank(R) = rank(F )). From (2.3) it is clear that F ⊥ Vk now only guaranteesQ1 ⊥ Vk,
but not Q2 ⊥ Vk.

For a block method with fixed block size, Q2 must be re-orthonormalized against
Vk to make sure that the augmented basis [V,Q1, Q2] will continue to be orthonormal.
Using Q2 instead of other vectors avoids the need to generate new vectors and the need
to orthogonalize the new vectors against Q1. This is because the block Gram-Schmidt
orthogonalization

Q2 ← Q2 − Vk(V
T
k Q2),

with re-orthogonalization if necessary, gives a Q2 that still satisfies Q2 ⊥ Q1. Cer-
tainly this favorable situation may be lost if some vectors in Q2 happen to be in
range{Vk}. In this case one has to generate random vectors to replace the zero
vectors produced from the block Gram-Schmidt step, and one can not save the re-
orthogonalization of the newly generated vectors against Q1.

In order to uniformly treat all possible cases, including the case when some vectors
in Q2 may be in range{Vk}, we choose not to use block Gram-Schmidt but instead
a single vector version Gram-Schmidt with re-orthogonalization. This approach is
the same as the DGKS [7] method that is used in ARPACK [16]. The difference
is that this single vector version DGKS is now used in a block method. Our code
orthonormalizes vectors in Q2, one by one against Vk until all vectors in Q2 that are
not in range{Vk} are used up. This process will produce Q̂2 ⊥ [Vk, Q1]. During the
process, the second step Gram-Schmidt refinement will count the number of vectors
in Q2 that are in range{Vk}, these vectors will be replaced by random vectors after
all vectors in Q2 are tried. And the random vectors are orthonormalized against
[Vk, Q1, Q̂2] to give the desired size-(k + b) orthonormal basis.
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2.2. Using adaptive block sizes. In a block method, the block size need not
be fixed. It is advantageous that the method can adaptively adjust its block size at
different stages of the iteration. We propose two natural ways to achieve this goal.
Note that in both cases the goal is to keep a valid F = QM decomposition where
Q is an orthogonal matrix which contains the orthonormal basis of F , and M is a
factor corresponding to F and Q. After this decomposition is achieved, the Krylov
augmentation can be carried out in a standard way.

The first is to shrink the block size when F becomes rank deficient. That is, if
the rank revealing QR of F is (2.3) and 0 < r < b, then the block size b is reduced to
r. The basis is augmented as [Vk, Q1] and the triangular factor R replaced by

[R11, R12]P
−1.(2.4)

In the extremal case that r = 0, one is free to reset the block size to a suitable value.
A good choice is to apply the method discussed above by orthogonalizing vectors in
Q2 against Vk, and set the new block size as the number of vectors in Q2 that are not
in range{Vk}. If this number is 0, one has to generate random vectors and perform a
suitable orthogonalization to produce orthonormal vectors for augmentation. In any
of these cases when r = 0, the update of the upper triangular factor R is simply a
zero matrix of the same size as the updated block size.

The second is to adaptively increase the block size if the current block size is
determined to be too small. This readily fits in the block Krylov-Schur method.
Because in Algorithm 2.1 step III.1 we compute the eigenvalues of T , if the size
of clustering of these Ritz values is larger than the current block size, then we can
increase the block size to be at least the size of the clustering. This idea is in the
same vein as [3]. The difference is that in [3], the block size is adjusted at each step,
which means the Ritz values have to be computed at each step of the block Lanczos
iteration; while in block Krylov-Schur, we try to adjust the block size only after step
III.1 of Algorithm 2.1 when the current Ritz values become available. The advantage
is that we can keep the standard update of block Lanczos which does not require
Ritz value computations at each step; moreover, adjusting block size too frequently
can increase the coding complexity but may not offer much computational efficiency
because of the extra Ritz value computations and block size determinations.

To increase the block size we make the following observations. Suppose the piv-
oted QR decomposition of F (same notations as in (2.3)) is,

F = QRP−1 = [Q1, Q2]

[

[R11, R12]
0

]

P−1 = Q1[R11, R12]P
−1,(2.5)

where here F can be of full rank or rank deficient (if r = b then R12 = 0). Then the
size-k block Krylov decomposition HVk = VkTk + FBT becomes,

HVk = VkTk +Q1[R11, R12]P
−1BT

= [Vk, Q1]

[

Tk

[R11, R12]P
−1BT

]

.(2.6)

Suppose now the block size should be increased to b̂ > b. One just needs to construct
b̂− r new basis vectors. This is achieved by generating b̂− b random vectors, orthog-
onalizing these vectors and the b− r vectors Q2 in (2.5) against [Vk, Q1] to make an
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orthonormal basis of size b̂− r. Denote the new basis as Q̂2, then the following holds,

HVk =
[

Vk, [Q1, Q̂2]
]





Tk
[

[R11, R12]P
−1BT

0

]



 .(2.7)

This means the block Krylov-Schur iteration can continue based on (2.7), and the

current block size is b̂. Note that updating Tk by adding a zero matrix corresponding
to the newly added basis Q2 makes the update economical, any other choice would
violate the original Krylov decomposition HVk = VkTk+FBT and create the need to
compute residual vectors corresponding to the newly constructed basis.

In our code we assign an integer variable blkcontrol to control the change of the
block size, blkcontrol=0 means fixed block size. In the code block lanczos() we do
not increase the block size, so if blkcontrol 6=0, then the block size decreases whenever
F becomes rank deficient. While in krylov schur(), the block size can increase when
necessary if the input from the main program is blkcontrol=1, otherwise the block
size output from block lanczos() is kept fixed.

The other coding detail is that the LAPACK routine dgeqp3() for the pivoted QR
decomposition (same for the function qr() in Matlab) does not produce a permutation
matrix P as listed in (2.5), only a vector containing the permutation information is
returned. That is, we only get F (:, e) = QR where the vector e contains the column
pivoting information, but we need a factorization of the original F . Notice that as
long as we get the reverse permutation array of e, i.e., a vector denoted as inve s.t.
e(inve(j)) = j for j = 1 : size(F, 2), then it is easy to verify that F = QR(:, inve).
Hence the P−1 expression in (2.4) and (2.5)—(2.7) is not a problem.

We note that for a truly robust implementation, a rank revealing pivoted QR
decomposition as in [4] should be used, because the pivoted QR implemented in
LAPACK dgeqp3() and Matlab qr() is not guaranteed to give an accurate numerical
rank s.t. rank(R) = rank(F ). One would have to determined rank(F ) separately
from the pivoted QR decomposition, which may be costly. Currently our Fortran code
uses dgeqp3() and Matlab code uses qr() directly, this is not the best solution. But
the approaches we discussed for the rank deficient cases should be straightforward to
implement when a rank revealing pivoted QR decomposition routine becomes available
in the future release of LAPACK.

2.3. Deflation of converged wanted eigenpairs. As mentioned in the in-
troduction, one main advantage of the Krylov-Schur method is its convenience when
deflating converged Ritz vectors. This advantage is preserved in the block Krylov-
Schur method. Suppose the block Krylov decomposition is (2.8) and the spectral
decomposition of T is (2.9),

HṼ = Ṽ T + FBT ,(2.8)

TX = XD.(2.9)

If we let V = Ṽ X and the QR decomposition of F be F = QR, we get

HV = V D +QRBT X.(2.10)

Suppose we always order the spectral decomposition of T so that the Ritz pairs at
the beginning parts of V and D approximate the wanted eigenpairs of H better than
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the latter parts. If the residual term RBT X has structure [0, B̂T ], then (2.10) can be
written as,

H[Vc, Vnc] = [Vc, Vnc]

[

Dc

Dnc

]

+Q[0, B̂T ].(2.11)

It follows readily that (2.11) reduces to

HVc = VcDc,

HVnc = VncDnc +QB̂T .(2.12)

That is, the converged Ritz vectors Vc and the converged Ritz valuesDc are deflated at
the beginning parts of V and D respectively. One only needs to work with (2.12)—the
nonconverged (active) part, for the next Krylov-Schur iterations, with the exception
that new basis vectors need to be orthogonalized against Vc. Stewart pointed out
[29, pp.347] that the deflation in the Krylov-Schur method is closely related to the
implicit deflation in [20, pp.180-183].

It is easy to see that in this block method we can do deflation vector by vector
based on the residual norm of each column in RBT X. There is no need to insist that
deflation in a block method should be done block by block. The ease of deflation is
one of the powerful features of the Krylov-Schur method.

3. Block Lanczos Decomposition. Now we focus on the remaining important
step of the block Krylov-Schur method, namely the block Lanczos decomposition.
As can be expected, the popularity of the Lanczos method [14] in the last several
decades has resulted in many publications on block variants of the Lanczos method.
As pointed out in the introduction, it can be useful to provide detailed discussions of
the rank deficient case. In section 2.1 we presented our approach based on BLAS-3
rank revealing pivoted QR decomposition for the rank deficient case in the Krylov-
Schur decomposition. This approach is also used to handle the possible rank deficiency
in the block Lanczos decomposition.

Pseudocode (Algorithm 3.1) describes how to expand a size-k general Lanczos
decomposition of a symmetric H to a size-kf general Lanczos decomposition. That
is, starting from

HV (:, 1 : k) = V (:, 1 : k)T (1 : k, 1 : k) + FET
k ,(3.1)

V (:, 1 : k)T V (:, 1 : k) = Ik, FT V (:, 1 : k) = 0,

the code will expand V and T into the following size-kf decomposition,

HV (:, 1 : kf ) = V (:, 1 : kf )T (1 : kf , 1 : kf ) + F̂ET
kf

,(3.2)

V (:, 1 : kf )
T V (:, 1 : kf ) = Ikf

, F̂T V (:, 1 : kf ) = 0.

The decompositions (3.1) and (3.2) are called general Lanczos decomposition because
the Rayleigh-Quotient matrices T in them are not block tri-diagonal, instead they
are of the forms pictured in Figure 2.1. By the extra augmentation step in the
krylov schur() code, the residual matrix B in a Krylov decomposition is augmented
into T (1 : k, 1 : k) so that the last term in (3.1) closely resembles a block Lanczos
decomposition. One can then call any block Lanczos code to augment (3.1) into (3.2).
With this design, the coding complexity of Krylov-Schur method is isolated in the
krylov schur() part without affecting the block Lanczos part.
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In Algorithm 3.1, b denotes the block size. The integer blkcontrol is used to
control the change of block size: if blkcontrol=0 then the block size remains constant
through out the Lanczos decomposition, otherwise the block size is reduced when F
is rank deficient.

We note that the reorthogonalization approach used is full reorthogonalization.

Algorithm 3.1. Pseudocode for Block Lanczos Decomposition:
The simplified interface of block Lanczos is: block lanczos(V, T, F, k, kf , b, blkcontrol).

I. If (k == 0) then
1. compute the thin QR decomposition of F : F = V (:, 1 : b)R;
2. compute F = HV (:, 1 : b);
3. compute the 1st diagonal block of T : T (1 : b, 1 : b) = V (:, 1 : b)T F ;
4. compute new residual vectors that are orthogonal to V (:, 1 : b),

F = F−V (:, 1 : b)T (1 : b, 1 : b),
do necessary reorthogonalization to make sure F ⊥ V (:, 1 : b).

II. Do while ( k + b <= kf )
1) compute rank revealing pivoted thin QR decomposition of F :

F (:, e) = V (:, k+1 : k+b)R; set rankF = rank(F );
2) compute inve s.t. e(inve(j)) = j, for j = 1 : b;
3) • if (rankF == b) then set the subdiagonal block of T :

T (k+1 : k+b, k−b+1 : k) = R(:, inve);
• else if ( 0 < rankF and blkcontrol 6= 0 ) then
store only the first rankF rows of R in the subdiagonal block of T :
T (k+1 : k+rankF, k−b+1 : k) = R(1 : rankF, inve);
reduce the block size: set b = rankF ;

• else
i) ortho-normalize V (:, k+rankF+1 : k+b) to V (:, 1 : k+rankF );
ii) store the first rankF rows of R in the subdiagonal block of T :

T (k+1 : k+rankF, k−b+1 : k) = R(1 : rankF, inve);
iii) set T (k+rankF+1 : k+b, k−b+1 : k) = zeros(b−rankF, b);

4) update the current basis size: k = k+b;
5) compute F = HV (:, k−b+1 : k);
6) compute h = V (:, 1 : k)T F ;
7) get the diagonal block of T : T (k−b+1 : k, k−b+1 : k) = h(k−b+1 : k, :);
8) compute new residual vectors that are orthogonal to V (:, 1 : k),

F = F − V (:, 1 : k)h,
do necessary reorthogonalization to make sure F ⊥ V (:, 1 : k).

End Do.

4. Block size constraint of block methods based on Krylov-type decom-

position. In this section we briefly discuss the special situation when a large number
of good initial vectors are available. This situation is common in the self-consistent
calculations based on the Density Functional Theory [13].

A general rule on block methods based on Krylov-type decompositions, e.g., block
Lanczos or Arnoldi decomposition, is that a large block size does not yield good
efficiency. Besides hardware concerns (different cache size for different architecture,
etc), and the already mentioned less significant gain for a block method on the matrix-
vector products for large sparse matrices, we point out that in a restarted Krylov
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subspace method, if the maximum degree of the Krylov polynomial of a single vector
method is kdeg, then the maximum degree of the Krylov polynomial of a block size b
method using the same dimension subspace is floor(kdeg/b). If b is relatively large, it
means the block method always applies a low degree Krylov polynomial, which may
be rather inefficient for the Krylov subspace method.

It is tempting to include all the available good initial vectors in the basis V0 and
then augment V0 using a smaller block size. The problem with this approach is that
in the Krylov-type decomposition setting, at the beginning the relation

AV0 = V0T +N, where T = V T
0 AV0,

needs to be satisfied. The familiar relation N=FET for a low rank F orthogonal to
V0 generally does not hold. That is, N needs to have as many columns as V0 does.
Using a block size smaller than the column size of this N will violate the Krylov
decomposition and will not result in the desirable T = V T AV when V0 is augmented
into V . The Davidson-type method that gives up the Krylov subspace structure may
be better suited for the task of including a large number of good initial vectors and
then using a suitable small block size to augment the basis.

5. Numerical results. In this section we report on some numerical results of
the block Krylov-Schur method. We developed both Matlab and Fortran codes of
the block Krylov-Schur (KS) method. Currently our codes only solve the standard
symmetric eigenproblems. For the numerical results in this paper we always compute
the nneed number of eigenvalues with the smallest algebraic values together with their
eigenvectors.

We first test the Matlab code. All the Matlab comparisons are performed on a
Dell PC with dual Intel Xeon 2.66GHz CPU and 1GB RAM running Debian Linux
with Linux kernel version 2.4.25. The Matlab version is 6.5 (R13).

Our Matlab block Krylov-Schur code is compared with the two available Matlab
codes on block eigensolvers: irbleigs of IRBL [1, 2] and lobpcg of LOBPCG [11]. As
presented in [1, 2], irbleigs showed a very good numerical behavior for relatively large
symmetric eigenproblems. Our experience with the code shows that the good numer-
ical behavior is somewhat restricted to the case where a small number of eigenpairs is
required. When the required number of eigenpairs increases, the efficiency of irbleigs
deteriorates. Table 5.1 shows a comparison of KS, IRBL and LOBPCG (without
preconditioning) on a 2-D Laplacian. (All Laplacians used in this paper are finite
difference discretizations on the unit domain with zero Dirichlet boundary condition.)

nneed 15 45 90 105 135 150 300
irbl err. 1.89e-6 1.77e-7 1.28e-6 2.17e-6 1.54e-6 1.23e-6 –
lobpcg err. 3.82e-8 4.58e-9 5.28e-10 3.07e-9 6.04e-10 2.29e-9 7.68e-10
ks err. 1.30e-8 1.33e-8 6.36e-9 5.33e-9 9.15e-10 1.23e-9 7.83e-10
irbl cpu 21.30 213.56 672.86 935.78 1488.49 1931.58 –
lobpcg cpu 53.18 108.47 309.23 322.84 483.32 508.28 2036.24
ks cpu 14.06 20.62 37.97 49.40 78.92 84.82 214.34

Table 5.1

Accuracy and cpu (seconds) comparison on 2-D Laplacian. ndim = (70×70) = 4900. nneed is
the number of required eigenpairs. We compute the smallest algebraic values. The accuracy (err.) is
the largest actual residual norm of converged eigenpairs. The difference of each eigenvalue computed
by the three methods (not reported here) is constantly smaller than e−14.
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The block size of KS and IRBL is chosen to be 4. The starting vectors for KS and
IRBL are the same random matrix with 4 columns. IRBL automatically adjusts its
block size. To fit the interface of lobpcg, this random matrix is augmented into nneed
columns to be the initial vectors of LOBPCG; that is, the block size of LOBPCG is
nneed. The maximum restart number is set to 2500. Table 5.1 shows that irbleigs
did not converge within 2500 restarts for nneed= 300. In several test runs, irbleigs
often has convergence problem for nneed > 90 if the maximum restart number is
less than 2000. In contrast, KS converged easily and encountered no problem with
increasing nneed. Table 5.1 shows that KS computed 300 eigenpairs in much less
cputime than it took IRBL and LOBPCG to compute 90 eigenpairs. We also tried
the more difficult 1-D Laplacian with dimension 2000, in this case IRBL did not
converge for nneed > 15 within 2500 restarts. LOBPCG and KS both converged to
similar accuracy, with KS being at least five times faster than LOBPCG for increasing
nneed. The efficiency deterioration of irbleigs for a large nneed may be related to
the fact that irbleigs automatically adjusts its block size to a large value according to
nneed, and this large block size is fixed during the iteration, which makes the block
Lanczos update less efficient; moreover, it may be difficult to compute a relatively large
number of approximate Leja points. We also notice that IRBL computes eigenvalues
to as high accuracy as LOBPCG and KS, but the eigenvectors computed by irbleigs
do not have as high accuracy as LOBPCG and KS. LOBPCG turns out to be more
efficient than IRBL for larger nneed. One possible reason that LOBPCG becomes
less efficient than KS for larger nneed is that the local optimal is computed from
a dimension 3 ∗ nneed subspace, and this local subspace is larger than the global
subspace (dimension ≈ 2∗ nneed) used in KS.

In the following we compare our Matlab code with the Matlab v6.5 eigs. This eigs
function is essentially the Fortran ARPACK accessed via the Matlab mex interface,
hence it is very efficient and well tuned. While it is not realistic to expect codes
written directly in Matlab to beat eigs in cputime, especially for relatively large
eigenproblems with a not too small nneed, our goal is to see if a block method can
have some advantages. We use two silicon quantum dot models from materials science,
Si10H16 and SiO, where Si10H16 is the hydrogenated silicon, with 10 silicon atoms
passivated by 16 hydrogen atoms, and SiO is an monoxidized silicon [5]. The matrices
are obtained from ab initio calculations after the self-consistency is reached. Figure 5.1
shows the sparsity structures of the corresponding Hamiltonian matrices. The largest
multiplicity for the computed eigenvalues of Si10H16 and SiO is 3 and 2 respectively.

For the numerical test, the blksize is set to 3. We first compute blksize converged
eigenpairs (V,D) by eigs. Then we apply perturbations to V by using:

V0 = V (:, 1 : blksize) + 10−i ∗ rand(ndim, blksize), for i = 2 : 10(5.1)

as the initial three vectors for the block Krylov-Schur method. The column sums of
V0 is used as the initial vector for eigs. The convergence tolerance is set to 10

−11.
We compute nneed=15, 25, 35 eigenpairs. The contracted subspace dimension ks is
set to nneed; and the augmented subspace dimension kf is set to 2∗nneed, which is
extended slightly after deflation by each method.

Figure 5.2 and Figure 5.3 show the cputime results for Si10H16 and SiO, respec-
tively. It may seem surprising that the improved initial vectors do not necessarily
lead to faster overall convergence. We point out that this is not surprising because
nneed is at least five times larger than the number of good initial vectors. If we
set blksize= nneed, then as predicted, the improved initial vectors lead to a faster
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Fig. 5.1. Sparsity structures of the Hamiltonian matrices of the silicon quantum dots Si10H16

and SiO, with dimension 17077 and 33401 respectively.

overall convergence for the block method, but blksize=nneed actually takes a longer
cputime to converge than with blksize=3 except when the perturbation in (5.1) be-
comes smaller than 10−9. It may also seem surprising that for both models, nneed=15
usually takes longer to converge than nneed= 25. This is not surprising if we note
that the augmented subspace dimension is set to 2∗nneed, which means that the
degree of the Krylov polynomial for nneed= 15 is smaller than for nneed= 25. As
seen from both Figures 5.2 and 5.3, the cputime for the Matlab block Krylov-Schur
code is comparable with the Matlab eigs. We note that for these two tests, blksize=1
uses more cputime than blksize= 3, this may be seen as an advantage of the block
method. We also note that for nneed > 50 the eigs which is essentially based on a
Fortran package wins more in cputime.

Finally we present comparisons between our Fortran block Krylov-Schur code and
the Fortran ARPACK. The first example is a 2-D Laplacian with ndim = 62500, 78400
and 90000. The block size is set to 4.

ndim=62,500 # mat-vec mult # restart cpu (seconds)
ARPACK 4935 31 853.81
KS 5856 (1464) 33 691.48

ndim=78,400 # mat-vec mult # restart cpu (seconds)
ARPACK 5469 34 1289.69
KS 6672 (1668) 38 1040.28

ndim=90,000 # mat-vec mult # restart cpu (seconds)
ARPACK 5912 37 1607.77
KS 7132 (1783) 41 1257.10

Table 5.2

Comparison of Fortran block Krylov-Schur code with ARPACK on a 2-D Laplacian with dif-
ferent ndim. nneed=100. tol=10−12. Maximum subspace dimension is set to 300. All the source
codes are compiled with the same optimization flags. The numbers in parenthesis correspond to the
number of block matrix-vector multiplications.
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Fig. 5.2. Cputime comparison of block Krylov-Schur and eigs with improved initial vectors
for the Si10H16 model. The first two figures show cputime in seconds. The last figure shows the
Krylov-Schur cputime divided by the cputime of eigs.
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Fig. 5.3. Cputime comparison of block Krylov-Schur and eigs for the SiO model with improved
initial vectors. The first two figures show cputime in seconds. The last figure shows the Krylov-Schur
cputime divided by the cputime of eigs.
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Fig. 5.4. Sparsity structures of the Hamiltonian matrices of the silicon quantum dots Si34H36

and SiO2, with dimension 97569 and 155331 respectively.

As can be seen from Table 5.2, even though the restart numbers and matrix-
vector multiplications of the block Krylov-Schur both exceed those of ARPACK, the
cputime of the block method is smaller. The gain in cputime can be attributed to
the fact that the eigenvalues of the 2-D Laplacian of the tested dimensions are not
well separated, and that the block size 4 fits the multiplicity of the eigenvalues, hence
the block method has an advantage. The computation is done on the IBM power4
supercomputer running AIX 5.2 of the Minnesota Supercomputing Institute. All
codes are compiled by the IBM Fortran compiler xlf r using optimization flags: -O4
-qstrict -qmaxmem=-1 -qtune=pwr4 -qarch=pwr4.

We also test our codes on two larger Silicon quantum dot models: Si34H36 and
an oxidized silicon SiO2. The sparsity structures and dimensions of the Hamiltonian
matrices are shown in Figure 5.4. The eigenvalues for these models are not very
clustered, actually the computed nneed eigenvalues of SiO2 are all simple. Thus
ARPACK is expected to be very efficient for these models. On the IBM AIX power4
supercomputer ARPACK is constantly faster than the block Krylov-Schur code. How-
ever, the block Krylov-Schur code is faster running on a Sun Blade-2000 workstation
that has 6GB RAM, using one of the dual 900Mhz UltraSparcIII cpus. The compiler
used on the Sun workstation is Sun f90 compiler, with optimization flags: -64 -fast

-dalign -native -xO5.
The comparisons between our Fortran block Krylov-Schur package and ARPACK

are currently preliminary, but we expect that a well developed package based on the
block version of the Krylov-Schur algorithm will be quite useful in some situations
such as when the eigenvalues have high multiplicity or are clustered.

6. Conclusions. In this paper we studied an extension of the Krylov-Schur
algorithm into a block version. We proposed to use the rank revealing pivoted QR
to handle the rank deficient cases that can cause difficulties in block methods. We
also introduced ways to adaptively adjust the block size during iterations inside the
block Krylov-Schur algorithm. We developed a Matlab code of the block Krylov-
Schur method, and the numerical comparisons show that, this code is efficient and
robust. We also developed a Fortran package based on the block Krylov-Schur method.
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ndim=97,569 # mat-vec mult # restart cputime (IBM) cputime (SUN)
ARPACK 1424 17 235.30 sec. 1092.70 sec.
KS 1719 (573) 19 271.85 sec. 960.01 sec.

ndim=155,331 # mat-vec mult # restart cputime (IBM) cputime (SUN)
ARPACK 1652 22 573.65 sec. 2347.08 sec.
KS 2103 (701) 26 678.01 sec. 2194.42 sec.

Table 5.3

Comparison of Fortran block Krylov-Schur code with ARPACK on Si34H36 and SiO2. nneed=
50, blksize=3, tol=10−12. Maximum subspace dimension is set to 150. The numbers in parenthesis
correspond to the number of block matrix-vector multiplications. On each platform all the source
codes are compiled with the same optimization flags.

The preliminary comparisons with the Fortran package ARPACK are encouraging.
Currently our codes only work for symmetric standard eigenvalue problems. We
expect that the Krylov-Schur algorithm will also be advantageous for non-symmetric
and generalized eigenproblems.
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