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Abstract

Principal component analysis (PCA) is an extensively
used dimensionality reduction technique, with impor-
tant applications in many fields such as pattern recog-
nition, computer vision and statistics. It employs the
eigenvectors of the covariance matrix of the data to
project it on a lower dimensional subspace. Kernel
PCA, a generalized version of PCA, performs PCA im-
plicitly in a nonlinearly transformed feature space. In
many cases, experiments show that kernel PCA is more
effective than conventional PCA.

However, the requirement of PCA eigenvectors is a
computational bottleneck which poses serious challenges
and limits the applicability of PCA-based methods, es-
pecially for real-time computations. This paper pro-
poses an alternative framework, relying on polynomial
filtering which enables efficient implementations of both
PCA and its kernelized version. Further improvements
are achieved when polynomial filtering is combined with
wavelet transforms to obtain sparse representations of
images. We showcase the applicability of the proposed
scheme on face recognition. In particular, we consider
the eigenfaces and kernel eigenfaces methods which em-
ploy PCA and kernel PCA respectively. The numerical
experiments reported indicate that the proposed tech-
nique competes with the PCA - based methods in terms
of recognition rate, while being much more efficient in
terms of computational and storage cost.

Keywords Principal Component Analysis, Polyno-
mial Filtering, Kernels.

1 Introduction

Principal component analysis (PCA) [8] is one of the
most popular dimensionality reduction techniques. It
has numerous applications in many areas such as pat-
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tern recognition, computer vision, statistics and data
analysis. PCA has been successfully applied in auto-
mated face recognition [22], resulting in the so called
method of eigenfaces introduced by Kirby and Sirovich
[10], Sirovich and Kirby [19] and Turk and Pentland
[16], [20]. The eigenfaces method is one of the most
popular appearance-based holistic approaches (see e.g.,
[1],[20]) which employs PCA on the covariance matrix
C, constructed by the training data.

Kernel eigenfaces [9], [21] is a nonlinear generalized
version of the eigenfaces method which employs kernel
PCA [18] for face recognition. The input data points are
nonlinearly transformed into a high dimensional feature
space F . Then, linear PCA is implicitly performed
in the feature space F via the “kernel trick”: using
Mercer kernels ([14]) one can efficiently compute the dot
product between two vectors x, y ∈ F , as a function of
the dot product of their corresponding data points in the
input space. Kernel PCA (KPCA) is able to capture the
nonlinear correlations among data points, and in some
cases has been more successful than conventional PCA.

Typical implementations of the eigenfaces and ker-
nel eigenfaces methods rely upon eigendecomposition
of the covariance matrix. However, when the datasets
are dynamic and of large scale, the applicability of the
above methods is limited due to their high computa-
tional cost (which is O(n3) for dense matrices). This is
even more evident in the case of real-time and adaptive
algorithms (see e.g. [15]). In these cases, the eigende-
composition must be updated frequently and the time
constraints are very strict. To that end, a lot of research
efforts have been devoted to efficient eigenspace update
schemes such as the one proposed in [7].

In this paper we propose a new implementation
scheme which approximates directly the similarity score
without computing the eigendecomposition of C or any
other matrix decomposition. Denoting by A the data
matrix in the input space, the new method relies on



polynomial filtering, where a well defined polynomial
ψ of the matrix AA> or A>A is applied on the new
face image and yields an approximation to the simi-
larity score that is very close to the one obtained using
eigendecomposition. The polynomial ψ is chosen appro-
priately such that it is a good approximation of the step
function. The quality of the recognition compared with
PCA methods, depends on how closely the polynomial
ψ approximates the step function.

The polynomial filtering framework was applied
successfully in [11] for dimensionality reduction in in-
formation retrieval. In this paper we showcase the ap-
plicability of this technique in a different context, that
of face recognition. We claim that the proposed frame-
work can be applied in any method employing PCA or
kernel PCA to estimate similarities among data vectors.

Numerical experiments indicate that the proposed
framework is quite close to the PCA methods in terms
of recognition rate without suffering from their com-
putational and storage limitations. The efficiency of
the method can be further improved if we use sparse
representations of image data obtained from orthogonal
wavelet decompositions.

The remaining sections of this paper are organized
as follows: Section 2 provides an overview of the eigen-
faces method using eigenvalue decomposition. In Sec-
tion 3 the eigenfaces method is interpreted in terms of
Singular Value Decomposition (SVD). Next, in Section
4 the implementation of face recognition using eigen-
faces, via polynomial filtering is described. Section 5
analyzes the kernel eigenfaces method and introduces
the implementation of kernel eigenfaces using polyno-
mial filtering in the transformed feature space. Section
7 describes the combination of polynomial filtering with
sparse representations of the images using wavelets. Fi-
nally, Section 8 provides a series of numerical results ver-
ifying the practical advantages of the proposed scheme.

2 The method of eigenfaces

2.1 Construction of the face space Suppose that
a face image consists of N pixels, so it can be repre-
sented lexicographically by a vector x of dimension N .
Let {xi|i = 1, . . . ,M} be the training set of face images.
The mean face is given by

µ =
1

M

M
∑

i=1

xi.(2.1)

The covariance matrix of the translated training data is

C =
1

M
AA> ∈ RN×N ,(2.2)

where A = [x̃1, ..., x̃M ] ∈ RN×M is the matrix of the
translated data points

x̃i = xi − µ, i = 1, . . . ,M.(2.3)

The eigenvectors ul, l = 1, . . . ,M of the covariance ma-
trix C are usually called “eigenfaces”, since they re-
semble faces when reshaped and illustrated in a picto-
rial fashion. In practice only a small number, say k,
of eigenvectors corresponding to the largest eigenvalues
are computed and then used for performing Principal
Component Analysis (PCA) for face identification. The
subspace spanned by the eigenfaces is called face space.

2.2 Face recognition using eigenfaces The face
recognition procedure consists of two stages; the train-
ing stage and the recognition stage. In the training stage
each face image xi of the known individuals is projected
on the face space and a k-dimensional vector Pi is ob-
tained

Pi = U>k (xi − µ), i = 1, . . . ,M,(2.4)

where Uk = [u1, . . . , uk] is the matrix with orthonormal
columns, which are the eigenvectors associated with the
k largest eigenvalues.

In the recognition stage, the new image x ∈ RN to
be processed, is translated and then projected into the
face space to obtain the vector

Px = U>k (x− µ).(2.5)

The distance between Px and each face image is defined
by

d2i = ‖Px − Pi‖22
= ‖Px‖22 + ‖Pi‖22 − 2P>x Pi, i = 1, . . . ,M,(2.6)

where ‖.‖2 is the Euclidean norm. Furthermore, in
order to discriminate between face images and non-
face images, the distance ε between the original image
x and its reconstructed image from the face space,
xf = UkPx + µ, is also computed:

ε = ‖x− xf‖2.(2.7)

Note in passing that

ε = ‖x− µ− UkPx‖2
= ‖(x− µ)− UkU

>
k (x− µ)‖2,

and therefore ε represents simply the distance between
x−µ and its orthogonal projection onto span{Uk}, i.e.,

ε2 = ‖(I − UkU
>
k )(x− µ)‖22(2.8)

= ‖x− µ‖22 − ‖Px‖22.(2.9)

This metric is used to decide whether or not a given
image is a face.



3 Eigenfaces in terms of the SVD

In this section we interpret the above training and
recognition stages in terms of the truncated singular
value decomposition of A. The SVD [6] of a rectangular
N ×M matrix A of rank r, is defined as

A = UΣV >,(3.10)

U>U = IN ∈ RN×N ,(3.11)

V >V = IM ∈ RM×M ,(3.12)

where U = [u1, . . . , uN ] and V = [v1, . . . , vM ] are
unitary matrices and Σ = diag(σ1, σ2, . . . , σM ), σ1 ≥
σ2 ≥ . . . ≥ σr > σr+1 = . . . = σM = 0. The σi’s
are the singular values of A and the ui’s and vi’s are
respectively the left and right singular vectors associated
with σi, i = 1, . . . , r. We define the i-th singular triplet
of A as {ui, σi, vi}. It follows from the SVD that the
matrix A can be expressed as a sum of r rank-one
matrices,

A =

r
∑

i=1

σiuiv
>
i .

Additionally, it is well known that

min
rank(B)≤k

‖A−B‖F = ‖A−Ak‖F

where Ak =
∑k

i=1 σiuiv
>
i and ‖.‖F is the Frobenius

norm. It is helpful for what follows to rewrite the matrix
Ak as

Ak = UkΣkV
>
k ,(3.13)

where Uk (resp. Vk), consists of the first k columns of
U (resp. V ), and Σk is a diagonal matrix of size k × k.
Thus, if we truncate the SVD to keep only the k largest
singular triplets we obtain the closest (in a least-squares
sense) approximation to A.

Observe that the matrix Uk containing the k largest
left singular vectors of Ã = 1√

M
A, is exactly the matrix

computed by PCA containing the largest eigenvectors of
the covariance matrix. This follows from the fact that

C = ÃÃ> = UΣV >V Σ>U> = UΣΣ>U>,

is the eigendecomposition of the covariance matrix.
Using this observation, equation (2.4) can be written
in the form

Pi = U>k x̃i = U>k Ãei

= U>k [Uk UN−k]

[

Σk 0
0 ΣM−k

] [

V >k
V >M−k

]

ei

= [Ik 0]

[

ΣkV
>
k

ΣM−kV
>
M−k

]

ei

= ΣkV
>
k ei, i = 1, . . . ,M.

Denote by P = ΣkV
>
k the matrix whose columns are

the projections Pi, i = 1, . . . ,M , of every known face
image to the face space. Assuming that all vectors are
normalized, the similarity measurement (2.6) among the
new image x and all known images, can be equivalently
computed by the similarity vector sk,

sk = P>Px = VkΣ
>
k U

>
k (x− µ)(3.14)

= Ã>k (x− µ),

containing a similarity score between the new face
image and each of the known images. Thus, the
computation of the similarity vector sk employs a rank
k approximation of the translated matrix A. We discuss
the assumption of normalized projected vectors in the
following section.

Note also that using the SVD, equation (2.8) ex-
presses the metric ε as the distance from x − µ to the
space span{Uk} of the dominant left singular space.

In the sequel, we show how to approximate the
similarity vector sk in (3.14), as well as the distance
ε in (2.8) without using any eigendecomposition. The
proposed scheme relies on polynomial filtering.

4 Eigenfaces using polynomial filtering

Polynomial filtering allows to closely approximate the
effect of reduced rank approximation used in PCA
models. Denote by ψ(A) a matrix polynomial of degree
d on the matrix A, i.e.,

ψ(A) = ξdA
d + ξd−1A

d−1 + . . .+ ξ1A+ ξ0I.

Assuming that A is normal (i.e., A>A = AA>) and
letting A = QΛQ> be its eigendecomposition, observe
that

ψ(A) = ψ(QΛQ>) = Qψ(Λ)Q>.

Therefore, the polynomial on A is translated to a
polynomial on its eigenvalues. We are now ready
to describe how one can use polynomial filtering to
approximate the similarity vector directly, avoiding
completely eigenvalue computations.

Let x̃ = x − µ be the translated new image. In
order to estimate the similarity measurement, we use a
polynomial ψ of Ã>Ã such that

s = ψ(Ã>Ã)Ã>x̃

= ψ(V Σ>ΣV >)V Σ>U>x̃

= V ψ(Σ>Σ)V >V Σ>U>x̃

= V ψ(Σ>Σ)Σ>U>x̃.(4.15)

Compare the last expression above with (3.14). Choos-
ing the polynomial ψ(t) appropriately will allow us to
interpretate this approach as a compromise between the



correlation [2] and the PCA approaches. Assume now
that ψ is not restricted to being a polynomial but can be
any function (even discontinuous). When ψ(t) = 1 ∀x,
then ψ(Σ>Σ) becomes the identity operator and the
above scheme would be equivalent to the correlation
method. On the other hand, taking ψ to be the step
function

ψ(t) =

{

0, 0 ≤ t ≤ σ2k
1, σ2k ≤ t ≤ σ21

(4.16)

results in ψ(Σ>Σ) =

[

Ik 0
0 0

]

where Ik is the identity

matrix of size k and 0 is a zero matrix of an appropriate
size. Then, equation (4.15) may be re-written as:

s = V ψ(Σ>Σ)Σ>U>x̃

=
[

Vk Vn−k

]

[

Σ>k 0
0 0

] [

U>k
U>m−k

]

x̃

=
[

VkΣ
>
k 0

]

[

U>k
U>m−k

]

x̃

= VkΣ
>
k U

>
k x̃

= Ã>k x̃(4.17)

which is precisely the rank-k approximation provided in
equation (3.14).

Using polynomial filtering we can also approximate
the “faceness” (i.e., whether or not a given image
contains a face) of an image as it is expressed by
equation (2.8). Using the SVD, observe that

ψ(C)(x− µ) = ψ(ÃÃ>)(x− µ)
= ψ(UΣV >V Σ>U>)(x− µ)
= Uψ(ΣΣ>)U>(x− µ).(4.18)

Note that if ψ is exactly the step function (4.16), then
‖ψ(C)(x−µ)‖2 = ‖UkU

>
k (x−µ)‖2 = ‖Px‖2 which would

allow to obtain ε from (2.8). If the polynomial ψ is an
approximation of the step function, this will provide an
estimate of the distance metric ε, needed to decide on
the faceness of an image, without the availability of U
or Uk.

Therefore, the approach of polynomial filtering in
PCA models can give virtually the same result as eigen-
decomposition, without resorting to the costly eigen-
value decomposition or any other matrix decomposi-
tion. Furthermore, the need to store additional (dense
or sparse) matrices as is the case in PCA, is completely
avoided as is the need to update these matrices, when
the subspace used for learning changes dynamically.
The selection of the cut-off point is somewhat similar
to the issue of choosing the parameter k in the PCA
method. However, there is a salient difference between
the two: choosing a large k in PCA may render the

method much more expensive, while selecting a high
cut-off in polynomial filtering does not affect cost sig-
nificantly.

Recall that in the computation of the similarity
vector we assumed that the projected vectors Pi have
unity norm. Since this is not the case, we need to
normalize the similarity vector by the corresponding
norms ‖Pi‖2. These norms are computable using a
polynomial filter on AA>. Using equations (2.4) and
(4.18) observe that ‖Pi‖2 = ‖UkU

>
k (xi − µ)‖2 =

‖ψ(C)(xi − µ)‖2, where again ψ is the step function
(4.16). The filter does not need to be accurate enough
before it is useful. Usually, a rough approximating
polynomial of degree 2 or 3 suffices. This computation
can be accomplished off-line at the training stage, before
the recognition stage. It is fairly expensive, but its cost
is amortized during the recognition phase, especially
when the number of face images very large.

In order to overcome this problem we suggest two
solutions. Before applying the proposed scheme we
normalize all input data vectors xi. Next, we compute
the similarity score and sort the samples in descending
order. Then we have two options. Using the first
k ¿ M samples, either we can employ PCA or we can
use k-nearest neighbor classification. Observe that since
k ¿ M , the cost of exact PCA will be very limited,
and certainly orders of magnitude smaller than PCA on
the original data matrix. Similarly, applying k-nearest
neighbor classification on a very small set of data points
will have very limited cost. We observed empirically
that the first option yields slightly better results and
this is the option that we included in our experiments
(Section 8) with k = 30. Thus, using polynomial
filtering one can reject very efficiently the irrelevant
images and then use a more accurate and expensive
algorithm on the first few highly ranked samples.

5 The kernel eigenfaces method

Kernel Principal Component Analysis (KPCA) [18] is a
generalization of PCA that has been successfully applied
in many pattern recognition problems. In [21] and [9]
the authors investigate the applicability of kernel PCA
in face recognition. Kernel methods employ a nonlinear
mapping Φ : RN → F from the input space RN to
another product space F which is called feature space.
The dimension of the feature space can be arbitrarily
large, possibly even infinite.

Denote by 〈.〉 the Euclidean dot product. Dot prod-
ucts among data points in F are computed efficiently us-
ing the so called “kernel trick”. This is achieved using
Mercer kernels where a kernel function

k(xi, xj) = 〈Φ(xi),Φ(xj)〉,



with xi, xj ∈ RN and Φ(xi),Φ(xj) ∈ F , computes
the dot product in F . Therefore, any algorithm that
can be expressed solely in terms of dot products, can
be extended in a nonlinear kernelized version of itself.
There are various types of kernels. The most extensively
used in the community are tabulated in Table 1.

Kernel PCA is the straightforward application of
PCA on the feature space. We now describe briefly how
kernel PCA can be performed implicitly in F , while
doing computations in the input space RN . Assume
that the data points in F are centered i.e., their mean is
equal to zero. The reader is referred to [18] for a detailed
analysis of kernel PCA and also for details about the
process of centering the data points in the feature space.
The covariance matrix is

CΦ =
1

M

M
∑

j=1

Φ(xj)Φ(xj)
> =

1

M
AΦA

>
Φ ,(5.19)

where AΦ = [Φ(x1),Φ(x2), . . . ,Φ(xM )] is the data
matrix of the translated data points in the feature space.
The corresponding eigenvalue problem for performing
PCA in F , is

CΦwΦ = λwΦ.(5.20)

Expanding the eigenvectors wΦ in the span of the
columns of AΦ we get

wΦ =

M
∑

j=1

ziΦ(xj) = AΦvz,(5.21)

where vz = [z1, z2, . . . , zN ]
>. In order to compute the

z’s we project the eigenvalue problem (5.20) on each
column of AΦ resulting in

〈Φ(xk), CΦwΦ〉 = λ〈Φ(xk), wΦ〉, k = 1, . . . ,M.

Substituting equation (5.21) into the above expression
and defining the M ×M Gram matrix Ki,j = k(xi, xj),
it turns out that the z’s are determined by the solution
of the eigenvalue problem

1

M
Kz = λz.(5.22)

After solving the above eigenvalue problem, we need
to normalize the eigenvectors wΦ of CΦ in the feature
space. Imposing the condition 〈wk

Φ, w
k
Φ〉 = 1, gives

1 =

M
∑

i,j=1

zk
i z

k
j 〈Φ(xi),Φ(xj)〉(5.23)

=

M
∑

i,j=1

zk
i z

k
jKij(5.24)

= 〈zk,Kzk〉(5.25)

= λk〈zk, zk〉,(5.26)

nonlinearity k(x, y)
polynomial (x>y)d

Gaussian exp(−‖x− y‖2/σ2)
sigmoid tanh(κx>y − δ)

Table 1: Various kernel functions.

where the sum is taken on all values of i, j. In
other words, normalizing each zk by the square root
of the corresponding

√
λk eigenvalue, we ensure that

the eigenvectors wΦ of the covariance matrix have unit
norm in the feature space.

Let x be a test point whose mapping on the fea-
ture space is Φ(x). Then, the projection of Φ(x) on the
eigenvectors wΦ provides the nonlinear principal com-
ponents

〈wΦ,Φ(x)〉 =
M
∑

i=1

zi〈Φ(xi),Φ(x)〉 =
M
∑

i=1

zik(xi, x).

Therefore, we can extract the k nonlinear principal
components by working implicitly in the feature space.

5.1 Kernel eigenfaces in terms of the SVD In
this section we provide an interpretation of kernel PCA
in terms of SVD that will facilitate the description of
the polynomial filtering technique in the transformed
feature space. Let

AΦ = Û Σ̂V̂ >(5.27)

be the singular value decomposition of the data matrix
AΦ in F . We will show that the computed eigenvectors
wΦ in kernel PCA, are essentially the left singular
vectors uΦ corresponding to the largest singular values
of AΦ. The eigendecomposition of matrices CΦ and ĈΦ
is correspondingly

CΦ = AΦA
>
Φ = Û Σ̂Σ̂>Û>,(5.28)

ĈΦ = A>ΦAΦ = V̂ Σ̂>Σ̂V̂ >.(5.29)

Observe now that ĈΦ =
1
M
K. Therefore, the eigen-

problem (5.22) that is solved in kernel PCA, computes
the principal eigenvectors V̂ of ĈΦ. The computed z’s
are essentially the eigenvectors of ĈΦ and the λ’s are
the squares of the singular values σ̂ of AΦ. Using (5.27)
we have

AΦV̂ = Û Σ̂.

In kernel PCA, we need to compute the principal eigen-
vectors Û of CΦ. Denote by w

i
Φ the i-th principal eigen-

vector of CΦ. Essentially, what kernel PCA computes
is (see also equation (5.21))

wi
Φ = AΦv̂i = σ̂iûi.



In order to obtain the ûi’s we need to normalize the
computed wi

Φ by the corresponding σ̂i. This is exactly
the normalization step taking place in (5.26).

In the training stage, we project all the known data
points on the first k columns of Û in order to get the
nonlinear principal components

P̂i = Û>k Φ(xi) = Û>k AΦei = Σ̂kV̂
>
k ei, i = 1, . . . ,M.

In other words, the columns of P̂ = Σ̂kV̂
>
k hold

the nonlinear principal components of the known data
points. Assume now that a new test point x needs to
be identified. First, its nonlinear principal components
will be computed

P̂x = Û>k Φ(x),

and then the similarity score will be computed to
perform the recognition step:

ŝ = P̂>P̂x = V̂kΣ̂
>
k Û

>
k Φ(x) = (Ak)

>
ΦΦ(x).(5.30)

Following a similar analysis as in Section 4, we conclude
that we can approximate the similarity score that would
be obtained by kernel PCA, using polynomial filtering.
The following section describes this process.

5.2 Kernel eigenfaces with polynomial filtering
Consider the computation of the similarity vector in
the feature space. Similarly to equation (4.15), the
similarity vector induced by the transformed data points
Φ(xi), i = 1, . . . ,M is given by

sΦ = ψ(A>ΦAΦ)A
>
ΦΦ(x)

= ψ(ĈΦ)A
>
ΦΦ(x)

=
1

M
ψ(K)A>ΦΦ(x)

=
1

M
ψ(K)tΦ,

where Φ(x) is the centered mapping of x in F and tΦ =
A>ΦΦ(x). As was mentioned above, we can compute

the ĈΦ matrix using dot products in the feature space
and thus via kernel function evaluations. In particular,
this matrix is a scaled version of the Gram matrix
Kij = k(xi, xj) used in kernel PCA. In addition, we can
compute the vector tΦ using again dot products in the
feature space. Each component tΦ(i) of this vector is
the dot product of the new face image Φ(x) with Φ(xi)
in F , and can be computed via the kernel evaluation
i.e., tΦ(i) = k(xi, x).

The procedure based on polynomial filters is there-
fore clear. First, the vector tΦ is computed and then
the filter ψ(K) is applied to it. This last computation
simplifies to a series of matrix vector products with the
Gram matrix K.

6 Approximating the step function

We now consider ways of approximating the ideal step
function ψ given in (4.16) using a polynomial ψ̂. One
approach would be to discretize the step function in
the interval [0, b], with b ≡ σ21 , and then to find the
coefficients of the polynomial which interpolates the
produced data points in a least-squares sense. As is well-
known this approach will produce a polynomial with
potentially large fluctuations between the data points
resulting in a poor recognition performance (see also
below).

Another approach is to rely on Hermite interpola-
tion by imposing smoothness conditions at both end-
points of the interval. Assume that we enforce the fol-
lowing conditions at endpoints 0 and b,

ψ̂(0) = 0, ψ̂(1)(0) = ψ̂(2)(0) = · · · = ψ̂(i)(0) = 0

ψ̂(b) = 1, ψ̂(1)(b) = ψ̂(2)(b) = · · · = ψ̂(j)(b) = 0

Using the above i+j+2 conditions, we can employ Her-
mite interpolation in order to determine the coefficients
of a polynomial of degree i+ j + 1 that will satisfy the
given constraints. The derived polynomial ψ̂(t) moves
from 0 to 1, as t moves from 0 to b. It can be shown
[5] that the critical point, called inflexion point, where

ψ̂ moves rapidly from 0 to 1 is at:

tinfl =
b

1 + j/i
or

j

i
=

b

tinfl
− 1.(6.31)

Therefore, the ratio j
i
determines the localization of the

inflexion point. This approach has the disadvantage
that the degree of the polynomial needs to become
adequately large in order for the approximation to be
qualitative.

The most successful approach when approximating
a function with polynomials, is the piecewise polynomial
approximation where instead of using only one large
degree polynomial on the whole interval, we use several
smaller degree polynomials at appropriate subintervals
of the original interval. The difficulty with the piecewise
polynomials is that they cannot be easily evaluated
when their argument is a matrix. Erhel et al in [5]
suggest a new technique, called PPF hereafter, which
approximates any piecewise matrix polynomial by a
matrix polynomial in some least-squares sense. This
technique is used [5] for solving ill-conditioned linear
systems in image restoration where the problem matrix
is symmetric positive semidefinite with a large number
of singular values close to zero and the right-hand side
vector is perturbed with noise. In this paper we apply a
similar technique in the totally different context of face
recognition.

Figure 1 illustrates the approximations to the step
function ψ obtained by the above methods. We compare
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Figure 1: Approximating the step function ψ (solid
line). Dotted line: least-squares, dash-dotted line:
Hermite and dashed line: PPF.

the least-squares, Hermite and PPF techniques. For
the PPF method we used two intervals with Hermite
interpolation for the polynomial of the first interval and
1 for the second interval. The degree of the resulting
polynomial was 14 for all methods. The cut off point
was located at 0.3. Notice the large fluctuations of
the least squares approximation. Also observe that
PPF offers a more qualitative approximation to the step
function, compared to Hermite. In our experiments, we
employed PPF as our polynomial filtering method for
face recognition.

7 Sparse representation using wavelets

The proposed polynomial filtering framework becomes
even more efficient if the data matrix is sparse. We can
obtain sparse representation of images using wavelet de-
compositions [3],[4],[12]. Wavelet decompositions have
been a very useful tool for lossy image compression
with high quality. Using wavelets the image data is
transformed to different frequency components that can
be processed individually. Usually, the high frequency
components are numerically very small and can be
dropped without any significant impact on the quality
of the reconstruction from the wavelet space.

The upper plot in Figure 2 depicts the resulting
image of a sample face from the ORL dataset, using
Haar wavelet decomposition of level three. We give
more information on the ORL database in the next
section. Before applying the wavelet transformation we
normalized the image vector to unit norm. The bottom
plot illustrates the sparsity pattern of the image in the
wavelet space after numerical dropping with tolerance
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Figure 2: Upper plot: wavelet decomposition of level 3
of a sample face from the ORL database. Bottom plot:
sparsity pattern after numerical dropping.

Figure 3: Sample face images from the YALE database.
Facial expressions from left to right: ‘centerlight’,
‘glasses’, ‘happy’, ‘leftlight’, ‘noglasses’, ‘normal’, ‘right-
light’, ‘sad’, ‘sleepy’, ‘surprised’ and ‘wink’.

2e − 3. The resulting matrix is very sparse with only
7.7 % of the matrix elements being non-zero.

Using orthogonal wavelet decompositions, the data
matrix A is transformed to Aw via a change of basis

Aw = QA, Q ∈ RM×M ,(7.32)

where Q is a unitary matrix and Aw is very sparse. Ex-
ploitation of the sparsity of Aw renders the polynomial
filtering framework very efficient, since the evaluation
of the similarity vector simplifies to a series of (sparse)
matrix-vector products. Another advantage of the pro-
posed scheme is that it makes no explicit use of matrix
Q, since it holds that

sw = ψ(A>wAw)A
>
wqw

= ψ(A>Q>QA)A>Q>Qq

= ψ(A>A)A>q = sk,



Figure 4: Sample face images from the ORL database.
There are 10 available facial expressions and poses for
each subject.

Figure 5: Sample face images from the AR database.
Facial expressions from left to right: ‘natural expres-
sion’, ‘smile’, ‘anger’ and ‘scream’.

which is exactly the similarity vector which would be
obtained, if we performed the computation in the input
space. Note that this is not the case for PCA, because
it works on C = ÃÃ>. Now, the combination of
polynomial filtering with wavelets is very clear. We first
normalize each column of A and next transform it to
the wavelet space and obtain its sparse representation.
Then, we compute the similarity vector efficiently using
sparse matrix-vector products.

Therefore, using the polynomial filtering frame-
work, the estimation of the similarity measurement sim-
plifies to a series of matrix vector products. In partic-
ular, when the data matrix is dense, the cost of our
technique is O(dN2), where d is the degree of the poly-
nomial ψ. However, note that the cost of the eigende-
composition for dense matrices is O(N 3) [6]. On the
other hand, when the matrix is sparse, the cost of our
scheme is O(d ·nnz) and the cost of PCA (with k eigen-
vectors) is approximately O(k(nnz+N)+k3), where nnz
is the number of nonzero elements of the sparse matrix.
Clearly, the storage cost is negligible, since there is no
need to store the dimensionality reduction matrix.

8 Numerical results

In this section we experiment with the above methods
in terms of recognition accuracy. All experiments

dataset size sparsity (%)
ORL 10304× 400 21.9
YALE 10304× 165 23.4
AR 17864× 504 17.8

Table 2: The datasets and their characteristics.

were implemented in MATLAB 6.5 on a Xeon@2.4GHz.
We used three datasets that are publically available;
YALE, ORL and a subset of AR. The YALE database
[1] contains 165 images of 15 individuals that include
variation in both facial expression and lighting. In
the preprocessing phase, each face image was closely
cropped, and the size of images after the cropping phase
was decreased to 112×92. Figure 3 illustrates a small
sample from the YALE database.

The ORL (formerly Olivetti) database [17] contains
40 individuals and 10 different images for each individ-
ual. Figure 4 illustrates a small sample from the ORL
database. In this case no preprocessing was done. Fi-
nally, the AR face database [13] contains 126 subjects
with 4 different facial expressions for each individual.
Figure 5 illustrates two sample subjects from the AR
database. The characteristics of the datasets are tab-
ulated in Table 2 where the sparsity denotes the spar-
sity of the data matrix when transformed in the wavelet
space (using tol = 2e− 3).

In what follows, error rates are estimated using a
cross validation “leave-one-out” strategy. In order to
compute the error rate with respect to a certain facial
expression, the image associated with it was used as a
test image. In order to recognize the test image, all
images, excluding the test one, are projected to the
reduced subspace. Then, the test image is projected
as well and recognition is performed using a nearest
neighbor rule. Note that in this case every individual is
represented by all of its different images except for the
test individual which is represented by one image less.

In the following examples, we compute two different
types of error rates. Denote by s a certain subject in
the database and s̃ the recognized subject returned by
the system. The first type of error, ei, is the number
of misses counted across the subjects for a given facial
expression i. In other words, ei returns the error rate
when the facial expression i is used as test image for all
individuals. Denote also by Nf the number of different
facial expressions/poses associated with each individual
in the database. The second type of error is

e =
1

Nf

Nf
∑

i=1

ei, i = 1, ..., Nf .(8.33)



Figure 6: Reconstruction experiments on an ORL
sample subject (upper left image) using eigenfaces.
Upper right image: k = 30. Lower left image: k = 60
and lower right image: k = 90.

Figure 7: Reconstruction experiments on an ORL
sample subject (upper left image) using polynomial
filtering. Upper right image: η = 0.0248. Lower left
image: η = 0.0109 and lower right image: η = 0.0065.

Thus, e is the mean error rate averaged across all
different facial expressions. In what follows, denote by
PCA the “eigenfaces” method and by KPCA the “kernel
eigenfaces” method.

In the implementation of PPF we used two subin-
tervals [0,a] and [a, b]. We model the cut-off point as
a percentage ηb of the right endpoint of the whole in-
terval [0,b], where η ∈ (0, 1). The right endpoint of the
left interval was set to a = 2ηb. In addition, as equation
(6.31) indicates, the cut off point where ψ moves rapidly
from 0 to 1, is determined by the ratio

j

i
=

b

tinfl
− 1.

Therefore, keeping the ratio j/i constant, we are free to
choose the parameters i and j. Let γ be a multiplicative
factor that affects both i and j. Then, the degree of the
polynomial in the general case will be γi+γj+1. Thus,
in the implementation of PPF we need two parameters;
η and γ. The former determines the localization of the

Figure 8: Reconstruction experiments on an YALE
sample subject (upper left image) using eigenfaces.
Upper right image: k = 30. Lower left image: k = 60
and lower right image: k = 90.

Figure 9: Reconstruction experiments on an YALE
sample subject (upper left image) using polynomial
filtering. Upper right image: η = 0.0118. Lower left
image: η = 0.0043 and lower right image: η = 0.0022.

inflexion point and the latter determines the quality of
the approximation.

Example 1 (Reconstruction experiments) In
the first example, we illustrate the effectiveness of
the eigenfaces method vis-a-vis the polynomial filtering
method in reconstruction quality. We use a sample face
image from both ORL and YALE datasets and try to
reconstruct it from the learning subspace. Let x be
the test image and xf its reconstructed image. Using
eigenfaces, the approximation to xf is xf = UkPx+µ =
UkU

>
k (x − µ) + µ, where we have used equation (2.5).

On the other hand, using polynomial filtering, the xf is
approximated by xf = ψ(AA>)(x−µ)+µ, according to
equation (4.18). We experimented with various values
of the dimension k of the learning subspace that gave
rise to corresponding values for the parameter η used in
PPF. We also used γ = 10, resulting in a polynomial of
degree d = i+ j + 1 = 21.

Figures 6 and 7 illustrate the experimental results



ORL dataset
k = 40 PPF (%) KPPF (%)
γ=2 2.5 3.25
γ=3 3.5 4.25
γ=4 2.75 3.5
γ=5 3 3.5

YALE dataset
k = 40 PPF (%) KPPF (%)
γ=2 26.06 29.09
γ=3 25.45 26.67
γ=4 26.06 26.06
γ=5 26.06 26.67

AR dataset
k = 40 PPF (%) KPPF (%)
γ=2 8.33 7.34
γ=3 8.53 7.74
γ=4 7.14 8.93
γ=5 6.15 8.33

Table 3: Error rates of PPF methods for various values
of γ, on all face databases.

which compare the effectiveness of the PPF method,
against that of eigenfaces, tested on a sample subject
from the ORL dataset. Observe that the reconstruction
quality is almost identical and this is achieved while the
costly eigenvalue calculations were completely avoided.
The same observations can be drawn from the recon-
struction experiments performed on a sample subject
from the YALE database. The results are illustrated in
Figures 8 and 9. Observe that the largest the value of
k, the better the reconstruction quality.

Example 2 (Find the best value for γ) In the
second example we investigate the behavior of the PPF
methods with respect to the degree of the polynomial
ψ. Table 3 illustrates the error rate of both PPF and
kernel PPF (KPPF) with respect to γ, tested on all
datasets. In KPPF we used the polynomial kernel with
d = 3 and for both methods we used the value of η that
corresponds to k = 40. Observe that in most cases the
value γ = 4 seems to give the most satisfactory results.
To that end, in what follows, we use γ = 4 for both PPF
methods.

Example 3 (Compare various kernels) In this
example we study the behavior of the kernelized meth-
ods with respect to the choice of the kernel and its pa-
rameters. We experimented with the polynomial kernel
and its degree d

k(x, y) = (x>y)d,

ORL dataset
k = 50, γ = 4 KPCA (%) KPPF (%)
d=2 3.25 3.75
d=3 3.25 3.5
d=4 3.25 4
d=10 3.25 3.25

YALE dataset
k = 50, γ = 4 KPCA (%) KPPF (%)
d=2 28.48 24.84
d=3 27.88 25.45
d=4 27.88 26.06
d=10 26.67 26.06

AR dataset
k = 50, γ = 4 KPCA (%) KPPF (%)
d=2 5.75 6.35
d=3 5.75 6.75
d=4 5.95 6.35
d=10 5.56 5.95

Table 4: Error rates of kernel methods using the
polynomial kernel with degree d, on all datasets.

as well as with the Gaussian kernel with variance σ

k(x, y) = exp(−‖x− y‖2/σ2).

The purpose of this example is to compare the effec-
tiveness of the two kernels and infer the best practical
value for its parameter. The results for all datasets are
tabulated in Tables 4 and 5. The dimension k of the
reduced space and the appropriate value for γ, used in
the kernel PPF method, are also depicted in each table.

Observe that the polynomial kernel yields slightly
better results than the Gaussian kernel on both
databases. Furthermore, the value d = 4 of the de-
gree seems to be the most appropriate one. Therefore,
in what follows, when experimenting with the kernel-
ized methods, we are using the polynomial kernel with
d = 4 for all datasets.

Example 4 (Compare all methods in terms
of recognition rate and computational cost) In
the fourth example we investigate the effect of the
dimension k of the reduced space on the recognition
performance of the methods. We used MATLAB’s svd

builtin function since the matrix is dense and this way
we avoid the explicit formulation of matrices AA> or
A>A. We experimented with k = 20 : 20 : 100 (in
MATLAB notation) and measure the error rate (%) given
by equation (8.33), for all face databases. In what
follows, we used γ = 4 for both PPF methods.

Tables 6, 7 and 8 illustrate the error rate e, com-
puted by equation (8.33), versus the dimension k mea-



ORL dataset
k = 50, γ = 4 KPCA (%) KPPF (%)
σ=0.3 3 3
σ=0.5 3 3.25
σ=0.7 3.25 3.75
σ=0.9 3.25 4

YALE dataset
k = 50, γ = 4 KPCA (%) KPPF (%)
σ=0.3 27.88 27.88
σ=0.5 27.28 26.66
σ=0.7 27.88 25.45
σ=0.9 27.88 24.84

AR dataset
k = 50, γ = 4 KPCA (%) KPPF (%)
σ=0.3 5.95 5.16
σ=0.5 5.56 5.95
σ=0.7 5.75 6.15
σ=0.9 5.95 6.75

Table 5: Error rates of kernel PCA and kernel PPF
using the Gaussian kernel with variance σ, on all
datasets.

sured on the ORL, YALE and AR datasets respec-
tively. All tables contain the corresponding time mea-
surements t (in sec) for each method. The timings for
PCA methods measure the time needed to construct
the subspace (i.e., computing the eigenvectors) and per-
form the recognition of the test image (i.e., one step of
“leave-one-out” cross validation). The timings for PPF
methods measure the time needed to recognize the test
data point via polynomial filtering.

Concerning the ORL database, observe that PPF
competes with PCA in terms of error rate. Furthermore,
the PPF methods are much more efficient achieving
significant speedups over their PCA counterparts. On
the YALE dataset, the results are quite similar with
PPF outperforming PCA not only in timings but in
error rate as well. Finally, on the AR dataset, the results
are similar to ORL, with the PPF methods being quite
close to PCA in terms of error rate and being much
more efficient in terms of computational cost.

Observe that the PPF dense implementations are
slightly more efficient than the wavelet ones. We
expect that for much larger datasets the results will be
different. Also notice that in the case of kernel PPF,
the sparsity of the Gram matrix depends on the type
of kernel. For example, using Gaussian kernels is not
possible to get a sparse Gram matrix even if the data are
sparse. But even in the case of the polynomial kernel,
the Gram matrix will have in general more nonzero

PCA PPF PPF-wvlt
e t e t e t

k=20 3.5 32.74 3 2.52 3 6.79
k=40 2.75 30.68 2.75 2.49 3 6.79
k=60 3.25 30.93 3.25 2.48 3 7.13
k=80 3.25 32.96 3 2.52 3 6.78
k=100 3 32.03 3 2.49 2.75 6.78

KPCA KPPF KPPF-wvlt
e t e t e t

k=20 3.25 17.69 3.75 3.12 4.25 4.89
k=40 2.75 17.69 4.25 3.12 4 4.88
k=60 3 17.69 3.75 3.12 4.25 4.88
k=80 3.25 17.65 3.75 3.12 4.25 4.89
k=100 2.75 17.64 4 3.12 4 4.89

Table 6: Error rates e (%) and timings t (in sec) of all
methods for various values of k, on the ORL database.

elements than the data matrix.

9 Conclusion

We have described a new framework for implementing
PCA and kernel PCA without eigenvalue calculations.
The new framework relies on polynomial filtering, in or-
der to render the same effect as PCA, for dimensionality
reduction. We illustrated the applicability of the pro-
posed technique in the eigenfaces and kernel eigenfaces
method for face recognition. The numerical experiments
indicated that the new scheme has very close perfor-
mance to the PCA methods, while being much more
efficient in terms of computational cost and storage.
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