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Abstract. The Crout variant of ILU preconditioner (ILUC) developed recently has been shown to have a number of
advantages over ILUT, the conventional row-based ILU preconditioner [14]. This paper explores pivoting strategies for sparse
symmetric matrices to improve the robustness of ILUC. This paper shows how to integrate two symmetry-preserving pivoting
strategies, the diagonal pivoting and the Bunch-Kaufman pivoting, into ILUC without significantly overheads. The performances
of the pivoting methods are compared with ILUC and ILUTP ([17]) on a set of problems, including a few arising from saddle-
point (KKT) problems.
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1. Introduction. Incomplete LU (ILU) factorization based preconditioners combined with Krylov sub-
space projection processes are often considered as the best “general purpose” iterative solvers available. Such
ILU factorizations normally perform a Gaussian elimination algorithm while dropping some fill-ins. However,
some variants of the Gaussian elimination algorithm may be more suitable than others for solving a given
problem. For example, when dealing with sparse matrices, the traditional KIJ version [10, p 99] is impracti-
cal since all remaining rows are modified at each step k. In this case, another variant of Gaussian elimination
namely the IKJ version, which implements a delayed-update version for the matrix elements, is preferred.
Though the IKJ version of Gaussian elimination is widely used for implementing ILU factorizations (see,
e.g. ILUT in SPARSKIT [17]), it has an inherent disadvantage: its requirement to access to the entries of
a row of a matrix in a topological order during the factorization. Due to the fill-ins introduced during the
factorization of a sparse matrix, a search is needed at each step in order to locate a pivot with the smallest
index [18]. These searches often result in high computational costs, especially when the number of nonzero
entries in A and/or the factors is large. A strategy to reduce the cost of these searches is to construct a
binary tree for the current row and utilize binary searches [19]. Recently, a more efficient Crout version of
ILU (termed ILUC) based on the Crout version of Gaussian elimination has been developed [14].

In the process of the Crout version of Gaussian elimination, the k-th column of L (L., 1) and the k-th
row of U (Ug,k:n) are calculated at the k-th step. Unlike the IKJ version, all elements that will be used to
update Ly.p, 1 and Uy j.n, at the k-th step in the Crout version have already been calculated, i.e., the fill-ins
will not interfere with the row updates at the k-th step. Therefore, searching for the next pivot in the Crout
version is avoided. In ILUC, a bi-index data structure has been developed to address two implementation
difficulties in sparse matrix operations (see Section 3 for details), following earlier work by Eisenstat et al.
[9] in the context of the Yale Sparse Matrix Package (YSMP), and Jones and Plassmann [13]. Other than
efficiency, another advantage of ILUC is that it also enables some more rigorous dropping strategies (e.g.
[3, 2]), hence, improved robustness. However, there are still many situations where sparse linear systems
are difficult to solve by iterative methods with the ILUC preconditioning, especially when the coefficient
matrices are very ill-conditioned and/or highly indefinite. In such situations, pivoting techniques can be
used to further improve robustness. Nevertheless, a pivoting method that is both efficient and effective must
be carefully designed to fit within the data structure used by the incomplete factorization algorithm, which
may not be a trivial task.

In this paper, symmetry-preserving pivoting strategies that are suitable for the data structure used
in ILUC are explored and implemented for symmetric matrices. We begin our discussion with a review of
related pivoting techniques in Section 2. We then discuss in detail ILUC with pivoting methods in Section
3. Finally, we compare the performances of the pivoting methods with ILUC and ILUTP ([17]) on some
general symmetric matrices in Section 4 and some KKT matrices in Section 5.
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2. Related Pivoting Techniques. For many linear systems that arise from real applications, the ILU
factorization may encounter either a zero or a small pivot. In case a zero pivot occurs, one strategy to avoid
a break-down of the factorization process is to replace the zero pivot with a very small element, which leads
to the second case as well. However, this remedy works only in very limited cases. Indeed, small pivots can
cause an exponential growth of the entries in the factors and eventually, the ILU process will break down
due to an overflow or underflow condition. Even when this does not happen, the factors L and U produced
by the process are generally of poor quality and will not lead to convergence in the iteration phase.

A common solution to ensure a moderate growth in the factors is to use pivoting techniques. However,
pivoting techniques are often in conflict with the underlying data structures of the factorizations. For exam-
ple, for a symmetric matrix, a column partial pivoting method such as the ILUTP algorithm of SPARSKIT
[17], will destroy symmetry. Pivoting methods that preserve symmetry are desirable. The elimination in
ILUC is symmetric, i.e., at step k, the kth row of U and the kth column of L are computed. Moreover,
the bi-index data structure used to implement ILUC is also symmetric. Thus, the symmetric elimination
process and the symmetric data structure are ideal to incorporate symmetry-preserving pivoting methods
into ILUC.

In this paper, we explore symmetry-preserving pivoting methods that can be integrated into the existing
ILUC process without significant overheads. Our goal is to improve the robustness of ILUC for symmetric
systems while preserving symmetry. For this reason, we use a revised version of ILUC (termed ILDUC) to
compute the factorization A = LDU instead of A = LU. In ILDUC, L and U” are unit lower triangular
matrices, and D is diagonal.

One simple pivoting method that preserves symmetry is to select the largest diagonal entry as the next
pivot and interchange the corresponding row and column simultaneously. This method, referred to as 1 x 1
diagonal pivoting in the rest of the paper, works well for many symmetric matrices according to our tests.
However, it fails for a matrix as simple as

0 1
(0.

In 1971, Bunch and Parlett proposed a pivoting method based on Kahan’s generalized pivot to include 2 x 2
principal submatrices [4]. They also proved that the bound of this method, in terms of the growth of elements
in the reduced matrices, is almost as good as that of the Gaussian elimination with complete pivoting.
However, this method requires searching the entire reduced matrix at each step during the factorization,
which makes it impractical for large sparse matrices. In 1977, Bunch and Kaufman proposed a partial
pivoting method, now known as the Bunch-Kaufman pivoting method, where a 1 x 1 or 2 x 2 pivot can
be determined by searching at most two columns of the reduced matrix at each step [6]. In 1998, Ashcraft
et al. proposed two alternatives of the Bunch-Kaufman algorithm, providing better accuracy by bounding
the triangular factors [1]. In 2000, Higham proved the stability of the Bunch-Kaufman pivoting method
[12]. Because of the efficiency and effectiveness of the Bunch-Kaufman pivoting method, it has been used in
LAPACK and LINPACK to solve dense symmetric indefinite linear systems.

In this paper, we show that the Bunch-Kaufman pivoting method can be integrated with ILDUC to
solve sparse symmetric indefinite linear systems. For the sake of completeness, we provide some details of
the Bunch-Kaufman pivoting algorithm. Let A®*) denote the matrix at step k. To decide the next pivot,

1. Determine

A= max |ARY),
k+1<i<n
which is the largest off-diagonal element in absolute value in the k-th column. If A = 0, then go to
step k + 1. Otherwise let r (r > k) be the smallest integer such that |AE]Z)| =\
2. If |A§£€)| > aX where a = (1 ++/17)/8, then use A,(JZ) as a 1 x 1 pivot. Otherwise,
3. Determine

g = m.
k< m
m

#

SIA M

AL,

4. If al? < |A§£€)|a, then use Agz) as a 1 x 1 pivot.
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5. Else if |A$’ﬁ)\ > ao, then interchange the k-th and the r-th rows and columns of A%, use A&’i) as a
1 x 1 pivot.
6. Else interchange the (k+1)-th and the r-th rows and columns of A®*) so that \A,(Ql” = |A§f,)€+1| =\,

A%
use ( kk A as a 2 x 2 pivot.

k
A A1(6+)1,k+1

In the next section, we present the methods that integrate the 1 x 1 diagonal pivoting and the Bunch-
Kaufman pivoting algorithms into the existing ILDUC process without significant overhead.

3. ILDUC with Pivoting for Sparse Symmetric Matrices. Algorithm 3.1 shows the ILDUC
process to calculate the factorization A = LDU, modified from the ILUC algorithm proposed in [14].
AvrcoriTEM 3.1. ILDUC - Crout version of Incomplete LDU factorization

1. dk:akk,kzl:n

2. Fork=1:nDo:

3. Initialize row z: z1., = 0,  Zk41in = Gk k+1:n

4. For{i|1<i<k—1andly # 0} Do :

5. Zht1in = Zht1lin — bk * di % U g1

6. EndDo

7. Initialize column w: wi.x =0, Wkt1:n = Ckt1:n,k
8. For{i|1<i<k-—1and u;; #0} Do :

9. Wh41:n = Wh+1:n — Wik * dz * lk-‘rl:n,i

10. EndDo

11. Apply a dropping rule to row z

12. Apply a dropping rule to column w

13. Uk,: = Z/dk, Uk = 1

14. L= w/dg, lgp=1

15. For{i | k+1<i<n, li # 0 and ug; # 0} Do:
17. EndDo

18. EndDo

One property of the Crout version of LU is that only previously calculated elements are used to update
the k-th column of L and the k-th row of U at step k. For sparse matrices, this means new fill-ins will not
interfere with the updates of the k-th column of L and the k-th row of U. Therefore, the updates to the
k-th row of U (resp., the k-th column of L) can be made in any order, i.e., the variable ¢ can be chosen in
any order in Line 4 (resp., in Line 8). This avoids the expensive searches in the standard ILUT. However, as
pointed out in [14], two implementation difficulties regarding sparse matrix operations have to be addressed.
The first difficulty lies in Lines 5 and 9 in Algorithm 3.1. At step k, only the section (k + 1: n) of the i-th
row of U is needed to calculate the k-th row of U. Similarly, only the section (k + 1: n) of the i-th column
of L is needed to calculate the k-th column of L. Accessing entire rows of U or columns of L and then
extracting the desired part is an expensive option. The second difficulty lies in lines 4 and 8 in Algorithm
3.1. L is stored column-wise, but the nonzeros in the k-th row of L must be accessed. Similarly, U is stored
row-wise, but the nonzeros in the k-th column of U must be accessed.

A carefully designed bi-index data structure was used in [14] to address these difficulties, inspired from
early work by Eisenstat et al. [9] and Jones and Plassmann [13]. The bi-index data structure consists of four
arrays of size n: Lfirst, Llist, U first, and Ulist. At step k, Lfirst(i), 1 <i < k — 1, points to the first
entry with the row index greater than k in the i-th column of L. In this way, the section Ly1.,, can be
efficiently accessed, which addresses the first difficulty. It is worth pointing out that the elements in a column
of L needs to be sorted by their indices to achieve this. However, in contrast with the searches needed in the
standard ILUT, this sorting is much more efficient for two reasons. First, the sort is performed only after
a large number of elements in a column are dropped, unlike in ILUT, where searching is performed on all
of the elements. Second, a fast sorting algorithm such as Quick Sort can be easily applied, unlike in ILUT
where some overhead in performing the search (e.g., when building the binary search trees). To address
the second difficulty, the array Llist is used to maintain linked lists of elements in the i-th row of L, where
i > k. The linked lists are updated in such a way that the linked list of the elements in the k-th row of L
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is guaranteed to be ready at step k. This linked list will be used to update the k-th row of U. U first and
Ulist are formed in a similarly way.

In the following, we discuss how we integrate pivoting methods to the bi-index data structure used in
ILDUC for sparse symmetric matrices. One critical issue is that the new methods with pivoting should have
a similar cost and complexity as that of ILDUC.

3.1. The 1 x 1 Diagonal Pivoting. For the 1 x 1 diagonal pivoting, we need to locate the largest
diagonal element in absolute value at each step. For sparse matrices, a straightforward linear search would
lead to a computational cost of O(n?), which is not acceptable especially when n is large. Alternatively,
we build a binary heap for the diagonal elements in order to locate the largest diagonal entry efficiently.
The binary heap is formed and maintained so that each node is greater than or equal to its children in
absolute value. Therefore, the root node is always the largest diagonal entry in absolute value. Algorithm
3.2 summarizes ILDUC with 1 x 1 diagonal pivoting (termed ILDUC-DP). Note that for a symmetric matrix
A the factorization is PAPT ~ LDL", so only L needs to be calculated in the algorithm.

ALGORITHM 3.2. ILDUC-DP - Incomplete LDL™ with 1 x 1 diagonal pivoting

1. dp=agx, k=1:n

2. Initialize a binary heap for di, k=1,---,n

3. Fork=1:nDo:

4. Locate the largest diagonal d, in absolute value from the root node of the heap
5. Interchange column r and column k if r # k

6. Remove the root node from the heap and reorder the heap
7. Initialize column w: wi.x =0, Wky1:n = Ght1in,k

8. For{i|1<i<k—1andly #0} Do :

9. Wht1m = Wht1m — ki * di * lgr1on,i

10. EndDo

11. Apply a dropping rule to column w

12. L= w/dg, lgr=1

13. For{i | k+1<i<n, lj #0} Do:

14. dz = dz — lik * dk * lik

15. Reorder the heap for d;

16. EndDo

17. EndDo

In the above algorithm, the cost of initializing the binary heap is O(n) (a bottom-up approach). The
total cost of removing the root node and reordering the heap is O(nlogn). The total cost of maintaining
the heap is at most O(mnlogn) (where m << n is the dropping parameter defining the maximum number
of fill-ins allowed in each column) since whenever a diagonal element is modified (line 15) the heap has to
be reordered. Therefore, the total cost is bounded by O(mnlogn).

3.2. The Bunch-Kaufman Diagonal Pivoting. In the Bunch-Kaufman pivoting method, to deter-
mine the next pivot at each step only requires searching for at most two columns in the reduced matrix.
This is feasible for a sparse symmetric matrix as the number of nonzero entries in each column is very small.
Algorithm 3.3 describes ILDUC with the Bunch-Kaufman pivoting (termed ILDUC-BKP). Since ILDUC
uses a delayed-update strategy, notice that the two columns must be updated before proceeding with the
search in the algorithm.

ALGORITHM 3.3. ILDUC-BKP - Incomplete LDLT with the Bunch-Kaufman pivoting method

1. Fork=1:nDo:

2. Load and update a41:m.k. Let A = ||apt1:0.5||0c and |ark| = A

3. If |agk| > aX Then

4. Let s =1.

5. Else

6. Load and update ag11.,r. Let 0 = maxp,2p |amr|.

7. If |agk|o > aA? Then

8. s=1

9. Else If a,., > «o Then

10. s = 1; interchange the k-th and the r-th rows and columns.
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11. Else

12. s = 2; interchange the (k + 1)-th and the r-th rows and columns.
13. End If

14. End If

15. Perform ILDUC elimination process using the s X s pivot

16. EndDo

3.3. Implementation. Similarly to ILUTP in SPARSKIT [17], ILDUC-DP and ILDUC-BKP use a
permutation array along with a reverse permutation array to hold the new ordering of the variables. This
strategy ensures that during the elimination the matrix elements are kept in their original labeling.

For ILDUC with pivoting, new strategies are needed to address the two implementation difficulties
mentioned earlier in this section due to pivoting. First, we need to efficiently access Ly1.n,; for any ¢ < k
to calculate the k-th column of L. In the implementation of ILUC, recall that an n-size array L first is
maintained so that Lfirst(i) always points to the first element with a row index greater than & in column
i. This also requires that the elements in a column of L be stored in the order of increasing row indices.
However, with pivoting enabled, at the time when the i-th column is calculated, the order of the elements is
unknown as they may be repositioned later due to pivoting. Thus, this method will not work with pivoting.
Our new strategy to handle this issue is as follows. Observe that the positions of elements in section L;.x—1 4,
1 < k, will not be changed after step kK — 1. We use Lfirst(i) to record the number of nonzero elements
in section L;.;—1,. Since the nonzero elements in L;., ; are stored compactly in a linear buffer, we always
store the nonzero elements in section L;.,_1; in the first Lfirst(i) positions in the buffer. In this way, the
nonzero elements in Ly, ; are continuously stored (although they may be in any order) starting from position
Lfirst(i) + 1 in the linear buffer, which can be efficiently accessed. After Ly.; ; is used to calculate the k-th
column of L, we need to ensure the above property for the next step. Specifically, we need to scan the
linear buffer starting from position L first(i) + 1 to access the nonzero elements in Ly, ;. If Ly ; is zero, we
do nothing. Otherwise, it can be located during the scan. We then swap Ly ; with the elements stored at
position Lfirst(i) and let Lfirst(i) := Lfirst(i) + 1. Thus, at step k + 1, the nonzero elements in section
Lj;41.1,; are guaranteed to be stored continuously starting at position L first(i) as well.

Second, we need to access some rows of L but it is stored column-wise. In ILUC, recall that a n-size
array Llist is carefully designed and maintained such that all elements in the k-th row of L are guaranteed
to form a linked list when needed at the k-th step. This linked list is embedded in Llist. However, when
pivoting is allowed, the availability of only the k-th row of L is not enough. For any j > k, the j-th row may
be interchanged with the k-th row at step k due to pivoting. Therefore, we need to maintain a linked list
for each row of L with a row index greater than or equal to k.

We can also use strategies such as preordering and equilibration to further improve the stability of
our methods. We apply the Reverse Cuthill-McKee (RCM) algorithm to preorder the matrices [7] in our
implementation. A matrix is equilibrated if all its rows and columns have the same length in some norm.
We use the method proposed by Bunch in [5] to equilibrate a symmetric matrix so that its rows/columns
are normalized under the max-norm. It is worth pointing out that for sparse symmetric matrices the two
difficulties in ILDUC exist in the equilibration method as well. We address them by using the same bi-index
data structure in our implementation.

4. Experiments. In this section, we compare the performances of ILDUC, ILDUC with 1 x 1 pivoting
(ILDUC-DP), and ILDUC with the Bunch-Kaufman pivoting (ILDUC-BKP). The computational codes were
written in C, and the experiments were conducted on a 1.7GHz Pentium 4 PC with 1GB of main memory.
All codes were compiled with the -O3 optimization option.

We tested ILDUC, ILDUC-DP, and ILDUC-BKP on 11 symmetric indefinite matrices selected from
the Davis collection [8]. Some generic information on these matrices is given in Table 4.1, where n is the
matrix size and nnz is the total number of nonzeros in a full matrix. In the tests, artificial right-hand sides
were generated, and GMRES(60) was used to solve the systems using a zero initial guess. The iterations were
stopped when the residual norm was reduced by 8 orders of magnitude or when the maximum iteration count
of 300 was reached. The dual criterion dropping strategy was used for all preconditioners, i.e., any element
of column & whose magnitude was less than a tolerance 7 * ||Li41:n.%||1 was dropped; and only “Lfil” largest
elements were kept. The parameter “Lfil” was selected as a multiple of the ratio #*, the average number
of nonzero elements per column in the original matrix. We used a parameter 7 to determine the dropping
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tolerance and a parameter v to set the value of “Lfil”: Lfil = v %
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nn

2. Nevertheless, even under the same

control parameters, the number of fill-ins may be very different from method to method. To better compare
the preconditioners, we used an indicator called a fill-factor, i.e., the value of nnz(L + D + LT) /nnz(A), to
represent the sparsity of the ILU factors. A good method should yield convergence for a small fill-factor.

Matrix n nnz | Source
aug3dcqp 35543 | 128115 | 3D PDE
bloweya 30004 150009 | Cahn-Hilliard problem
bratu3d 27792 173796 | 3D Bratu problem
dixmaanl 60000 299998 | Dixon-Maany optimization example
mario001 38434 206156 | Discretization
mario002 || 389874 | 2101242 | Discretization
olesnik0 88263 744216 | Straz pod Ralskem mine model
sit100 10262 61046 | Straz pod Ralskem mine model
stokes64 12546 140034 | Stokes equation
tumal 22967 87760 | Mine model
tuma2 12992 49365 | Mine model
TABLE 4.1

Symmetric Indefinite Matrices from the Davis Collection

Table 4.2 shows the results of the three preconditioners on the 11 matrices, where the RCM ordering
and equilibration were applied. To ensure the preconditioners were comparable, we fixed the dropping
tolerance to 7 = 0.001 and artificially selected a fill-in parameter v for each preconditioner such that the
resulting fill-factors were similar for each matrix. For references, we also tested the linear systems with
ILUTP under similar fill-in parameters. Since ILUTP does not take advantage of symmetry and the ILUTP
code we used was written in FORTRAN, we only compared the convergence and ignore the execution time
for ILUTP. In the table, the values in the “Fill-in” field are the fill-factors. The symbol “-” in the “Fill-in”
field indicates that the preconditioner failed due to a zero pivot encountered during ILU. “ITS” denotes
the number of iterations for GMRES(60) to convergence. A symbol “-” in the “ITS” field indicates that
convergence was not obtained in 300 iterations. “Tm.(s)” denotes the total time in seconds used for each
method (Preconditioning time +GMRES(60) time).

Matrix ILDUC ILDUC-DP ILDUC-BKP ILUTP

Name Fill-in | ITS | Tm.(s) || Fill-in | ITS | Tm.(s) || Fill-in | ITS | Tm.(s) || Fill-in | ITS
aug3dcqp 1.508 57 2.10 1.479 ol 3.41 1.504 52 3.10 2.225 -
bloweya - - - 1.156 20 0.95 1.001 4 0.15 1.134 7
bratu3d - - - 1.553 | 152 8.57 1.571 75 4.10 1.623 41
dixmaanl 1.445 20 1.02 1.589 - - 1.434 7 0.47 1.789 -
mario001 - - - 2.001 82 6.27 2.020 60 5.64 2.169 -
mario002 - - - 2.006 | 266 | 208.78 2.025 | 205 | 157.84 2.182 -
olesnik0 - - - 2.020 | 156 30.65 2.016 | 165 31.83 2.068 -
sit100 - - - 1.471 71 0.72 1.415 70 0.71 1.465 -
stokes64 2.080 | 144 1.52 2.078 | 124 2.22 2.079 | 143 3.12 2.174 -
tumal - - - 1.792 | 230 9.98 1.817 71 2.68 1.989 -
tuma2 - - - 1.453 - - 1.424 | 254 3.49 1.443 -

TABLE 4.2

Performances on Symmetric Indefinite Matrices: T = 0.001

From the table, it is clear that ILUTP was not robust and ILDUC failed in most cases due to zero
ILDUC with the Bunch-Kaufman is better than ILDUC with diagonal pivoting in

pivots encountered.

general. Next we offer a few additional comments on these performances.
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1. aug3deqp, stokes64: For these two matrices, with a similar amount of fill-ins allowed (e.g. 1.508nnz,
1.479nnz, and 1.504nnz for aug3degp respectively), all three ILDUC-based methods converged. The
number of iterations required for convergence was similar for all methods (ILDUC-DP required
slightly fewer iterations to converge for matrix stokes64). As expected, the cost of ILDUC with
pivoting is of the same order as that of ILDUC. Even with larger fill-in factors, ILUTP did not
converge.

2. bloweya, bratu3d: For these two matrices, ILDUC-DP, ILDUC-BKP and ILUTP converged, but
ILDUC failed due to zero pivots encountered. Nevertheless, ILDUC-BKP and ILUTP had better
performances than ILDUC-DP.

3. mario001, mario002, tumal: For these matrices, ILDUC-DP and ILDUC-BKP both converged, but
ILDUC and ILUTP failed. ILDUC-BKP had better performances than ILDUC-DP. With a similar
or even less amount of fill-ins, ILDUC-BKP required much fewer iterations to converge. For example,
for matrix tumal, ILDUC-DP required 230 iterations to converge with a fill-factor of 1.7924, while
ILDUC-BKP only required 71 iterations with a fill-factor of 1.817. Table 4.3 compares ILDUC-DP
and ILDUC-BKP with various fill-in factors on matrix tumal. From the table, we see that ILDUC-
BKP is more efficient than ILDUC-DP. Figure 4.1 (a) and (b) compare the preconditioning cost and
the total cost of the two methods respectively.

Preconditioner GMRES(60) Total
Method Fill-in | Time(s) || ITS | Time(s) || Time(s)
ILDUC-DP 1.792 0.27 || 230 10.18 10.45
ILDUC-BKP | 1.817 0.14 71 2.84 2.98
ILDUC-DP 2.101 0.31 || 118 5.37 5.68
ILDUC-BKP | 2.110 0.16 56 2.38 2.54
ILDUC-DP 2.390 0.36 69 2.98 3.34
ILDUC-BKP | 2.400 0.20 41 1.44 1.64
ILDUC-DP 2.670 0.40 52 2.26 2.66
ILDUC-BKP | 2.676 0.23 36 1.19 1.42
ILDUC-DP 2.955 0.45 45 1.80 2.25
ILDUC-BKP | 2.938 0.26 31 0.97 1.23
TABLE 4.3
Matriz tumal. 7 = 0.001.
05 . ! 1 ; T
ol
0.4F

0.351

Preconditioning Time (s)
o
w

Total Time (s)
(=2

0.251 B -
T
— - 47
0.2 A
" 3r .
e -~
0.151 — oL
0.1 . . . . . . 1 . . . . . .
16 18 2 2.2 2.4 2.6 2.8 3 1.6 1.8 2 2.2 2.4 2.6 28
Fill-in Factor Fill-in Factor
(a) (b)

4. olesnik0, sit100: ILDUC and ILUTP failed on these two matrices, but ILDUC-DP and ILDUC-BKP

Fic. 4.1. Comparison on the preconditioning time and the total time for matriz tumal

converged and had similar performances.
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5. dizmaanl: ILDUC-DP and ILUTP failed on this matrix. ILDUC-BKP had a slightly better perfor-
mance than ILDUC.
6. tumaZ2: ILDUC-BKP was the only preconditioning method that converged for matrix tuma?2.

5. Experiments with KKT Matrices. In this section, we test the preconditioners on 14 KKT
matrices (in reference to the Karush-Kuhn-Tucker first-order necessary optimality conditions for the solution
of general nonlinear programming problems [11]) as shown in Table 5.1. KKT matrices have the form:

H BT
=50
and are often generated from equality and inequality constrained nonlinear programming, sparse optimal
control, and mixed finite-element discretizations of partial differential equations [11]. The 14 KKT matrices
were provided by Little [15] and Haws [11]. Matrices P2088 and P14480 were permuted from their original
form [16] in order to obtain a more narrow bandwidth for the H part. The experiments were conducted on
a 866MHz Pentium III PC with 1GB of main memory.

Matrix n nnz | Source

P2088 2088 | 15480 | Magnetostatic problem (2D coarse discretization)
P14880 14880 | 113880 | Magnetostatic problem (2D fine discretization)
CHOI 9225 | 168094 | Particles in fluid simulator (five descending particles)

CHOI-L 22128 | 417156 | Particles in fluid simulator (five descending particles)
LCAV-S1 || 14531 | 169972 | Full Navier-Stokes equations in an L shaped cavity
OPT 9800 | 72660 | Optimization problem

STIFF4 8496 | 41318 | Stiffness problem

STIFF5 33410 | 177256 | Stiffness problem

MASS04 8496 | 56818 | Mass problem

MASS05 || 33410 | 241012 | Mass problem

MASS06 || 33794 | 257220 | Mass problem

TRAJ27 17148 | 235141 | Sparse optimal control problem

TRAJ33 20006 | 496945 | Sparse optimal control problem

LNTS09 17990 | 95295 | Sparse optimal control problem

TABLE 5.1
KKT Matrices

Table 5.2 summaries the results of ILDUC, ILDUC-DP, ILDUC-BKP, and ILUTP on these matrices.
Equilibration was applied. From the table, we make the following observations. First, ILDUC-BKP has the
best overall performance on these matrices. ILUTP solved 6 problems, ILDUC solved 7 problems, ILDUC-
DP solved 8 problems, and ILDUC-BKP solved 12 problems. Second, as expected, the cost of ILDUC-BKP
is of the same order as that of ILDUC. This is evidenced in matrices CHOI-L, LCAV-S1, STIFF5, MASS04,
MASS05 and MASS06, where the number of iterations for the two methods were identical or very close.
Third, ILDUC-DP is the best method for matrices P2088 and P14880. Especially for P14880, ILDUC-DP
is the only preconditioner that converged. However, for matrices such as CHOI-L, LCAV-S1, STIFF4 and
MASSO05, ILDUC-DP did not converge or required significantly more iterations to converge. Finally, although
ILUTP had the worst performance on these matrices and it did not take advantage of symmetry, it was the
only method that converged for matrix TRAJ33.

6. Conclusion. We have explored two symmetry-preserving pivoting methods and shown how to in-
tegrate them into a Crout version of the ILU factorization. As expected, this implementation results in
better quality symmetric incomplete factorization for symmetric matrices. The overhead associated with
this implementation is not significant. In addition, the pivoting methods have been demonstrated to fit the
underlying data structure used in ILUC. Our experiments show that the Bunch-Kaufman pivoting method
can be efficiently and effectively integrated with a sparse symmetric iterative solver.

7. Acknowledgements. We would like to thank Leigh Little, John Haws, Masha Sosonkina and Ilaria
Perugia for providing many of the test matrices used in the numerical tests Section 4 and 5.
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Matrix ILDUC ILDUC-DP ILDUC-BKP ILUTP

Name Fill-in | ITS | Tm.(s) || Fill-in | ITS | Tm.(s) || Fill-in | ITS | Tm.(s) || Fill-in | ITS
P2088 2.656 - - 2.634 | 33 0.17 || 2.655 | 201 1.06 || 2.663 -
P14880 2.627 - - || 2618 | 97 4.38 || 2.627 - - || 2.638 -
CHOI - 2.511 41 1.84 2.402 20 1.12 2.334 20

CHOI-L 2.280 20 2.16 2.504 40 5.12 2.280 20 2.88 1.756 20
LCAV-S1 1777 23 0.95 2.269 41 2.24 1777 23 1.18 2.085 -
OPT 2.685 - - 2.690 - - 2.685 - - 2.892 -
STIFF4 2.289 41 0.67 2.277 79 1.32 2.285 o8 1.14 2.322 68
STIFF5 2.224 75 7.60 2.161 - - 2.221 76 8.10 2.224 -
MASS04 2.196 5 0.12 2.188 13 0.26 2.193 5 0.15 2.181 10
MASSO05 2.328 7 0.74 2.266 | 180 20.79 2.328 7 0.91 2.406 -
MASS06 2.292 11 1.11 2.254 - - 2.289 11 1.31 2.409 -

TRAJ27 0.894 - - 1.292 - - 0.897 | 120 7.10 0.897 -

TRAJ33 0.885 - - 1.075 - - 0.891 - - 0.841 96

LNTS09 - - - - - - 0.849 15 0.48 0.967 959
TABLE 5.2

Performances on KKT Matrices: v = 2.5, T = 0.01
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