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Abstract

We present a massively parallel implementation of time-dependent density functional theory
in real space, aimed at computing optical absorption spectra of realistic systems with hundreds
of atoms from first principles. We provide details of the formalism and discuss its implemen-
tation, optimization, and efficient parallelization, as well as remaining limitations, in detail.
The capabilities of the code are illustrated by calculations of optical properties of hydrogenated
silicon quantum dots.

1 Introduction

A central goal of modern computational materials science is the ab initio prediction of various
materials properties, using only information about the constituent species and the laws of quantum
physics [1]. Realization of this goal would allow scientists to explain and predict surprising material
phenomena found experimentally, and ultimately to predict the existence of new materials and
determine their properties. One of the most popular approaches for such computations is to use ab
initio pseudopotentials within density functional theory (DFT) [2]. This approach has been used
successfully for predicting mechanical, chemical, and electronic properties of many classes of solids,
liquids, molecules, and more.

The pseudopotential-density functional approach weds two physically reasonable approxima-
tions that result in a dramatic reduction of computational complexity. Within density functional
theory, the original N-electron problem is mapped into an effective one-electron problem, where all
non-classical electron interactions (namely, exchange and correlation) are subsumed into an addi-
tive one-electron potential that is a functional of the charge density. While this mapping is formally
exact, it is approximate in practice because the exact functional is unknown. The most common
approximate functional, which is used in this paper, is the local density approximation (LDA),
where the exchange-correlation functional is taken to be a local function of the charge density.
Mathematically, DFT converts a differential eigenvalue problem in 3N spatial coordinates (which
is practically intractable for all but the smallest systems) into a standard eigenvalue problem with
only 3 spatial coordinates.
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In the pseudopotential approximation, only valence electrons (the ones forming chemical
bonds) are treated explicitly. Core electrons are suppressed by replacing the true atomic po-
tential with an effective “pseudopotential” that takes the effect of core electrons into account. This
facilitates DFT calculations in two ways: First, the pseudopotential is a smooth, slowly-varying
potential, whereas the true atomic potential is rapidly varying and has a ~ 1/r singularity at the
nuclear position. This makes the attainment of a converged numerical solution significantly easier.
Second, treating only valence electrons reduces the number of eigenvalues that need to be found,
often by as much as an order of magnitude.

One of the most significant limitations of the above approach is that it is unsuitable for
the computation of electronic excitations in general, and optical properties in particular. This is
because traditional, time-independent DFT is inherently a ground-state theory [2]. A generalized,
time-dependent DFT (TDDFT) formalism that allows for computations of excited state properties
has been developed and applied successfully to a wide range of atoms and small molecules [3, 4].
Optical properties of larger systems of molecules, clusters, or “quantum dots” (small fragments of
bulk material) in the range of many hundreds of atoms are much harder to address despite their
outstanding importance in physics. This is primarily due to severe computational limitations.

In this article, we present a massively parallel implementation of the pseudopotential-TDDFT
formalism that easily allows for computation of optical properties of systems with many hundreds
of atoms. This was made possible by using a real-space implementation of a frequency-domain
formulation of the TDDFT equations and by judicious analysis of computational bottlenecks. The
article is arranged as follows. First, we recapitulate the frequency-domain formulation of TDDFT
and explain its advantages. Next, we present our real-space implementation of this frequency do-
main formulation and discuss the merits of this implementation. We then proceed with a detailed
discussion of various elements of the algorithm and present strategies for parallelization and op-
timization based on both mathematical and computer science considerations. Finally, we present
calculations for hydrogenated silicon quantum dots performed using the present approach and use
them to demonstrate timing and scaling issues.

2 Formalism

The frequency-domain formulation of TDDFT implemented in our code is the one presented by
Casida [4]. For physical insight into this formulation, we refer the reader to the original publica-
tion. Here we merely present the pertinent equations without proof so that we can analyze their
computational implications in the next sections. For simplicity, we shall restrict ourselves to the
spin-independent form of the equations.

A major advantage of the frequency-domain formulation is that the need for any explicit solu-
tion of a time-dependent equation is eliminated. Instead, we first solve the usual, time independent
formulation of the pseudopotential-DFT method [2]:
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Atomic units are used throughout. In Eq. (1), E, and 1, () are the n*® single-electron eigenvalue
and eigenfunction, respectively; p(7) is the valence charge density, given by p(7) = — 3, faltn(7)|?,
where f,, are the electron-occupation numbers associated with each eigenfunction, as determined
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from Pauli’s exclusion principle; V,s(7— Rg) is the pseudopotential associated with an atom situated



at Ra, Vi[p(7)] is the potential due to electron-electron interaction, and V,.[p(7)] is the above-
mentioned exchange-correlation potential.

Just like DFT, TDDFT is also exact in principle but approximate in practice. In addition
to an assumption about the spatial nature of the exchange-correlation functional made in any
practical DFT calculation, one must now make a further assumption about its temporal form. In
the adiabatic approximation, which is the one used most commonly in actual computations, one
simply assumes that at any given time, the exchange-correlation potential does not depend on the
history of the charge density, only on its current value. Under this assumption, the eigenvalues,
eigenfunctions and occupation numbers found by solving Eq. (1) are used to construct a coupling
matrix, Kjj ki, in the form:

" ‘sV”c[’i(m)wk(ﬁ)w;(ﬁ)dfdﬁ, )
)

Kiju =2 /w;f(fwm(

|7 =7
where §/8p(r’) denotes a functional derivative.

Under the local density approximation, the exchange-correlation functional is spatially local
and the functional derivative reduces to 6V .[p(7)]/dp(r") = [dVyc|[p(F)]/dp(F)]6(7 — r!), where §(-)
is the Dirac delta function. Eq. (2) can then be expressed as a sum of a double integral and a single
integral:
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The coupling matrix, Kj; i, is then used as a kernel for forming a second eigenvalue problem - the
TDDEFT one - in the form:

Yr(P)r (P)dr. (3)

QF; = Q7 Fy, (4)
where
Qijkl = Sik01wiy + 24/ Nijwii Kij ki v/ Meiwrt, (5)

Aij = fi — f; is an occupation number difference, and w;; = E; — E; is an eigenvalue difference.
The eigenvalues, 27, indicate optical-absorption transition energies. The strength of the absorption
associated with the transition energy €);, denoted by fr, is related to the eigenvector F7 by:
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where
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and {ry,r2,73} = {z,y,2}. Qr and f; define the absorption spectrum uniquely and the TDDFT
computation is complete.

3 Implementation

The above-described formalism indicates that three major computational blocks, shown schemat-
ically in Fig. 1, must be executed sequentially. The first part computes the DFT solution for the



eigenvalues, occupations, and wave functions. Next, this output is used as input for the computation
of the coupling matrix (Eq. (3)). Finally, the coupling matrix serves as input for a computation of
the eigenvalues and eigenvectors of it. Those are used to compute the optical absorption spectrum
of the system.

Each of these three parts represents a distinct function and is implemented in a separate
program. A complete computation consists of pipelining these programs sequentially. Massive
parallelization is exploited extensively in each of the three programs. In this section, we provide a
detailed description of the three programs.

3.1 The Real-Space Finite Difference Approach

According to the above formalism, the computation of the optical absorption must start with a
solution of the conventional pseudopotential-DFT equation - Eq. (1). We chose to implement the
pseudopotential-DFT code directly on a real-space grid using a finite difference approach. This
is because the localization of the system (molecule, cluster, quantum dot,...) in space limits the
number of grid points needed, and because parallelization schemes based on partitioning of real
space into sub-regions are highly effective. We will not elaborate on the pseudopotential-DFT code
because it has been discussed extensively elsewhere in terms of both its underlying physics [5, 6] and
its computer science aspects [7, 8]. Here, we confine ourselves to a presentation of the real-space
mapping and the finite difference approach, because the same mapping is used for the TDDFT
computation.

Our real-space mapping is shown schematically in Fig. 2. Both potentials and wave functions
are set up on a simple cartesian three-dimensional grid within a spherical domain. The grid points
inside the sphere are described by their discrete space coordinates, (z,y, z). Outside the boundary
domain, wave functions are required to vanish. The Laplacian term in Eq. (1) is approximated by
a high-order finite-difference expansion, which replaces spatial derivatives with a weighted sum of
the wave-function values at neighboring grid points:
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where h is the grid spacing and Cy,,, are the coefficients in the order N finite difference expansion
for the second derivative [9]. In the context of Eq. (8), two points are defined as neighbors if the
vector connecting them is parallel to one of the three major axes and the points are up to N grid
points away from each other. For a given accuracy of calculation, the finite-difference order should
be chosen as a compromise between having a fine grid and a large but very sparse Hamiltonian
matrix, and a coarse grid with a smaller but less sparse Hamiltonian. We find that a value of NV
ranging between 4 and 6 is typically a good choice [5].

3.2 Coupling Matrix Construction

Equation (3) consists of a sum of two integrals which can be computed separately. The first, double
integral can be rewritten as:
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pij () = 7 (F);(7), (10)

and

Vij(r') —/dr = % () (7), (11)

then we see that
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But with the appropriate boundary conditions, this is well-known to be the solution of the following
Poisson equation:
V2V2j (r") = —4mpi;(r'). (13)

Note that p;; is not a physical charge density and V;; is not a physical potential. However, they
do have charge and potential units, respectively, and obey the same Poisson relation that a “true”
charge density and Coulomb potential do.

While it is possible to use a direct summation to evaluate Eq. (12), other computational
methods, such as the conjugate gradient method (with various enhancements) or the multigrid
method, are far more efficient at solving in Eq. (13) [10].

Once the Poisson system is solved to find V;;(r'), we are left with the following form of Eq. (3):

Kijg = /dT pue () Vg (') +/d" mc[p_gf)]plk(f) (14)

The two single integrals in Eq. (14) must be computed by direct summation but this can be done
for both of them at the same time:

Kigaa = [ar[05(7)+ () "2 oy 3, (15

In practice, we solve Eq. (13) in two phases. First, we set up the appropriate boundary
conditions. Second, we solve for V;; (77) Once the equation is solved, a third and final step in
determining the coupling matrix Kj;; is the evaluation of Eq. (15). Importantly, Eq. (13) needs
to be solved only once per row of K;j; i, whereas Eq. (15) needs to be evaluated for each element.
The three steps are shown in Fig. 3 and explained in detail in the following.

3.2.1 Boundary Condition Setup

Because we are dealing with a confined system, the appropriate boundary condition on the wave
functions is that they must vanish outside the spherical domain. However, this null boundary
condition is incorrect for potentials because potentials do not necessarily vanish even outside the
region where the charges generating them are found. It then becomes necessary to set up the
potential at the domain edge, in order to serve as the correct boundary condition for the potential
distribution inside the domain.

To explain how this is implemented in practice, we define four types of grid points: “internal
points”, which are points within the sphere; “boundary points”, which are points within the sphere
that have neighbors outside the sphere; “boundary neighbors”, which lie outside the sphere and
have neighboring points inside the sphere; and “external points”, which lie outside of the sphere.



Note that the term “neighbors” is used in the context of Eq. (8) above. Also note that a boundary
neighbor is a special case of an external point and a boundary point is a special case of an internal
point. A simplified, one dimensional example of this terminology is shown in Fig. 4. In this diagram,
we show that if we are considering an order 3 expansion, then three of the four internal points shown
are boundary points and three of the four external points shown are boundary neighbors.

Calculating the Coulomb potential, V', at any point with spherical coordinates (R, 8, ¢) outside
a sphere can be easily achieved using the standard expression for the Coulomb potential due to a
distribution of effective point charges, e,, situated at (rq, 84, q):

V(R,0,0) =Y ——*—,
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Eq. (16) is physically transparent, but for all but the smallest systems it is impractical to use.
As the system size increases, the large number of division operations required quickly renders the
computation very expensive. It is therefore better to use an alternative approach, where V (R, 6, ¢)
is expressed as an infinite sum over multipole terms, as shown in Eq. (17):
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The derivation of this equation is given in Appendix A. In light of Eq. (13), V;;(R, 8, ¢) is obtained
by simply substituting p;; for e, in Eq. (17). For external points, this is an ezact result and is
strictly equivalent to the Coulomb form given above. Clearly it is not practical to evaluate the
infinite sum in Eq. (17), but this is not required. Due to the factor of 1/R¢*! in Eq. (17) the series
converges very rapidly and the summation can be truncated at a finite number, £,,,,,. We find that
an £,,q; value of 6 to 9 produces very good results with the computation remaining tractable.

The effective potential at the boundary neighbor points needs to be taken into account when
expressing the Laplacian of the wave function at boundary points as a finite difference expansion.
In practice, we compute a correction term for each boundary point, ¢(rqg, 04, $a) = c(7), as:

o) = > CnnVii(R,6,9), (18)
boundary neighbors
where Cy, are the finite difference expansion coefficients of Eq. (8), determined according to
the number of grid points between the boundary point and the boundary neighbor point. This
correction is then used to modify the right hand side of Eq. (13):

VRV () =~ 7) = —dmlpy(7) — e(). (19)

We can then proceed with solving Eq. (19), which inherently satisfies the necessary boundary
conditions.

An optimized implementation of Eq. (17) requires attention to several aspects involving the
associated Legendre polynomials. First, one should avoid the temptation of calculating the formulas
for the various associated Legendre polynomials recursively [11]. Instead, explicit formulas should
be used. This is because the recursive definition involves many repeated calculations and will lead
to a considerable slow-down. Second, powers of z = cos(f) and y = sin(f) that occur throughout
the computation of the associated Legendre polynomials should be calculated only once, in the



most efficient manner possible. Third, the value of the associated Legendre polynomials at a given
grid point is independent of the effective charge density at that point and is therefore the same
for all elements of the coupling matrix. It is then better to store the value of those polynomials
for each internal and boundary neighbor point, rather then re-evaluating them again for every
row of the matrix. This requires an additional floating point array of size [number of relevant
points]*[lmaz (bmaz + 3)/2]. If this additional memory is prohibitive one could re-evaluate the
polynomials anyway, at a performance cost.

It is also advisable to locally store the value of V;;(R, 6, ¢) at each boundary neighbor inside
the boundary condition subroutine. This is because the same boundary neighbor may be needed
multiple times in the evaluation of Eq. (18), as it may neighbor multiple internal points (see Fig.
4). While this may seem like a small effect for the simple one dimensional example given in Fig. 4,
in a practical three-dimensional case we could be considering as many as 9 neighbors in 6 different
directions. Neglecting to store V;; would then result in more than a five-fold increase in the number
of multipole expansions computed.

In summary of this sub-section, the major steps of this computation are presented as pseudo-
code in Algorithm 3.2.1.

Algorithm 3.2.1: Boundary Condition Calculation

Input: p;j, maz, ndim, N.
Output: pcorrected

1: q(¢,m) =0

2: for ¢ = O,Emam do

3: form=0,¢do

4: c(l,m) = %

5. end for

6: end for

7: for each internal grid point, (rq,8,, ¢,) do

8 for ¢ =0,l4; do

9: for m = 0,4 do

10: q(L,m) = q(€,m) + pij(Ta,0a, Ba)Ts P (cos(8))e™a
11: end for

12: end for

13: end for

14: for each grid point, (R, 6, ¢) do

15 if this point is a boundary neighbor then
16: Vii(R,0,6) =0

17: for { = 0,44 do

18: for m =0,/ do

19: Vij(R,0,¢) = Vij(R,0,0) +2- Re{l/R‘ngl (¢, m)q(¥, m)P?l(cos(O))e_im¢}
20: end for

21: end for

22:  end if

23: end for

24: for each internal point, (74,0, ¢o) do

25: p;:]orrected(ra’ oaa d)a) = Pij ('ray eaa ¢a)

26:  for each of its neighbors, (R, 0, ¢) do

27: if (R, 6, ¢) is a boundary neighbor then

B g, b, ba) = 5 e, O, Ba) — O Vi (R0, 6)



29: end if
30: end for
31: end for

3.2.2 Solving the Poisson Equation

In a finite difference representation, Eq. (19) is transformed into an equivalent algebraic system
Az = b, where b is - 47rpf]‘-’“e°ted, z is the potential, V;;, and A is the matrix representing the Lapla-
cian operator. The finite-difference representation of this operator (Eq. (8)) involves a maximum of
6N neighbors (less than that near the boundary), with N being the finite difference order. As men-
tioned above, in our application N is smaller than 10 and typically between 4 and 6. Consequently,
a square matrix representation of the Laplacian operator would be very sparse. We opted to use a
readily available conjugate gradient (CG) solver from the sparse matrix package SPARSKIT [12].
In its non-preconditioned form, this algorithm refers to the matrix only through matrix-by-vector
products. In fact, the matrix is not explicitly required. Instead, we perform the matrix-by-vector
products by using the finite difference “stencil” of the operator which acts directly on the input
vector. This results in significant savings in memory usage.

Because a large number of vector operations may be required by the CG algorithm, efficient
memory access becomes crucial to achieving good performance. Ideally, one would wish to minimize
the address-space distance between subsequent memory accesses, known as the “stride length”.
Great care was exercised to structure our code to obtain unit stride length whenever possible.

A common approach to enhance the performance of the CG algorithm is the use of precon-
ditioning. Preconditioning consists of replacing the original Ax = b system with a system of the
form LTYAL=T(L"z) = L='b, where LL" is some approximate Cholesky factorization of A [13].
The goal is to reduce the number of CG iterations required for convergence. Among the simplest
preconditioners available are techniques that perform a Gaussian elimination process (or a Cholesky
factorization) and drop small terms that are filled-in during the elimination, according to various
rules. (Note: A fill-in is defined as a new non-zero entry introduced during a factorization in a
location of the matrix where there was initially a zero entry). The two most common strategies are
the level-of-fill incomplete factorization, IC(k), and the threshold based factorization, ICT(k,7)[14].
The level-of-fill approach associates a level for each fill-in introduced by a recursive rule that gives
less weight to fill-ins introduced earlier. Then dropping is performed according to the weight. In the
threshold based factorization, entries are dropped according to their numerical values, relative to
the row norm or the diagonal elements. In ICT(k,7), which is employed in our codes, the threshold
parameter 7 is used to drop small terms according to their size relative to the initial norm of the
row. The parameter k is then used to keep the k largest elements in the resulting row.

This incomplete factorization is performed only once, with the decomposition applied at each
CG iteration. Preconditioning usually results in a substantial reduction in the number of steps
required for the algorithm to converge. There is, however, a trade-off associated with precondition-
ing. The higher the fill level, the fewer steps the CG algorithm will take to converge. On the other
hand, higher fill factorizations require more memory and are more expensive to compute as well as
to apply. In general, we found that taking 7 close to 0.001 and k between 8 and 20 leads to a good
balance between performance and memory requirements.

While the Incomplete Cholesky preconditioning yielded a sizable reduction in the number of
steps (typically by a factor of 6 to 10), the resulting gain in time was much smaller (typically the
computation was up to 50% faster). We note that better gains have been reported in the litera-
ture [15]. There are several reasons for this. First, the non-preconditioned CG iteration already



does fairly well, relatively speaking, requiring around 150 to 200 steps to converge. Second, the
usual performance gains attributed to preconditioning in the literature are often related to two-
dimensional problems. A two-dimensional Poisson problem is usually harder to solve using CG
than a three-dimensional one because the eigenvalues are more closely spaced. Therefore, precon-
ditioning is expected to benefit a two-dimensional problem more than a three-dimensional one.
Third, the literature results typically refer to a standard 5-point centered difference discretization
of the Laplacian. We are not aware of studies of the effects of using a higher order discretization.
Finally, the forward-backward solutions required when applying the preconditioner are not easy to
optimize because they lead to sequential and irregular computations. This difficulty can be partly
alleviated by using a preconditioner based on a lower order discretization of the Laplacian operator,
while maintaining the high order discretization for use in the matrix-vector products. Because the
order could not be substantially lowered without affecting the preconditioning accuracy, this did
not improve performance substantially.

Two additional directions for future improvements that we are exploring are the use of block
CG methods [16] and the use of multi-grid techniques [17]. Block CG takes advantage of the fact
that many different linear systems are to be solved independently with the same matrix A. In our
case, Eq. (19) is solved many times with the same matrix, specifically once for each row of the
coupling matrix. The block CG algorithm can then solve these systems by blocks of g rows at a
time, i.e., by tackling block systems of the form AX = B where now B and X are n X ¢ matrices.
Generally speaking, this improves performance by exploiting information from the solution of one
linear system in the solution of another, resulting in much faster convergence[16].

Multi-grid algorithms are used to accelerate the convergence of relaxation methods like Gauss-
Seidel for the numerical solution of partial differential equations. They achieve this by using a
hierarchy of coarser grids with larger spacings to provide corrections to the approximate solution
obtained on the finest grid. Thus, there are three parts to any multi-grid algorithm: relaxation on
a given grid (also called level), restriction from a fine to a coarser grid, and interpolation back from
a coarse to a finer grid[17].

As neither an efficient block CG nor an efficient multi-grid implementation were readily avail-
able, we plan to consider custom-made implementations in the future.

3.2.3 Evaluation of Coupling Matrix Elements

The final step in the construction of the coupling matrix is performing the integration of given
in Eq. (15) and using the resultant Kj; to construct Q;; according to Eq. (5). One could,
in principle, use sophisticated integration algorithms to that end. However, we invariably found
that for a grid spacing that was small enough to guarantee convergence of the DFT part of the
calculation, direct summation was sufficiently accurate.

To optimize performance, we evaluate Eq. (15) in two steps. First, we compute the kl inde-
pendent kernel of the integral:

dVze[p(7)] ] _ (20)

kerig () = [Vi(7) + pig (1) = 3 25

This needs to be done only once per row. Furthermore, in this kernel, p(7) is constant throughout
the construction of the coupling matrix because it is set by the DFT stage. The analytic form
of Vze[p(7)], and therefore dV,.[p(7)]/dp(7), is known. This term is therefore computed once and
for all during the setup of the program. Our implementation used the Ceperley-Alder exchange-
correlation functional [18]. We have slightly modified its analytic parameterization to assure a
continuous derivative [19].



Once this has been calculated, computing each element of K;;1; within a given row is a simple
matter of computing 1 (7); () and summing over all grid points:

Kijga = Y, [keri; ()| e (M) (7). (21)
T
Finally, it is straightforward to overwrite K;; i with Q;; . using Eq. (5).
Importantly, because of our use of a real-space grid, all wave functions our real and therefore
both K;; 1 and Q;; 11 are inherently symmetric, so we only compute and store their upper triangular

half.

3.3 Solving the Eigenvalue Problem

As explained in the preceding section, the eigenvalues and eigenvectors of the Q;; 1y matrix (see Egs.
(4)-(5)) contain all the information about the excited state properties of the system. In particular,
they allow for the computation of the optical spectrum (Eq. (6)).

Fortunately, for most applications considered in this paper the Q;; matrix is considerably
smaller then the Hamiltonian matrix used for solving the DFT problem. The dimension of the
Hamiltonian matrix is determined by the number of grid points, whereas the dimension of Q;;
is bound by the product of the number of filled states and the number of empty states (and can
be substantially reduced further in certain applications - see the examples section below). Thus,
while the Hamiltonian dimension is typically on the order of 105 to 10 for larger problems, the
corresponding dimension of Q;;x is typically only 10 to 10%.

For such a reasonably small matrix, finding the eigenvalues and eigenvectors can easily rely
on standard subroutines. Q;;x is a symmetric, dense, and real matrix. The serial implementation
of the diagnoalization used the subroutine DSYEV from LAPACK [20], which implements a QR
factorization algorithm. After its completion, the eigenvalues and eigenvectors were used to compute
the optical spectrum.

4 Parallelization

The algorithms described so far lend themselves to massive parallelization. The parallelization of
the DFT part of the calculation has been described in detail previously [7, 8]. In this section,
we describe how parallelism was exploited in both construction and diagonalization of the Q;;
matrix.

4.1 Coupling Matrix Construction

Because construction of each row of the coupling matrix is completely independent from the con-
struction of other rows, parallelization with respect to rows is natural. A simple parallelization
scheme would therefore use the well-known master-slave approach, where the master sets up the
initial problem and each slave computes an equal number of rows. This approach is quite easy to
implement, yet is very efficient as it requires no slave-slave communication.

This simple approach can still be improved substantially in terms of processor utilization and
load balancing. First, because the master is only involved in setting up the problem and in storing
the results, it would be idle for most of the run time. Second, because we only compute the upper
triangular half of the coupling matrix, the amount of work required for each row is not constant.
Third, there is no mechanism of run-time compensation for slow-down of some processors due to
non-dedicated processor usage on a massively parallel platform.
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We circumvented all three difficulties by adopting the following scheme for allocation of work.
Two variables, mblock and sblock, were defined to contain the size of the block of work (number
of rows) that should be done by the master and slave respectively. Initially they are set as:

Sblock = max (M, 1> ; Sblock : 1) .

10 25

where gdim is the total number of rows that must be computed and nprocs is the number of
processors we are using. Every time a processor is done it is assigned another block of size mblock
or sblock. If mblock and sblock were to remain constant throughout the computation, then as the
end of the matrix is approached several of the processors would idle while waiting for the others to
finish. Therefore, mblock and sblock are gradually “stepped down” towards the end of the matrix
as follows. Before assigning work to any slave, the master checks whether there are enough rows
remaining to assign every processor an sblock sized portion. If there isn’t, mblock and sblock are
decreased to:

mblock = ma:v( (22)

(23)

sblock = mblock; mblock = max (mblock, 1).

25

This update takes place multiple times, until both mblock and sblock are 1. We found that this
approach almost completely eliminates the idle time of the processors and provides for a self-
correcting load-balancing scheme.

The implementation described so far assumed that each processor has a local copy of all wave
functions so that communication with hard disk or other processors is not necessary. If memory
on each processor is an issue, we have also implemented an out-of-core version, where the wave
functions remain on the hard disk and are accessed as needed from each processor. Trivially, this
drastically reduces the memory overhead, as the memory requirements are dominated by the wave
functions. However, this comes at a significant performance penalty.

4.2 Solving the Eigenvalue Problem

This part of the computation was much less time consuming than the construction of the coupling
matrix. Therefore, the need for its parallelization was not motivated by performance, but rather
by memory. For large coupling matrices, stored in double precision format, it is not difficult to
exhaust all memory available to a single processor. Parallelization is therefore primarily aimed at
achieving a good distribution of the coupling matrix (and the resulting eigenvectors) among many
processors.

As the serial implementation used the LAPACK DSYEV routine, the simplest parallel approach
was to migrate to ScaLAPACK [21] and use the PDSYEV routine for diagonalization. Neglecting all
other variables, this means that if M is the total memory requirement of the coupling matrix, then
the memory requirement per processor is reduced to 2 x M /nprocs. The factor of two is because
in the serial implementation it was possible to overwrite the coupling matrix array with its eigen-
vectors. However, this was not possible in the parallel implementation. For a reasonable nprocs,
this is a significant reduction in memory requirements and the code is limited by computational
cost and not by hardware limitations.

To avoid any unnecessary communication and calculation overlap, ScaLAPACK was not used
for evaluating the oscillator strengths (Eq. (6)). Instead, the matrix-vector multiplications involved
with this operation were performed using the usual master-slave paradigm.

In addition to the memory overhead reduction, the use of parallel eigenvalue solver also pro-
vided a modest performance improvement. As the performance of this part is not a bottleneck, no
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further attempt at optimization was deemed necessary.

5 Examples

In this section, we show two examples of non-trivial TDLDA applications: size-dependent optical
absorption in hydrogenated silicon quantum dots and optical absorption in a silicon vacancy.

5.1 Optical Absorption of Hydrogenated Silicon

We constructed quasi-spherical silicon quantum dots on the computer from ”shells” of equi-distant
silicon atoms situated around a central atom. The silicon atoms were placed in sites corresponding
to the bulk structure of silicon, where each silicon atoms is surrounded by four other silicon atoms
possessing tetrahedral symmetry. This results in dangling bonds for silicon atoms on the outer
shells, which have “missing” neighbors. Each dangling bond was then eliminated by adding a
surface hydrogen atom, thus removing optically active states associated with the surface. Finally,
we relaxed the outer layers of the dot by moving the atoms so as to minimize the forces acting on
the hydrogen cap atoms.

A selection of spectra obtained by computing the TDLDA spectra of the hydrogenated quan-
tum dots is shown in Fig. 5. It starts with the smallest “quantum dot” one could construct using
the above procedure - a SiH4 molecule based on the central Si atom - and ends with Siy47H1g, which
is the largest dot we have computed so far. For comparison, Fig. 5 also shows absorption spectra of
the same dots computed using conventional (time-independent) LDA, where the spectrum is based
on LDA eigenvalue differences weighted by the matrix element between the associated eigenvectors.
The matrix element for the transition between eigenvalues i and j is |(Bg)i;|? of Eq. (7) and the
spectrum is averaged over the possible values of 3.

Both the LDA and the TDLDA absorption spectra show an evolution with increasing dot
size - from a peaked spectrum characteristic of molecules to a continuous spectrum characteristic of
solids. In addition, both types of spectra feature an absorption onset that increases with decreasing
dot size - the well-known “quantum size effect” [22]. The line-shape of the two types of spectra are
often very different, however. Most importantly, the TDLDA absorption onset is significantly blue-
shifted (shifted up in energy) with respect to the LDA one. This is to be expected, because LDA
is well-known to underestimate the gap between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) in molecules and clusters [2].

In order to facilitate comparison to experiment, we need to define a relevant theoretical ab-
sorption onset. Ideally, the optical absorption threshold is defined as the energy of the first dipole-
allowed transition. For the quantum dots studied here, there were a large number of transitions at
the low-energy end of the spectrum that possessed non-zero, but very small, oscillator strengths.
In experiment, such transitions would lie far below the detectability limit. We therefore defined
an “experimentally observable” threshold as the energy at which the total oscillator strength up to
that energy is a small but non-zero fraction of the overall oscillator strength. We chose the fraction
to be 104, which is above the numerical noise level but small enough to not suppress detectable
dipole-allowed transitions.

A comparison between the absorption onset extracted from our calculation and several ex-
perimental studies (as a function of the quantum dot diameter, with SiH4 considered as a “zero
diameter” dot) is given in Fig. 6. It is readily observed that our calculations agree with exper-
iment for the smallest dots and their extrapolation to larger sizes also appears to be consistent
with experiment. This clearly demonstrates the strength of our approach in yielding quantitatively
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accurate answers for optical properties of systems much larger than the small molecules usually at-
tacked with TDLDA. A more detailed discussion of the physical implications of these calculations,
including comparisons to other theoretical methods, can be found elsewhere [19, 23].

5.2 Optical Absorption in a Silicon Vacancy

It is well-known that point defects in a material, such as a missing atom, a displaced atom, or an
impurity atom, can introduce new energy levels that may be optically active [24]. Recently, it has
been shown that placing a point defect in a large quantum dot, to be solved in real space, can be
much more effective computationally than placing it in a supercell that is to be solved in Fourier
space [25]. In order to test whether our real-space TDLDA approach is sensitive enough to detect
absorption in such a configuration, we computed the properties of a SigsH3g quantum dot possessing
a vacancy. The vacancy was generated simply by removing the central silicon atom, thus obtaining
a SiggHgg dot.

The removal of the central silicon atom results in new dangling bonds and disrupts the balance
of forces acting on each atom. Using the LDA part of the code, we found that in the absence of atom
relaxation, this removal introduces a triply degenerate energy level inside the HOMO-LUMO gap of
the dot. However, it is energetically more favorable for the atoms to distort so that one juxtaposed
pair of neighboring silicon atoms has a shorter bond length than the other one. This distortion,
known as a Jahn-Teller distortion, gradually decreases in magnitude for subsequent shells around
the vacancy [25]. It results in a split of the triply degenerate level to a singly degenerate, doubly
occupied level and a doubly degenerate, unoccupied level, as shown in Fig. 7.

LDA and TDLDA optical spectra of both the vacancy-containing, relaxed Sig4Hsg dot and the
SigsHsg dot are shown in Fig. 8a and Fig. 8b. The spectra of the two dots are practically identical
above the absorption threshold of the SigsHsg dot, indicating that beyond the introduction of the
gap levels the introduction of the vacancy did not perturb the electronic structure significantly. Fig.
8c shows a zoom-in on the sub-threshold region of the SigsH3sg dot absorption spectrum, indicating
additional, weaker, absorption features that are associated with the vacancy. Again, we find a
significant difference between the predictions of LDA and TDLDA. Generally speaking, in the
TDLDA spectrum the overall magnitude of the sub-bandgap features is decreased and the weight
of the lower-lying transitions is diminished with respect to the higher-lying ones.

In LDA, determining whether a given sub-threshold absorption peak involves an excitation
from the filled defect level or an excitation into the doubly degenerate empty defect level is trivial.
All one has to do is compare the peak position with LDA occupied-unoccupied eigenvalue difference.
Such straightforward assignment is not possible within TDLDA because it mixes the contribution
of different LDA-level occupied-unoccupied eigenvalue pairs. However, in TDLDA the components
of the eigenvector, Fr, associated with each eigenvalue, Q2 (see Eq. 4) are indicative of the relative
contribution of each LDA eigenvalue pair. Analyzing the eigenvectors therefore allows one to
determine the dominant LDA-level transition that the TDLDA eigenvalue corresponds to. In the
present case, such analysis has indicated that whereas in LDA the primary peak associated with an
excitation into the empty defect level was at ~1.7 eV, the primary TDLDA peak associated with
the same transition was at ~ 2.5 eV.

6 Practical Considerations

In this section, we present some practical computational considerations associated with the TDLDA
examples presented in the previous section.
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6.1 Computational Considerations

A significant complication associated with TDLDA is the need to consider empty states. In time-
independent DFT, we only need to converge the filled states to get the right result. This is because
empty states do not contribute to the charge density and therefore play no role in the self-consistent
cycle. For TDLDA, however, an insufficient number of empty states or a lack of convergence of
empty states would mean that the coupling matrix, and hence the entire calculation, is in error.

It is reasonable to assume (using standard perturbation theory arguments [29]) that the con-
tribution of an individual LDA-level transition (i. e., from occupied eigenvalue i to empty eigenvalue
j) to the TDLDA-level absorption at a given energy would be inversely proportional to the differ-
ence between the ¢ — j transition energy and the given absorption energy. This means that the
number of empty states one should include depends on the energy range in which the absorption
spectrum is sought. An upper bound for the energy range in which the results are trustworthy is
clearly the eigenvalue difference between the highest occupied state and the highest empty state.
Our experience with the hydrogenated silicon quantum dots is that the spectrum is meaningful
only up to a few tenths of an eV below this bound. Empirically, we found that including two to
three empty states for each occupied state led to excellent convergence for the 10 eV energy range
shown in Fig. 5. If one is interested primarily in the absorption threshold (as is indeed the case for
the larger quantum dots), it makes little sense to compute a wide spectral range and one can use a
smaller number of empty states. This was indeed done for the larger quantum dots. For example,
the spectrum of Sij47H1gg in Fig. 5 is terminated after ~7 eV.

Importantly, it is frequently the case that the lowest occupied states are rather low in energy
and many 7 — j transitions involving them are far in access of the “trustworthy energy window”
discussed above. It is therefore extremely useful to introduce a cut-off energy parameter such that
1 — j transitions whose transition energy exceeds the cutoff are never computed. The entire row
and column involving such transitions are eliminated from the coupling matrix. We found that
doing so greatly reduces the computational and memory load associated with both computing the
coupling matrix and diagonalizing it, with a negligible effect on accuracy.

The empty states are much less localized than the low energy ones. Consequently, an LDA
computation intended as a “pre-TDLDA” step requires not only many extra states, but also a larger
sphere size to avoid a spurious effect of the zero boundary condition. For the hydrogenated silicon
quantum dots, we found that a separation of at least 10 to 12 a.u. between the surface atoms and
the spherical domain boundary was needed (versus a separation of 7 to 8 a.u. for a regular LDA
calculation).

We recommend the following sequence of computation in order to minimize the costs associated
with larger sphere and many empty states: First, compute the LDA results conventionally, using
only a few empty states and a smaller sphere size. This means that the brunt of the self-consistent
iterations are performed with a minimal number of eigenvalues and a smaller Hamiltonian size.
Next, increase the sphere size, using the charge density from the previous step (padded with zeros
outside the original sphere). Convergence will be rapid because the filled states were already quite
well-described within the smaller sphere. Only then increase the number of states. Iterations to
self-consistency will not be needed because the correct charge density has already been found.

Another way to mitigate the computational load associated with using a larger R is to use a
coarser grid spacing then that necessary for strict convergence of the LDA wave functions. This
is possible because the coupling matrix is based entirely on integrals of these wave functions and
therefore dampens the high-frequency content of the wave functions.

We stress that the differences in the number of empty states, sphere size, and grid spacing for
a “pre-TDLDA” and a “regular” LDA calculation mean that parameter convergence must be tested
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on the final TDLDA spectrum and not on the LDA level results.

6.2 Scalability

Two main factors influence the scaling of the construction of the coupling matrix: the number of
transitions included, kdim, and the number of grid points, ndim. The number of grid points scales
roughly as n, the number of atoms in the system, but the number of transitions scales somewhere
between a factor of n and of n2, depending on the choice of the“trustworthy” energy window. The
former factor is obtained if one chooses a fixed number of empty states (inexpensive, but of limited
accuracy), and the latter is obtained for a fixed ratio of empty to filled states (preferable, but
expensive).

As has been discussed above, the most time consuming part of the construction of the coupling
matrix is the repeated solution of Eq. (13). In practice, when applied to solving Poisson’s equation,
it can be observed experimentally that the preconditioned CG method scales roughly as ndim -
log(ndim). The cost of performing the integration (14) scales as ndim. This integration must
be performed for each entry of the coupling matrix, so the corresponding total cost scales as
kdim?.ndim. The CG algorithm is applied only once for each row contributing a total of order
kdim - ndim - log(ndim) toward the overall cost. Finally the solution of the eigenvalue problem (4)
scales like kdim3. As a result, the total cost for computing the coupling matrix is of the form:

Cy - kdim? - ndim + Cy - kdim - ndim - log(ndim) + C3 - kdim® (24)

where C1, Cy, C3 are constants.
As was already mentioned, in the best case scenario ndim ~ an and kdim = (Sn, where n is
the number of atoms. In this case, the total cost scales like

(C3 4 C1a)B? - n3 + Coaf - n? log(an). (25)

In the worst case scenario kdim = fn?, in which case the total cost will scale like
a
<C3,3 + C ﬁ) B%-nb + ChaB - nd log(an). (26)

In practice, kdim lies between n and n? and the above mentioned techniques can be used to
keep this as close to n as possible. However, focusing on the best case scenario (25), one cannot
ignore the relative size of the prefactors (C38 + C1a)B? and Czaf3. For systems such as SizqHsg,
the computational overhead is dominated almost entirely by the CG term on the right. For larger
systems it can be expected that the left hand term will begin to dominate, but it is not clear at
exactly what point this will happen. Based on our observations of calculations for Sig4H3zg, where
n = 70, we would estimate that the ratio of these prefactors is in the range of 10* to 10°. This is
based on the profiling of computations showing that CG calculations accounted for approximately
70% to 80% of the total runtime. As a result, in the best case scenario of Eq. (25) we estimate
that the computational cost of the CG method will stop dominating the overall calculation when
n ~ 800. The break-even point will take place much earlier for the worst case scenario of Eq. (26).

The large scaling factors for the creation of the coupling matrix underscore the need for good
optimization and efficient parallelization. As an example of this importance, Table (1) shows the
runtime for the coupling matrix generation for Sig4H3g at various stages of optimization. Ultimately,
we were able to reduce the runtime by almost a factor of four, a significant improvement which has
allowed us to consider larger systems than were previously possible.
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The current version of the coupling matrix construction code is very efficient. To show this
we present Fig. 9. This figure shows the wall-clock runtime on various numbers of processors and
the ideal runtime, calculated by dividing the single processor runtime by the number of processors
used. Ideally, this number would be equal to the runtime of the single processor case divided
by the number of processors used. We can see that the runtime is actually better than ideal for
small numbers of processors. This is because disk reading and writing is handled by the master
processor, so in the single processor case no work is being done during output. In other cases the
slave processors continue to work while the master writes the coupling matrix.

Until now the largest system that we have investigated is Sii47H109. Based on the scaling argu-
ments presented above, the computation of a Sia7sH172 dot (at the bottom end of the experimental
range for the larger quantum dots shown in Fig. 6) would be larger than that of the Sij47Hig0 dot
by at least half an order of magnitude, if not a full order of magnitude. Due to limited computer
time, we have not performed that calculation yet. However, it is important to note that before
optimization of the code computing a system of this size would have been outright impossible. We
hope to bridge the gap between theory and experiment for the data of Fig. 6 in future work.

7 Conclusion

In conclusion, we have presented a detailed overview of a massively parallel implementation of a
time-dependent density functional theory code aimed at computing optical absorption spectra of
systems with hundreds of atoms. We have shown that using the formalism of Casida [4] explicit
time-dependent computation is avoided by formulating an eigenvalue problem in frequency space,
that is constructed from the solutions of the time-independent density functional formulation.
We have presented details of an efficient implementation of this formulation in real space, using
norm conserving pseudopotentials and a higher order finite difference approach. The bottleneck
of this implementation lies in the repeated solution of the Poisson equation. We discussed various
strategies for optimizing this calculation. We have also shown that our implementation lends itself
naturally to massive “master-slave” parallelization that does not involve any slave-slave or global
communication steps. Load balancing optimization, memory/run-time tradeoffs, and scalability
issues were discussed. We have illustrated the capabilities of the code by presenting calculations for
the quantum size effect and for absorption in defects in hydrogenated silicon quantum dots with as
many as ~450 atoms and have outlined how one should proceed with even larger computations.
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Appendix A: Multipole Expansion

The £** term of the multipole expansion of Eq. (16) at a general point with spherical coordinates
of (R, 6, ¢) is given by [30]:
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In Eq. (A1), £ is a non-negative integer. Yp,,(6,¢) is the spherical harmonic evaluated at the
general point and is given by:

20+1 (¢ —m)! ;
Y, = P imé A2
Z,m(07 ¢) \/ A7 (f + ) L (008(0))6 3 ( )
where P;*(z) are the associated Legendre polynomials, defined by:
. —1)™ ” df—i—m
Pt(z) = (2%)!(1 — %)/ dgttm («? = 1)%. (A3)

Q%) is calculated from the distribution of point charges that generate the potential as [11]:

Q(Z Zear V 2£+ 1 lm(aaa(pba) (A4)

where e, is a point charge situated at the spherical coordinates (74,04,0a)-
Spherical harmonics have the additional property that [11]:

This property can be used to reconstruct Eq. (A1) so as to sum over non-negative m values only.
Using Eq. (A5) in Eq. (A4) yields:
QY = (-)mQY’ (A6)

Combining Egs. (A5) and (A6) shows that each negative m term in Eq. (Al) is the complex
conjugate of the corresponding positive m term in the equation. Therefore, Eq. (Al) can be
written as:

4
60 = e @Yin(0.0)+ 3 QY;(0.6) (7

Using Egs. (A2)-(A4) in Eq. (A7) we obtain our final expression:

&0 _— RHll [ear P?(cos(8 ))]P?(COS(G))
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| Version | Wall-Clock Run Time (hours) |

Initial Parallel Implementation 53
Optimized Load Balancing 24
Memory Management and Calculation Overlap Optimization 20
Preconditioned CG Optimization 15

Table 1: Wall-clock runtime of the parallel TDLDA code (not including the generation of Kohn-
Sham eigenvalues and wave functions) for the Siz4H3g test case running on 8 processors at various
stages in the optimization process.

Construct DFT Solution
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Construct K
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Solve Eigenvalue Problem
and
Find Oscillator Strengths

Figure 1: Flowchart showing major parts of the code.

Figure 2: Schematic illustration of the real-space mapping used in the code.
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Construct K

For each row of K:

Setup Boundary Conditions

Y

Solve Poisson System

Y

For each entry of this row:

Perform Single Integration

Figure 3: Flowchart showing details of matrix construction.
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Figure 4: One dimensional diagram showing the different types of grid points. The dotted circles
about each boundary point help to indicate which external points are its boundary neighbors.
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Figure 5: LDA and TDLDA absorption spectra of selected hydrogenated silicon quantum dots.
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Figure 6: Variation of the optical absorption threshold of hydrogenated silicon quantum dots as a
function of the dot diameter. Circles - TDLDA calculation. Experimental values are taken from
refs. [26, 27, 28]. The dashed line is intended only as a guide to the eye.
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Figure 7: Schematic depiction of level splitting in a relaxed and a non-relaxed SizgsH3g quantum
dot.
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Sub-threshold portion of the LDA and TDLDA optical spectra of the SiggHsg quantum dot.
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Figure 9: Scalability of coupling matrix construction based on wall-clock runtime.
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