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Abstract

This paper presents a preconditioning method based on combining two-sided permutations
with a multilevel approach. The nonsymmetric permutation exploits a greedy strategy to put
large entries of the matrix in the diagonal of the upper leading submatrix. The method can
be regarded as a complete pivoting version of the incomplete LU factorization. This leads
to an effective incomplete factorization preconditioner for general nonsymmetric, irregularly
structured, sparse linear systems.
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1 Introduction

In recent years, preconditioned Krylov subspace methods have made good progress toward their
acceptance as general purpose techniques for solving irregularly structured sparse linear systems.
One may distinguish between two categories of linear systems that are tackled by such methods.
First is the class of linear systems which originate from the discretization of partial differential
equations. Initially, preconditioned Krylov methods were only attempted on problems of elliptic type
— for which a good body of theory existed. Because of their success, these methods have increasingly
been employed on systems arising from various flow problems, Stokes and Navier Stokes equations,
Maxwell’s equations, Helmhotz equations, and other types of models which lead to indefinite linear
systems. The second category of linear systems includes problems which arise from applications
which are not governed by Partial Differential Equations. An archetype of this class of problems
is one that originated from power networks, see, e.g. [12, 11], and can be considered in some ways
the source of irregularly structured sparse matrix computations as we know it today. Nowadays,
these problems are considered small and are often best handled by direct sparse solvers. However,
there are somewhat related problems in circuit simulation [8, 28], which cause difficulties to linear
solvers. One may ask whether this distinction is important for a given system solver. For direct
solvers, the origin of the problem has no direct impact on the solution algorithm, except that its

’geometric’ nature can influence complexity. The geometry of the underlying graph may matter
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more than whether the problem is likely to be highly indefinite, because the geometry may have a
major impact on fill-in. In general, however, the prevailing consensus so far has been that iterative
methods are not as successful for this second class of methods as they have been for the PDE-based
problems. As the sizes of the linear systems are becoming larger and more challenging, this issue has
resurfaced recently and a few methods have been developed to increase the range of applicability
of iterative methods. The work of Olschowka and Neumaier [23] in particular, showed that it is
possible to essentially perform ’static’ pivoting, prior to Gaussian elimination. Otherwise stated,
it is possible to permute the rows of a matrix in such a way that pivoting becomes unnecessary
during the elimination process. Olschowka and Neumaier indicated that this could be helpful in an
incomplete LU factorization as well. The work by Duff and Koster described in the articles [14, 15],
followed this idea further by developing effective codes, and showing that the method can be quite
effective in some cases. Other articles have since tested the idea on various problems, and reported
excellent success, see for example [28, 2]. On caveat from these reports is that the reorderings do not
seem to help much, in fact they may be counter-productive, when the matrix of the linear system

is a structured matrix which originates from a discretized Partial Differential Equation (PDE).

2 The quest for robust ILUs

Several distinct paths have been taken to improve the robustness of preconditioners for irregularly
structured linear systems. The first ! is to add partial pivoting to the incomplete LU factorization
with threshold (ILUT), see [25]. The standard ILUT technique often fails for irregularly structured
matrices. The addition of partial (column) pivoting helps but it does not even guarantee that a
factorization will be produced in some cases. One of the most common cases of failure results from
the appearance of zero rows during factorization caused by the combination of permutations and
dropping. However, ILUTP can work rather well if substantial fill-in is allowed — but the cost of
the factorization may become prohibitive.

The second class of methods, which became popular in recent years, avoids ILU factorizations
altogether and utilizes instead one of several methods to compute an approximation to the inverse
of A directly, see, e.g., [3, 5, 4, 9, 17, 19]. These “approximate inverse methods” have the added
advantage of yielding more parallelism, but they tend to be rather expensive to compute.

A third approach is to use a form of preordering whose goal is to put large entries to the
diagonal. In this method, the matrix is ordered on one side (e.g., rows only). Then pivoting is
obviated during Gaussian elimination [15, 14] The combination of ILU-type preconditioners with
such a reordering strategy has been shown to be quite effective [2, 15, 14, 28|.

The last class of methods we will mention has been developed following the work by Bollhofer
[6] which addresses the problem of rigorous dropping in ILU-type methods. These methods are
founded on the intimate relationships between ILU factorizations and approximate inverse tech-
niques [7]. Small terms are usually dropped in ILU either by considering their location (positional
dropping) or their magnitude (threshold dropping) in some relative terms. The first approach works
well for regularly structured problems arising from PDEs but it is not designed for the more general
case. The second is generally applicable but the greedy criterion on which it is based focusses on
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making LU close to A instead of making the preconditioned matrix close to the identity. This
may have some unpredictable effects. A better strategy was defined in [6] which exploits condition
number estimators for dropping terms whose removal is least likely to have negative effects on A.
This strategy was combined with a Crout implementation of ILU in [21].

In contrast with similar existing strategies the method discussed in this paper does not attempt
to fill the whole diagonal of the original matrix with large entries. Instead, a more progressive,
multilevel, approach is taken whereby the unknowns associated with the upper leading submatrix
are eliminated and the process is repeated on the reduced system. An alternative view of the process

is that of a block complete pivoting ILU. Viewed from this angle, the process consists of finding two
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in which the B matrix has large diagonal entries. The unknowns associated with the B block can

permutations P and ) such that

now be “safely” eliminated and the process repeated on the reduced system. In the ideal case, B
would be of the same size as A. One can think, for example, of an algorithm that would yield a B
matrix that is diagonal and contains most of the large entries of the matrix A. However, forcing B
to be diagonal could severely limit its size in general, resulting in an expensive option.

Preconditioning techniques are developed based on approximate factorizations derived from
this strategy. The method can also be regarded as a nonsymmetric version of the Algebraic Recursive
Multilevel Solver, which uses symmetric permutations (i.e., P = Q). Numerical experiments indicate
a marked improvement in robustness over using symmetric permutations.

We now briefly discuss practical issues surrounding pivoting for incomplete factorization.
When a row version of delayed-update Gaussian elimination (the so called IKJ version) is used, it
is relatively easy to incorporate column pivoting. Since the pivoting is local, i.e., it is oblivious to
the rows below the working (i-th) row, dropping may lead to undesired results in the resulting ILU
factorization. For example, we already mentioned the common occurrence of zero rows during the
process, especially when low levels of fill are used. When it works, the resulting LU factorization
is capable of solving more problems in general, but the loss of structure due to pivoting results in
much more expensive algorithm, especially in terms of memory usage.

Incorporating partial pivoting in the more common rank-one update variant (so-called KIJ
variant) or other forms of incomplete LU factorizations does not seem to have been undertaken.
However, the more interesting question one might ask is whether or not a form of complete pivoting
is practical in the context of ILU. Searching for the largest entry in the working submatrix at each
step seems to be exceedingly expensive and impractical. On the other hand, if this were possible,
we may potentially be able to drop more terms since dropping may become more rigorous. To cope
with the issue of cost, the method presented in this paper essentially resorts to a block pivoting

approach that performs only an approximate version of complete pivoting.

3 Multilevel ILU preconditioners

A common method used to obtain a preconditioner, is via a block Incomplete LU factorization, which

involves an approximate Gaussian elimination process based on separating the original unknowns



into a “coarse” and a “fine” set. These terms are borrowed from the AMG literature. In the class
of preconditioners developed in [27, 1, 26] the idea of independent sets or “group-independent” sets
(16, 22, 20, 10, 24] is exploited to define this partition. Block Independent set orderings permute

the original linear system Az = b into the form
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in which the submatrix B is block diagonal. The ILUM]24] factorization utilizes standard inde-
pendent set orderings which result in a matrix B that is diagonal. In this situation, it is easy to
eliminate the u variable to obtain a system with only the y variable. The coefficient matrix for
this ‘reduced system’ is the Schur complement S = C — EB~'F which is still sparse. This idea
was used recursively, applying dropping to S to limit fill-in, and reordering the resulting reduced
system into the above form via independent sets. This is repeated for a few levels until the system
is small enough, or a maximum number of levels is reached. Then the system is solved by some
other, standard, means such as an ILUT-GMRES combination.

3.1 Two-sided permutations

In this paper we will not require B to have any particular structure. Instead the rows and columns
of A are permuted, using two different permutations P (rows) and @ (columns) which will transform
A into the form
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in which the matrix B has the property of being as diagonally dominant as possible — in a way that
is yet to be specified.
At the I-th level of the procedure, the coefficient matrix is reordered as in (2) and the following

block factorization is computed ‘approximately’ (subscripts corresponding to level numbers are

introduced):
T _ (B F\_ L, 0 U Lj'F
where
B =~ LU (4)
A~ G- (BUTYETR) . (5)

When described with the help of recursivity, the procedure consists essentially of three steps. First,
an ordering of the matrix in the form (2) is obtained and applied; Then, an ILU factorization
By ~ L;U; for B; is computed. Finally, approximations to the matrices Ll_lFl, EU, l_l, and A;y; are
obtained. The process is repeated recursively on the matrix A;.; until a selected number of levels is
reached. At the last level, a simple ILUT factorization, possibly with pivoting, or an approximate
inverse method can be applied.

The A;’s remain sparse but become denser as the number of levels increases, so methods based
on this approach will drop small terms in various ways in the constructions of L;, U;, Ll_lFl, EU l_l,

and A;.1, to maintain sparsity. Note that the matrices ElUl_l, Ll_lFl or their approximations

Gi~EU™, W=~L'F (6)



which are used to obtain the Schur complement via (5) need not be saved. They are computed
only for the purpose of obtaining an approximation to A;y;. Once this is accomplished, they are
discarded to save storage. Subsequent operations with Ll_lFl and F; Uz_l are performed using Uj, L;
and the blocks FE; and Fj.

The rationale of the orderings that will be proposed next is that it is critical to have an accurate
and well-conditioned B block in the multilevel factorization discussed above. Alternatively, we can
also think in terms of complete pivoting. Assume for a moment that B is a 1 x 1 block. Then,
clearly one can think of selecting the permutations P and @ in such a way as to move the best
possible pivot from the matrix to location (1,1). The first row can then be eliminated and the
process could then be repeated for the remaining (n — 1) x (n — 1) matrix. Unfortunately this
procedure is too costly because of the search required to find the best pivot at each step. A more
effective alternative is to select the best k pivots at the same time - so B now becomes a block of
size k. The next section discusses a few heuristics which use diagonal dominance as a criterion for
selecting the B block.

3.2 The block complete pivoting viewpoint

We begin by introducing the notation and terminology used in describing the algorithms. A pair of
permutations (P, Q) is completely defined from the corresponding two permutations {p1,p2,-..,pn}
{q1,92,---,qn} of the set {1,2,...,n}. Since we use partial permutations (which define the block
B), we define a matching set M as a set of nps pairs (p;, ¢;) where nyr < n and

1<pi,¢s <num, fori=1,...,nyy  and p;#p;, fori#j q#q; fori£j (7)

Note that the case when nps = n corresponds precisely to a (full) permutation pair (P, Q). A partial
matching set can be completed into a complete matching set by simply scanning the set of p;’s and
adding entries from the set {1,2,...,n} which are missing, and then repeating the process for the
gi’s. The function returning the number of nonzero entries in a row or column is denoted by nz(.),
so for example nz(a;) is the number of nonzero elements in the i-th row of A and nz(a. ;) is the
number of nonzero elements in the j-th column of A.

For lack of a better name we will refer to the class of reordering algorithms to be described in
this section as ’ddPQ’ orderings (P, Q stand for the permutations used and ’dd’ indicates that the
ideal permutation would yield a diagonally dominant B block). These are heuristic methods which
consist of two stages. In a first stage, candidate entries a;; are ’preselected’ as possible diagonal
entries. This procedure will also order the candidate entries that are selected by using a certain
measure which will attempt to use a criteria of diagonal dominance and the number of nonzero
entries. The second stage scans these candidate entries in order given by the preselection stage and
decides on accepting or rejecting the entry into the M set.

The simplest preselection algorithm is based on using the ratios

|aij |
i/l -

A criterion using ratios of this type for the diagonal entries (i = j) was also used in an early version

of ARMS [26] for filtering equations that are least diagonal dominant in a symmetric permutation



setting. Let j(i) be a column index of the largest (in absolute value) entry of row i (|a; ;)| > |as;l
for all j). The ratio

lai |

llai,q|

1

can be viewed as a measure of rowwise diagonal dominance of row i if the term (¢, j(¢)) is permuted
as a diagonal entry. The selection of a; ;(;) as a diagonal term would result in a diagonally dominant
row if the above ratio is > 1/2. In practice, we can screen out all entries for which these ratios are

no greater than a certain threshold 7.

ALGORITHM 3.1 Preselection

1. SetD=10

2. Fori=1,...,ndo

3. Compute t; = ||a;,||1, and j(i) = argmazk|aik|

4. if |a; j5)| > 7 t; add (i, (i) to D

5. EndDo

6. For each (3,j(i)) € D Do:

7. Compute w; = llT;zJ(ﬁ)ll nz(}li,:)

8.  EndDo

9. Sort D by decreasing order of the weight w;: D = {(i1, j1), (i2,42);- -+, (inp,Jnp )}

with: Wi, Z Wi, Z e Z winD .

In order to avoid situations in which the preselection algorithm returns with an empty set,
we scale the threshold 7 relative to the largest of these ratios. So, given an input parameter 7, the
actual threshold 7 used in the algorithm is

|aij(i)|:|
T = 79 X mMax : 8
" i[nai,zh )

This ensure that the worst rows on a relative basis will be rejected. The parameter 7y should be
between 0 and 1 and a typical value is 0.5. If 7y is strictly less than one, then at least one row will
be preselected.

The algorithm begins by computing the required norms and then in Line 4, it prescreens the
rows by rejecting those that do not show enough diagonal dominance. This initial rejection will
reduce the cost of the next phase which involves a sort (line 10.) In order to reduce fill-in, the
diagonal dominance ratio is modified. It is divided by the number of nonzero elements in row i (see
Line 7).

The above algorithm selects good candidates for diagonal entries according to diagonal dom-
inance, and then it sorts them according to a certain criterion. To complete the process we now
need to select pairs to keep in M. We could, for example, scan all the pairs yielded by Algorithm
3.1 and keep all the pairs as long as that they do not violate the requirement in the definition (7).
Therefore, the simplest strategy is a greedy technique which scans the set D and accepts any pair
(pi, gi) such neither p; nor ¢; have already been included in a pair of M.

ALGORITHM 3.2 Greedy matching set selection



0. Determine the ordered set D by a preselection algorithm. Set count = 0.
1. Set M =0;Set P(i):=Q(i)=-1fori=1,...,n

2. Fork=1,...,np Do:

3. Get (i, jr) the k-th pair in D

4. If (P(ix) == —1 & Q(jr) == —1) :

5. Add (ig, ji) to M: (a) count = count + 1

6. (b) set P(i) = count; Q(jx) = count ;

7. EndIf

8.  EndFor

At the completion of the algorithm, the matching set is the set of all pairs (Z,j) such that P(7)
and Q(7) are both non-negative. Note also that P(:) represents an incomplete reverse permutation
array. If completed it would simply be the ’old-to-new’ usual mapping for the row permutations.
Similarly, the @ array represents an incomplete ’old-to-new’ mapping for the columns. The only
remaining step now is to complete these two permutations. This is achieved by a simple greedy
procedure such as the following one, described for P.

1. Fori=1:n Do:

2 if (P(i) < 0)

3. count = count + 1
4. P(i) = count;

5 EndIf

6. EndFor

Note that initially count is as output by the matching procedure. The same procedure is applied
to complete the permutation Q.

Once the permutation is found, the matrix is reordered into the form (2) and the rows asso-
ciated with the B block are eliminated. This means that we compute the factorization (3). This
entails computing the ILU factorization of B (equation (4)), and then computing an approximation
to the Schur complement, as shown in (5). The process is now to be repeated at the next level, i.e.,
on the Schur complement matrix A;;;. Note that there is no particular structure associated with
the block B.

If B were to be a diagonal matrix, then the elimination process could be viewed as a multi-
elimination process with complete pivoting. Instead of selecting one pivot at a time, the algorithm
selects the largest possible number of pivots allowed by a greedy approach, in which the selection
criterion is a combination of diagonal dominance and number of nonzero entries in the columns.

The algorithm stops whenever either a maximum number of levels is exceeded or the Schur
complement becomes small enough. Of course, if the matrix is strongly diagonally dominant, then
the process will retain many rows in the first one or two levels so the algorithm will require very

few levels. In general, the algorithm requires a small number of levels, unless 7y is close to one.



4 Matching heuristics

We now examine a few alternatives to the greedy approach of Algorithm 3.2. It may be desirable for
example to seek to enforce diagonal dominance in the B part of (1). Having a B matrix in a form
that leads to easy solutions may also be appealing. We have tested a good number of strategies but
show only two here in addition to the greedy technique of Algorithm 3.2.

The strategy of algorithm 3.2 does not guarantee to produce a B matrix that is diagonally
dominant, but it can be modified in two distinct ways for this purpose. First, instructions can be
added to the procedure to reject columns and rows of A which fail to satisfy a diagonal dominance
criterion. The second modification reaches the same goal but it also forces the matrix B to be
triangular. We begin by describing this procedure first as it is somewhat simpler. To obtain a lower
triangular matrix, it suffices to mark all column indices of row ¢ so that they will become ineligible
for inclusion in the later steps. In addition, before adding (7, (7)) to the set M, we need to verify

that the row is diagonally dominant. This gives the following modification of Algorithm 3.2.

ALcorITEM 4.1 Reordering for a triangular B block
1. Set M=0; Set P(i):=Q(i)=—-1fori=1,...,n

2. Fori=1,...,np Do:

3 If (P(i)! = —1 or Q((j(3))! = —1) Continue (skip to next i)

4 Compute tg = 3 ¢ s, laikl, where Sp(i) ={k| k € adj(A,i);Q(k) > 0},
5 Iftp < |aj ()| then

6. add (i,7(i)) toM

7. Set Q(k) = —2 for all k’s in adj(A,1) with Q(k) == —1.

8 Endif

9. EndDo

10. Complete matching set M arbitrarily.

The set Sp(i) introduced in Line 4, represents the set of column indices that have already been
accepted into B prior to step ¢. Step 4 computes the sum of the absolute values of all entries in
the strict lower part of the matrix that would become B after reordering. The next line tests if
the corresponding row is (weakly) diagonally dominant. If it is, then the candidate pair (i,5(7)) is
accepted (Line 6) and all column indices in the row which are not yet assigned are marked so that
these columns will not be selected in future steps. This ensures that B is lower triangular. Note
that Line 6 can be implemented as in steps (a), (b), shown in Lines 5-6 of Algorithm 3.2.

Forcing B to be triangular may be restrictive. It leads to a B block which is typically smaller,
and this may lead to a higher number of levels and therefore a more expensive factorization. A
compromise is to still allow entries in the U part of B as long as diagonal dominance is preserved.

This leads to a modification of the above algorithm which at each step ¢ computes
t=laiml— D, lawl.
k € Sp(i)

If ¢ is negative then the ¢-th row is not diagonally dominant since the lower part of B is already
not diagonally dominant and the algorithm will skip to the next candidate pair. Otherwise, it will

proceed to accept entries that are not larger than t/(nz(a;. — ng(i) — np(i)), where npg(i) is the



number of entries of the row being examined, that are already in B, and, similarly, ng(%) is the
number of entries that are already in F'. All other column entries are rejected, i.e., they are tagged
as part of F'.

ALGORITHM 4.2 Augmented triangular B
1. Set M=0; Set P(i):=Q(i)=—1fori=1,...,n

2. Fori=1,...,np Do:

3 If (P(i)! = —1 or Q((§(%))! = —1) Continue (skip to next i)
4 Let Sp(i) ={k| k € adj(4,7) ;Q(k) > 0},

5 Sr(i) = 1k k € adi(4,3) ; Q(k) == —2}.

6. Compute tg =} e 5,0 laicl, ns=1[Sp(i)|, and np =[Sp(i)|.
7. Iftp < |aj ()| then

8 add (i, (i) to M

9. Compute v = (|a; j;)| —tB)/(nz(a;.) —nB —nF)

10. For each k in adj(A, ) with Q(k) == —1 Do:

11. If lajk| > 7y set Q(k) = —2

12. Endif

13. EndDo

14. Complete matching set M arbitrarily.

The resulting rows of B will be row diagonally dominant. Indeed, let S’ (¢) represents the
set of entries that are accepted into the B part at step ¢, and let n’y; = |S5(4)|. Note that n’y <
nz(a;;) —np(i) — np(i). Then,

gl — D el = laijol— D laxl— Y lal

k € Bpart k € SB k€ Sy
= t- E |aik]
ke Sy
t
/
> t—mnp X

nz(a;.) — np(i) — np(Q)
> 0.

A slight variation on this procedure consists essentially of adjusting the average v computing
in Line 9 as new entries are accepted. The sum tp is changed each time a new entry is accepted
into B as well as the number npg. This allows to accept more entries.

This idea can be extended to develop a forward looking approach which uses both A and AT.
The technique begins by assigning the absolute value of the candidate diagonal entry to a measure of
diagonal dominance. These measures, which in effect represent the difference between the diagonal
entries and the sums of the off-diagonal entries in each row of B, are updated at each step as the
permutation which defines B is being constructed. When a row is scanned the columns are accepted
when the |a;x]| is tested against the current value of v(7) divided by the number of entries that may
still potentially be candidates for being accepted in B. If it is less, then it is accepted into B and
v(t) is decreased accordingly. If the test is not satisfied the column k is marked as not accepted. The

counter of the number of entries in the row that are not in B is also decremented. The algorithm



produces a matrix B that is row diagonally dominant. It is also possible to have an equivalent

algorithm which does not require the transpose of A.

ALGORITHM 4.3 Forward looking matching
1. Set M=0; Set P(i):=Q(i)=—1fori=1,...,n

2. Setv(i) =la(s,5(¢))| and nzB(i) = nz(a;,.) fori=1,...,np
3. Fori=1,...,np Do:

4. If (P(i)! = —1 or Q((§(%))! = —1) Continue (skip to next i)
5. Add (i,5(%)) to sM

6. For each k € Adj(A,1i) s.t. Q(k) == —1 Do:

7. if |a; k| * nzB(i) > v(7)

8. set Q(k) = -2

9. else

10. v(i) =v(i) — |aikl

11. endIf

12. nzB(i) = nzB(i) -1

13. End

14. For each k € Adj(AT,j(i)) s.t. P(k) == —1 Do:

15. v(i) = v(i) — |ai k|

16. nzB(I) =nzB(i) — 1

17. ifv(k) < |ai

18. set Q(k) = —2

19. endIf

20. End

21. Complete matching set M arbitrarily.

5 Cost analysis of multilevel nonsymmetric orderings

The first concern when considering the use of the algorithms described above is likely to be in regards
to its cost, specifically the cost of obtaining the pair of permutations. Obtaining the permutations
may be expensive with a poor implementation or a poor choice of parameters.

Consider the preselection algorithm first. At each level there are nnz(4;) potential candidates
to become diagonal entries. The parameter 7 allows to eliminate a large fraction of them with the
goal of reducing the cost. The algorithm starts by obtaining the largest entry in each row at the
cost of nnz(4;). In the second phase of the algorithm, weight factors are computed for each of the
np entries of D at the cost of O(np). Finally, the entries in D are sorted according to these weights,
at the cost of O(nplognp). Since we do not have an idea of the size of np, we need to make an
assumption which will enable us to obtain an estimate. We will assume that from one level to the
next the size n; of the matrix A; is reduced by a constant ratio K. In other words, refering to the
splitting (3), we assume that

size(Ayy1)/size(4;) =~ K .

On average this is a fairly representative model. It is clear that K will depend on 7 as well as on

the structure of the matrix, its number of nonzero elements per row, etc.. At each level the size of
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D is a fraction of n;, the matrix size at level [. Since we limit the fill-in in each row, the number

nnz; of nonzero entries in A; is a multiple of n;. With this the cost at each level becomes
O(nnz)) + O(nplognp) < Bn; + ynylogn; ~ yn;logn

If we have p levels the total cost will be of the form

n n n n n n
T(v) = 7 |nlogn + 108 3+ 3108 3+ + 5 198 5

p
n n
= 7> e los 3]
=0

P

nlogn . nlogK

= Y T -]
i=0

K—K L
—— nl —nlog(K —
'yl K1 nlogn — nlog( );Kll

A close look at the second term in the final expression reveals that it is of order n, since the sum of

i/K" is bounded by a constant which depends only on K (and not p). In the end,

T(n) ~ v

1 .
7% _1 "logn

As can be seen, when K is close to one, the algorithm will do poorly, reflecting the fact that the
diagonal dominance criterion does not reject enough rows at each level. The analysis indicates that
the overall cost for obtaining the permutation is dominated by the sorting step in the preselection
phase. In fact, it is clear that an exact sort is not necessary and could easily be replaced by an
inexact and less expensive sort. For example, it is possible to reduce the cost of the sorting step by

grouping the ratios into a small number of nearby representatives and resorting to a bucket sort.
This would lead to a cost of O(n).

6 Numerical tests

We have implemented a version of the algorithm described in earlier sections by using the ARMS
framework [26]. We refer to the resulting algorithm as ARMS-C (C for complete pivoting). The
goal of the experiments in this section is to illustrate the performance of the ARMS-C strategy as
well as to give an idea on its cost and the effect of some parameters. The experiments of Sections
6.1 and 6.4 were performed on a Linux platform with two 1.7 Xeon GHz processors, a 256 KB cache,
and 1GB of main memory. The other experiments were performed on one processor of an IBM/SP
computer. The processor is a 375 MHz Power3 (Winterhawk) node with 4 GB of memory.

6.1 Comparing matching strategies

We begin this section with a comparison of a few matching strategies. In the following experiments,
we use only one preselection technique, namely the one described by Algorithm 3.1. We run a
number of strategies and attempt to solve a sequence of linear systems from the Harewell-Boeing

collection [13]. The linear systems are obtained from all those matrices from the RUA collection
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BP1000 822 | BP1200 822 | BP1400 822 | BP1600 822
BP200 822 | BP400 822 | BP600 822 | BP800 822
FS5411 541 | FS5412 541 | FS5413 541 | FS5414 541
FS6801 680 | FS6802 680 | FS6803 680 | FS7601 760
FS7602 760 | FS7603 760 | GEMAT11 4929 | GEMAT12 4929
GRE1107 1107 | GRE512 512 | JPWH991 991 | LNS3937 3937
LNS511 511 | LNSP3937 3937 | LNSP511 511 | MAHINDAS 1258
HBMCFE 765 | NNC1374 1374 | NNC666 666 | ORANIGT8 2529
ORSIRR1 1030 | ORSIRR2 886 | ORSREG1 2205 | PDE9511 961
PORES2 1224 | PORES3 532 | PSMIGRI1 3140 | PSMIGR2 3140
PSMIGR3 3140 | SAYLR3 1000 | SAYLR4 3564 | SHERMAN1 1000
SHERMAN2 1080 | SHERMAN3 5005 | SHERMAN4 1104 | SHERMAN5 3312
HBSHLO 663 | SHL200 663 | SHL400 663 | STEAM2 600
WATT1 1856 | WATT2 1856 | WEST0655 655 | WEST(0989 989
WEST1505 1505 | WEST2021 2021

Table 1: The 58 matrices from the Harwell-Boeing collection with sizes (shown to their right) > 500

whose size is 500 or higher. There are 58 matrices that satisfy this criterion and their names are
listed in Table 1 along with their sizes. If one (or several) right-hand sides is (are) provided then
the system with this (the first) righ-hand side is solved. Otherwise an artificial right-hand side is
taken, which is formed by taking b = A*e, where e is the vector of all ones. The iteration is stopped
whenever the residual norm has been reduced by 8 orders of magnitude. This does not necessarily
mean that the solution that is computed is accurate, because the matrices involved may be highly
ill-conditioned. Since right-preconditioning is used, the tests are on the actual residuals not the
preconditioned ones.

In spite of their rather small sizes, some of the matrices in this list cause difficulties to iterative
solvers. It is for example not easy to find an iterative procedure which solves all the systems with
the same input parameters. Most of the matrices are irregularly structured, and some have a very
irregular pattern. The next plots show a comparison of the performance of GMRES preconditioned
with ARMS-C with various matching strategies. We compare 5 methods:

e The greedy strategy of Algorithm 3.2,

e The triangular B algorithm described by Algorithm 4.1,

e The augmented triangular B technique as described by Algorithm 4.2
e The forward looking algorithm described by Algorithm 4.3.

The parameters used for the experiment are listed below

Drop tolerance Fill-max
nlevmae | tolpp | LU-B GW S LUS | LU-B GW S LU-S
100 0.1 0.001 0.01 0.001 0.01 10 10 10 5

In the table, nlevmqe, is the maximum number of levels allowed, tolpp is the tolerance 7y used
in the preselection algorithm, see (8). The next 4 parameters define the dropping factors for the

factorization algorithms. The drop tolerance for LU-B is the one used in the ILUT factorization
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[25] of the B block, while the one denoted by GW is used when computing the matrices G; and
W, defined by (6) at each level. The drop tolerance used to compute S from G; and W; is given
next. Finally, the drop tolerance for the ILU factorization at the last level is given. The incomplete
factorization with column pivoting (ILUTP) is used for this. The next set of columns define the
upper limit for fill-ins for each of these computations in the same order. Note that these numbers are
the multiples of the average number of nonzero elements, i.e., at the [-th level the actual amount
of nonzero entries allowed in each row is fillq. * nnz(A;)/n. We ran ARMS-C with different

matching strategies with the exact same parameters given above for all 58 linear systems.

Number of systems solved out of 58 versus iterations Number of systems solved out of 58 versus iterations
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Figure 1: Experiment with 58 HB matrices showing the number of converged systems among 58,
versus iteration count.

The incomplete factorizations were computable in all cases. However, the iteration phase was
not successful in all cases. An iteration was labeled as a failure when the residual norm was not
reduced by 8 orders of magnitude in fewer than 200 GMRES steps. We used GMRES with a restart
of 100. This was done in order to measure the quality of the preconditioner alone in distinction
from that of the accelerator.

The results are divided in two plots for better clarity. The left side of Figurel shows the
number of successful solves for iteration counts less than 80 and the right side those requiring
80 steps or more. For better visibility, the curves have been slightly shifted in order to avoid
superposition. As can be observed the strategy of Algorithm 4.3 handles harder problems quite well
(right side of figure) while Algorithm 4.1 yields faster convergence on easier problems (left side of
figure).

A standard preconditioner which is often used for comparison purposes is ILUTP (ILU with
Threshold and Pivoting [25]). When a good amount of fill-in is allowed the preconditioner can be
fairly robust. However, it does not perform well for matrices with highly irregular patterns and
when not enough fill-in is allowed. For comparison purposes, we ran ILUTP-GMRES under similar
conditions on the 58 problems. Specifically, we selected a drop tolerance of 0.01 and a fill-in limit of
3 xnnz(A)/n, which means that each row of the factors L and U have at most 3 times the number
of nonzero elements per row of A. To give an idea on the overall performance, we show in Table 2
the average fill-factor and average iteration count for each successful case for all methods, including

13



Average | Average Successful
Method || Fill-fact | Iter. count | Iterations
ILUTP 2.71 12.12 43
Alg. 3.2 1.61 20.58 43
Alg. 41 1.87 15.00 51
Alg. 4.2 1.63 17.23 52
Alg. 4.3 1.65 22.11 54

Table 2: Some statistics on the tests with the 58 HB matrices

ILUTP. The fill factor reflects the memory requirement of the preconditioner and is defined as the
ratio of the number of nonzero elements of the resulting preconditioner over that of the original
matrix.

It is interesting to note that ILUTP required far more fill-in to solve the same number of
problems (43) as the worst performer among the ARMS-C algorithms. The average iteration counts
are not indicative of robustness. Since the fill-in is rather high, the iteration counts for the easy
problems is usually a very small number for the (fewer) successful runs of ILUTP, which leads to a
low average among the 43 successful cases. This is in contrast with the ARMS-C strategies which
solve more of the harder problems but, as can be expected, at the cost of a larger number of GMRES

steps on average.

6.2 Effect of the filtering parameter 7

We vary the parameter 7y used in the preselection algorithm and compare the iteration number and
the times to compute the factorization for a system associated with the matrix twotone from the
University of Florida sparse matrix collection?. The parameters used for the test are given in the

following table

Drop tolerance Fill oo
nlevmas | tolpp | LU-B GW S LUS | LU-B GW S LU-S
200 varies | 0.001 0.0001 0.001 0.01 10 10 10 5

Algorithm 4.3 was used to obtain the P, @) permutations.

For this matrix the ARMS-C procedure requires unusually small values for the drop tolerances
before the preconditioner starts yielding a converging iteration. On the other hand, and somewhat
surprisingly, the resulting fill-factor is not too large, and convergence can be obtained for fill-factors
below 2. This phenomenon is not observed too often and is likely related to the structure of the
problem. ILUTP did not yield convergence for this problem, even for a fairly large fill-factor.

As 7y increases from 0.0 to 0.4 one can obverse a steady improvement in the convergence of
the algorithm while the fill-factor remains almost the same. Therefore a better quality factorization
is being computed with about the same amount of fill. Then the iteration count sees a sizable
decrease, reaching the smallest number of 27 when 7 = 0.7. At this point the maximum number of
levels, which has been set to 200, is reached and the fill-factor increases. Eventually, the iteration
starts to deteriorate slowly reaching 38 when 7 = 0.9. For a small value of 79 more entries are
initially preselected. For example when 7 = 0 all the largest entries in each row are candidates.

2http:/ /www.cise.ufl.udu/davis/sparse
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) filf | lev | iter | setup sec | iters sec
0.00 || 1.75 | 91 | 81 | 5.96e+01 | 6.84e+01
0.10 | 1.79 | 90 | 74 | 6.05e+01 | 6.24e+01
0.20 || 1.75 | 97 | 87 | 5.90e+01 | 7.45e+01
0.30 || 1.78 | 117 | 71 | 7.01e+01 | 6.19e+01
0.40 || 1.80 | 145 | 47 | 8.70e+01 | 4.29e+01
0.50 || 1.89 | 193 | 34 | 1.18e+02 | 3.60e+01
0.60 || 1.91 | 200 | 28 | 1.46e+02 | 3.41e401
0.70 || 1.95 | 200 | 27 | 1.64e+02 | 4.14e+01
0.80 || 1.95 | 200 | 29 | 1.72e+02 | 5.45e+01
0.90 || 1.91 | 200 | 35 | 2.34e+02 | 9.73e+01

Table 3: Performance of ARMS-C for various values of 7y for the Twotone matrix

They are then sorted using a measure which mixes diagonal dominance with the number of nonzero
entries. The resulting algorithm is more tolerant of nondiagonal dominance. Selecting a larger 7
sets a stricter condition for accepting an entry as a candidate. Excluding more rows in this way
results in more robust, often faster, convergence, but this increases the number of levels as can be
seen in the table. In fact the number of levels shown in the table for 7 > 0.7 is the limit allowed.
One may wonder why the iteration time is not proportional to the amount of fill of the
factorization and the iteration count. For example when between 7 = 0.8 and 7 = 0.9, the iteration
time jumps 78% while the iteration count increases only 20%. This is likely due to the fact that

the last Schur complement is much larger for the latter case.

6.3 Effect of the number of levels

One important consideration when using ARMS-C, is the number of levels. At one extreme when
only one level is used, ARMS-C will yield the ILUTP factorization. Indeed, the procedure considers
the matrix at the top level to be the Schur complement matrix and uses ILUTP to factor it.
Large Schur complements are likely to lead to expensive factorizations. The current code uses as
a parameter the maximum number of levels and the smallest allowable Schur complement which is
usually set to 100, i.e., as soon as a matrix A;1 in (3) reaches a size of 100 or smaller the procedure
stops generating more levels. In the next experiment we explore this with a goal of demonstrating
the beneficial effect of a multilevel approach in contrast with one that is based on one or very few
levels.

The matrix used in this test arises from the simulation of a 2-dimensional flow in a driven cavity
and is available from the matrix market 3 under the name E40R0100 in the collection DRIVCAV.
Its size is n = 17,922 and it has nnz = 567,467 nonzero entries. The Reynolds number for the

example is 100. The parameters used for the experiment are listed below

Drop tolerance Fill-max
nlevmae | tolpp | LU-B GW S LU-S | LU-B GW S LU-S
varies 0.2 0.01 0.05 0.05 0.01 6 6 6 6

The stopping criterion is as before, namely the norm of the residual should be reduced by 8

orders of magnitude. The case nlev,,q, = 0 corresponds to ILUTP - with the drop tolerance 0.01

3http://math.nist.gov/MatrixMarket/
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GMRES iterations and fill-factors vs. tau
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Figure 2: Iteration and fill-factor for the driven cavity problem, versus the number of levels (left-
side) and 7y parameter (right-side). The right plot uses a slightly different set of parameters.

and a max fill-in of 6 x nz/n. Figure 2 shows the number of GMRES iterations as well as the
resulting fill-factor when the number of levels varies fom zero to 30. Note that for this case only
27 levels were required before the Schur complement matrix reached the smallest allowable size of
100, so the case nlevy,q; = 30 was never reached. The plot shows a fairly regular decrease in the
fill-factor as the number of levels increases. At the same time, the iteration count increases and
then levels off at around 75.

A different perspective on this experiment would be to vary the parameter 79 as was done in
the previous section and let the number of levels be as large as required. With the set of parameters
used in the previous experiment, the maximum number of levels for the matrix E40R0100 was 27.
In order to obtain larger numbers of levels, we tightened the drop tolerance slightly by halving the
two drop tolerance values of 0.05 used for the G, W matrices and the Schur complement to 0.025.
The parameter 7 is varied from 0.0 to 0.7 with increments of 0.05. The plot to the right of Figure
2 shows the result. Essentially, the fill-factor remains in a rather narrow band [1.93 2.23], while
the iteration count changes but not substantially. The additional axis shows the number of levels
required for each case. These numbers are much bigger than the ones obtained with a drop tolerance
of 0.05. This last experiment as well as the one in Section 6.2 and others not reported here, suggest
that it is best not to limit the number of levels to a too small number. Limiting the number of
levels in this way may lead to a large last Schur complement matrix which is then poorly handled
by the ILUTP approach.

6.4 Solution of KKT problems and a comparison

The ARMS-C procedure can be applied to solve saddle-point problems such as those arising from the
incompressible Navier-Stokes equations or from Karush-Kuhn-Tucker (KKT) optimality conditions
in nonlinear programming. In [18] Haws and Meyer focus on KKT problems and compare a few
methods for solving them. Such problems are symmetric and highly indefinite but one of the
methods tested in [18] is to ignore symmetry and use ILUT as a preconditioner on a reordered
system. The reordering used is MC64, the one-sided reordering developed in [14, 15, 23] whose goal
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is to put large entries on the diagonal. Two sets of problems are tested in [18]. We only consider

the first set corresponding to the results reported in Table I of the paper.

Matrix n nnz | nnzpre | lev | Iters | Setup sec. | Iter sec.
stiff4 8496 | 41318 | 73332 4 49 0.09 0.39
stiffs 33410 | 177256 | 341363 6| 112 0.48 6.73
mass04 | 8496 | 56818 | 61799 2 7 0.07 0.04
mass05 | 33410 | 241012 | 259026 5 41 0.35 1.53
mass06 | 33794 | 257220 | 302009 6 20 0.47 0.73

Table 4: Results for five KKT problems.

Matrix | nnzpre | Iters. | Setup sec. | Iter. sec
stiff4 77 118 28 0.129 0.786
stiffs 341417 135 0.575 15.48
mass04 | 68875 3 0.126 0.186
mass05 | 323299 32 0.705 3.902
mass06 | 394821 30 0.806 4.038

Table 5: Results for solving the five KKT systems of Table 4 with ILUT-MC64, as reported in [18].

Table 4 shows the same statistics as those of Table I of [18] plus the number of levels ("lev’)
required for each case for a similar approach which ignores symmetry and solves the problems by
an ARMS-C/GRMRES combination. In the table n and nnz are the size and number of nonzero
entries of the matrix, nnzp,e is the number of nonzero entries required for the preconditioner, and

the rest of the data is self-explanatory. The parameters used for the experiment are listed below.

Drop tolerance Fill-max
nlevmas | tolpp | LU-B GW S LU-S | LU.B GW S LU-S
100 0.25 0.05 0.01 0.01 o0.01 4 4 4 4

The right hand side, initial guess, and convergence criterion are identical with those of [18]. As with
earlier tests we do not attempt in any way to tune the parameters for each separate case. These
were selected to yield comparable number of nonzero elements for the preconditioners as in [18]. In
fact all five problems tested here are relatively easy to solve with the ARMS-C procedure in the
sense that almost any parameter selection would yield convergence. This is not the case for some
matrices (see, e.g., Section 6.2).

As a comparison we reproduce in Table 5 the statistics for the the MC64-ILUT combination
from [18]. As can be seen for similar fill-in, the number of iterations obtained in each case are
comparable. Note that the accelerator used in [18] is BCGSTAB instead of GMRES. Execution
times are not easily comparable as they depend on many factors in addition to the raw speed of
the processors used. The processor used in [18] is an AMD Duron 800 Mhz processor, which is
slower than the Xeon 1.7Ghz on which this experiment has been conducted. On the other hand the
codes in [18] were optimized with the use of ATLAS BLAS. In addition, the algorithms in [18] are
coded in FORTRAN whereas the ARMS-C code is coded mostly in C. The ARMS-C codes have
not been optimized in any way. All that can be said is that by taking into account the speeds of
the processors, the times obtained in these experiments are within a comparable range.

17



Note that the MC-64/ILUT procedure was not the best overall method reported in [18].
However, the point of this experiment is not to show that the method discussed in this paper can
compete with specialized solvers tailored to a given application or structure. It is only to show that
the method can perform reasonably well as a general-purpose solver, in that it can handle KKT

problems as easily as a problem arising from the discretization of PDEs.

7 Conclusion

We conclude with a few remarks and observations regarding the performance of ARMS-C. Our
first observation is that the method seems to perform in a similar way for problems with a very
poor structure as for systems which arise from discretized PDEs. The general consensus has been
that it is not advisable to permute matrices arising from discretized PDEs in an unsymmetric way
before applying some form of ILU. Another observation is that increasing fill-in does not necessarily
improve the quality of the factorization. The situation is similar to that of ILUT and it is related
to the difficulty in predicting the effect of dropping small terms in the factors on the conditioning
of the preconditioned system.

There are a number questions that remain to be answered and issues to be examined. The
first one has to do with the diagonal dominance criterion. This criterion was selected because it
is easy to apply and ensures large diagonal entries in a relative sense to the 1-norm of the row.
However, one can ask if it possible to find a more elaborate criterion, namely one that takes into
account the “stability” of the resulting factors. A related subquestion is the problem of selecting
the parameter 7. The choice made in this paper uses a relative measure which keeps the best rows
according to a rule based on a parameter input by the user. There remains to find a rigorous way
to select the parameter 7, on which performance depends critically.

The second question is related to the dropping strategy. The methods we have tested utilize
a simple threshold criterion but it is clear that one based on estimating the condition number of
the factors [6] would be ideal in this situation.

Finally, our current codes do not attempt to reduce fill-in by other means than dropping.
A simple strategy which can be employed is to use fill-reducing (symmetric) orderings on the B
matrices after they have been generated. A forthcoming paper will be examining some of these

issues.
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ARMS [26], a C code which was developed jointly with Brian Suchomel. I would like to thank John
Haws for providing the matrices used in Section 6.4.
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