
Multilevel ILU with reorderings for diagonal dominance ∗

Yousef Saad†

November 16, 2004

Abstract

This paper presents a preconditioning method based on combining two-sided permutations

with a multilevel approach. The nonsymmetric permutation exploits a greedy strategy to put

large entries of the matrix in the diagonal of the upper leading submatrix. The method can

be regarded as a complete pivoting version of the incomplete LU factorization. This leads

to an effective incomplete factorization preconditioner for general nonsymmetric, irregularly

structured, sparse linear systems.
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1 Introduction

In recent years, preconditioned Krylov subspace methods have made good progress toward their

acceptance as general purpose techniques for solving irregularly structured sparse linear systems.

One may distinguish between two categories of linear systems that are tackled by such methods.

First is the class of linear systems which originate from the discretization of partial differential

equations. Initially, preconditioned Krylov methods were only attempted on problems of elliptic

type, for which a good body of theory existed. Because of their success, these methods have

increasingly been employed on systems arising from various flow problems, Stokes and Navier Stokes

equations, Maxwell’s equations, Helmholtz equations, and other types of models which lead to

indefinite linear systems. The second category of linear systems includes problems which arise

from applications which are not governed by Partial Differential Equations. An archetype of this

class of problems is one that originated from power networks, see, e.g. [21, 18], and which can be

considered in some ways to be at the origin of irregularly structured sparse matrix problems as we

know them today. Nowadays, these problems are considered small and are often best handled by

sparse direct solvers. However, there are somewhat related problems in circuit simulation [13, 38],

which cause difficulties to linear solvers. One may ask whether the distinction between these two

classes of problems is important for a given system solver. For direct solvers, the origin of the

problem has no direct impact on the solution algorithm, except that its ‘geometric’ nature can
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influence complexity. The geometry of the underlying graph may matter more than whether or not

the problem is likely to be highly indefinite, as it may have a major impact on fill-in. In general,

however, the prevailing consensus so far has been that iterative methods are not as successful for

this second class of methods as they have been for the PDE-based problems. As the sizes of the

linear systems are becoming larger and more challenging, this issue has resurfaced recently and

a few methods have been developed to increase the range of applicability of iterative methods.

The work of Olschowka and Neumaier [33] in particular, showed that it is possible to essentially

perform ‘static’ pivoting, prior to Gaussian elimination. Otherwise stated, it is possible to permute

the rows of a matrix in such a way that in many cases pivoting becomes unnecessary during the

elimination process. Olschowka and Neumaier indicated that this could be helpful in an incomplete

LU factorization as well. The work by Duff and Koster described in the articles [23, 24], followed

this idea further by developing efficient codes, and showing that the method can be quite effective

in some cases. Other articles have since tested the idea on various problems, and reported excellent

success, see for example [3, 38].

This paper proposes a reordering method that is similar in spirit to the one described in

[23, 24]. While both methods are based on improving diagonal dominance the one presented in this

paper is essentially ‘dynamic’ instead of ‘static’. It proceeds by levels whereby each level corresponds

to a block which has been extracted from the original matrix by permuting its rows and columns

in a nonsymmetric way.

2 The quest for robust ILUs

Several distinct paths have been taken to improve the robustness of preconditioners for irregularly

structured linear systems. The first 1 is to add partial pivoting to the incomplete LU factorization

with threshold (ILUT), see [35]. The standard ILUT technique often fails for irregularly structured

matrices. Partial column pivoting can be added to ILUT and this yields the ILUTP algorithm, [35].

Pivoting does help but there is no guarantee that a factorization will even be produced in some

cases. One of the most common cases of failure results from the appearance of zero rows during

factorization caused by the combination of permutations and dropping. However, ILUTP can work

rather well if substantial fill-in is allowed – but the cost of the factorization may become prohibitive.

The second class of methods, which became popular in recent years, avoids ILU factorizations

altogether and utilizes instead one of several methods to compute an approximation to the inverse

of A directly, see, e.g., [5, 7, 8, 15, 27, 29]. Initially, these “approximate inverse methods” have been

primarily developed for their parallelism. However, they are often viewed as robust alternatives to

ILU factorization preconditioners, see e.g., comments in [4, 6]. Though the factors produced by

these methods do not suffer from the instability which plagues incomplete factorizations, they tend

to require more memory and to cost more to build.

A third approach is to use a form of preordering whose goal is to move large entries of

the matrix to the diagonal. In this method, the matrix is ordered on one side (e.g., rows only).

Then pivoting is obviated during Gaussian elimination [24, 23]. The combination of ILU-type

preconditioners with such a reordering strategy has been shown to be quite effective [3, 24, 23, 38].

1The order is not chronological.
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The last class of methods we will mention has been developed following the work by Bollhöfer

[9] which addresses the problem of rigorous dropping in ILU-type methods. These methods are

founded on the intimate relationships between ILU factorizations and approximate inverse tech-

niques [10]. Small terms are usually dropped in ILU either by considering their location (positional

dropping) or their magnitude (threshold dropping) in some relative sense. The first approach works

well for regularly structured problems arising from PDEs but it is not designed for the more general

case. The second is generally applicable but the greedy criterion on which it is based focusses on

making LU close to A instead of making the preconditioned matrix close to the identity. It is often

observed that the resulting factors are very ill-conditioned and this leads to poor performance. A

better strategy was defined in [9] which exploits condition number estimators for dropping terms

whose removal is least likely to be detrimental to the preconditioner. This strategy was combined

with a Crout implementation of ILU in [31].

In contrast with similar existing strategies the method discussed in this paper does not attempt

to fill the whole diagonal of the original matrix with large entries. Instead, a more progressive,

multilevel, approach is taken whereby the unknowns associated with the upper leading submatrix

are eliminated and the process is repeated on the reduced system. An alternative view of the process

is that of a block complete pivoting ILU. Viewed from this angle, the process consists of finding two

permutations P and Q such that

PAQT =

(

B F
E C

)

in which the B matrix has large diagonal entries. The unknowns associated with the B block

can now be “safely” eliminated and the process repeated on the reduced system. Preconditioning

techniques developed in this paper obtain approximate factorizations derived from this strategy.

The method can also be regarded as a nonsymmetric version of the Algebraic Recursive Multilevel

Solver, which uses symmetric permutations (i.e., P = Q). Numerical experiments indicate a marked

improvement in robustness over using symmetric permutations.

Note that in the ideal case, B would be of the same size as A. One can think, for example, of

an algorithm that would yield a B matrix that is diagonal and contains most of the large entries of

the matrix A. However, forcing B to be diagonal could severely limit its size in general, resulting

in an expensive option.

We now briefly discuss practical issues surrounding pivoting for incomplete factorization.

When a row version of delayed-update Gaussian elimination (the so called IKJ version, see [26,

p. 99]) is used, it is relatively easy to incorporate column pivoting. Since the pivoting is local, i.e., it

is oblivious to the rows below the working (k-th) row, dropping may lead to undesired results in later

steps during the ILU factorization. For example, we already mentioned the common occurrence of

zero rows during the process, especially when low levels of fill are used. When it works, the resulting

LU factorization is capable of solving more problems in general, but the loss of structure due to

pivoting results in a much more expensive algorithm, especially in terms of memory usage.

Incorporating partial pivoting in the more common rank-one update variant (so-called KIJ

variant) or other forms of incomplete LU factorizations does not seem to have been undertaken.

However, the more interesting question one might ask is whether or not a form of complete pivoting

is practical in the context of ILU. Searching for the largest entry in the working submatrix at each
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step seems to be exceedingly expensive and impractical. On the other hand, if this were possible,

it would potentially enable to drop more terms. This is because the resulting factors are more

likely to be stable (the norms of their inverses are not too large) and this will cause a milder effect

on the terms dropped, see for example [9, 11]. A simplified argument of this fact is as follows.

Let A = LU + E where E represents the matrix of the terms that have been dropped from the

factorization. Then the split-preconditioned matrix is such that,

L−1AU−1 = I + L−1EU−1 .

This shows that the larger ‖L−1‖ and ‖U−1‖, the smaller the dropped terms must be in order to

obtain a preconditioned matrix that is not too far from the identity. To cope with the issue of cost,

the method presented in this paper essentially resorts to a block pivoting approach that performs

only an approximate version of complete pivoting.

3 Multilevel ILU preconditioners

A common method used to obtain a preconditioner is via a block Incomplete LU factorization, which

involves an approximate Gaussian elimination process based on separating the original unknowns

into a “coarse” and a “fine” set. These terms are borrowed from the AMG literature. In the class of

preconditioners developed in [14, 37, 1, 36] the idea of independent sets or “group-independent” sets

[25, 32, 30, 17, 34] is exploited to define this partition. Block Independent set orderings permute

the original linear system Ax = b into the form
(

B F
E C

)(

u

y

)

=

(

f

g

)

(1)

in which the submatrix B is block diagonal. The ILUM[34] factorization utilizes standard inde-

pendent set orderings which result in a matrix B that is diagonal. In this situation, it is easy to

eliminate the u variable to obtain a system with only the y variable. The coefficient matrix for

this ‘reduced system’ is the Schur complement S = C − EB−1F which is still sparse, in general2.

This idea was used recursively, applying dropping to S to limit fill-in, and reordering the resulting

reduced system into the above form via independent sets. This is repeated for a few levels until the

system is small enough, or a maximum number of levels is reached. Then the system is solved by

some other, standard, means such as a direct solver or an ILUT-GMRES combination.

3.1 Two-sided permutations

The algorithms described in this paper do not require B to have any particular structure. Instead,

the rows and columns of A are permuted, using two different permutations P (rows) andQ (columns)

which will transform A into the form

PAQT =

(

B F
E C

)

(2)

in which the matrix B has the property of being as diagonally dominant as possible, in a way that

is yet to be specified.
2For example, when B is diagonal, E has no more than nzE nonzero elements per row, and F has no more than

nzF nonzero elements per row, then EB
−1

F will have no more than nzE × nzF nonzero entries per row.
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At the l-th level of the procedure, the coefficient matrix is reordered as in (2) and the following

block factorization is computed ‘approximately’ (subscripts corresponding to level numbers are

introduced):

PlAlQ
T
l =

(

Bl Fl

El Cl

)

≈

(

Ll 0
ElU

−1
l I

)

×

(

Ul L−1
l Fl

0 Al+1

)

, (3)

where

Bl ≈ LlUl (4)

Al+1 ≈ Cl − (ElU
−1
l )(L−1

l Fl) . (5)

When described with the help of recursivity, the procedure consists essentially of three steps. First,

an ordering of the matrix in the form (2) is obtained and applied; Then, an ILU factorization

Bl ≈ LlUl for Bl is computed. Finally, approximations to the matrices L−1
l Fl, ElU

−1
l , and then

Al+1 are obtained. The process is repeated recursively on the matrix Al+1 until a selected number

of levels is reached. At the last level, a simple ILUT factorization, typically with pivoting and very

high fill-in levels can be applied.

The Ai’s will no longer remain sparse in general, since B is no longer assumed to be diagonal

or block-diagonal. Sparsity is regained by dropping small terms in various ways in the construction

of Ll, Ul, L
−1
l Fl, ElU

−1
l , and Al+1. Note that the matrices ElU

−1
l , L−1

l Fl or their approximations

Gl ≈ ElU
−1
l , Wl ≈ L−1

l Fl (6)

which are used to obtain the Schur complement via (5) need not be saved. They are computed

only for the purpose of obtaining an approximation to Al+1. Once this is accomplished, they are

discarded to save storage. Subsequent operations with L−1
l Fl and ElU

−1
l are performed using Ul, Ll

and the blocks El and Fl.

The rationale of the orderings that will be proposed next is that it is critical to have an accurate

and well-conditioned B block in the multilevel factorization discussed above. Alternatively, we can

also think in terms of complete pivoting. Assume for a moment that B is a 1 × 1 block. Then,

clearly one can think of selecting the permutations P and Q in such a way as to move the best

possible pivot from the matrix to location (1, 1). The first row can then be eliminated and the

process could then be repeated for the remaining (n − 1) × (n − 1) matrix. Unfortunately, this

procedure is too costly because of the search required to find the best pivot at each step. A more

effective alternative is to select the best k pivots at the same time, so B now becomes a block of

size k. The next section discusses a few heuristics which use diagonal dominance as a criterion for

selecting the B block.

3.2 The block complete pivoting viewpoint

We begin by introducing the notation and terminology used in describing the algorithms. A pair of

permutations (P,Q) is completely defined from the corresponding two permutations {p1, p2, . . . , pn}

{q1, q2, . . . , qn} of the set {1, 2, . . . , n}. Since we use partial permutations (which define the block

B), we define a matching set M as a set of nM pairs (pi, qi) where nM ≤ n and

1 ≤ pi, qi ≤ n, for i = 1, . . . , nM and pi 6= pj , for i 6= j qi 6= qj , for i 6= j . (7)
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Note that the case when nM = n corresponds precisely to a (full) permutation pair (P,Q). A partial

matching set can be completed into a complete matching set by simply scanning the set of pi’s and

adding entries from the set {1, 2, . . . , n} which are missing, and then repeating the process for the

qi’s. The function returning the number of nonzero entries in a row or column is denoted by nz(.),

so for example nz(ai,:) is the number of nonzero elements in the i-th row of A and nz(a:,j) is the

number of nonzero elements in the j-th column of A.

For lack of a better name we will refer to the class of reordering algorithms to be described in

this section as ‘ddPQ’ orderings (P, Q stand for the permutations used and ‘dd’ indicates that the

ideal permutation would yield a diagonally dominant B block). These are heuristic methods which

consist of two stages. In a first stage, candidate entries aij are ‘preselected’ as possible diagonal

entries. This procedure will also order the candidate entries that are selected by using a certain

measure which will attempt to use a criterion of diagonal dominance and the number of nonzero

entries. The second stage scans these candidate entries in order given by the preselection stage and

decides on accepting or rejecting the entry into the M set.

The simplest preselection algorithm is based on using the ratios

|aij |

‖ai,:‖1
.

A criterion using ratios of this type for the diagonal entries (i = j) was also used in an early version

of ARMS [36] for filtering equations that are least diagonal dominant in a symmetric permutation

setting. Let j(i) be a column index of the largest (in absolute value) entry of row i (|ai,j(i)| ≥ |aij |

for all j). The ratio
|ai,j(i)|

‖ai,:‖1
(8)

can be viewed as a measure of rowwise diagonal dominance of row i if the term (i, j(i)) is permuted

as a diagonal entry. The selection of ai,j(i) as a diagonal term would result in a (weakly) diagonally

dominant row if the above ratio is ≥ 1/2. In practice, we can screen out all entries for which these

ratios are no greater than a certain threshold τ .

In a second step, the preselection algorithm will rank all the pairs (i, j(i)) in preparation for

the next phase of matching, where the permutations P and Q are actually built. The ranking will

simply yield a good order in which to scan the list of pairs when determining which ones are valid or

best to keep. The simplest possibility is to sort the selected pairs (i, j(i) by decreasing value of the

ratios (8). This would favor diagonally dominant rows to be scanned first. However, this ranking

does not take sparsity into account. For example, a dense row may be selected because of a high

diagonal dominance ratio, and this will yield a full Schur complement matrix. To remedy this, we

multiply the above ratios by a quantity that will encourage sparser rows to be selected first. Several

such measures were tested and they lead to similar results. The following measure

|ai,j(i)|

‖ai,:‖1
×

1

nz(ai,:)
(9)

gives higher priority to rows with good diagonal dominance characteristics which are at the same

time sparse. Other possibilities tested incorporated the value nz(a:,j(i)) or both the values nz(a:,j(i))

and nz(ai,:). The following algorithm uses the ratios (9).
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Algorithm 3.1 Preselection

1. Set D = ∅

2. For i = 1, . . . , n do

3. Compute ti = ‖ai,:‖1, and j(i) = argmaxk|aik|

4. if (|ai,j(i)| > τ ti) add (i, j(i)) to D

5. EndDo

6. For each (i, j(i)) ∈ D Do:

7. Compute wi =
|ai,j(i)|

‖ai,:‖1
× 1

nz(ai,:)

8. EndDo

9. Sort D by decreasing order of the weight wi: D = {(i1, j1), (i2, j2), . . . , (inD
, jnD

)}

with: wi1 ≥ wi2 ≥ . . . ≥ winD
.

In order to avoid situations in which the preselection algorithm returns with an empty set,

we scale the threshold τ relative to the largest of these ratios. So, given an input parameter τ0, the

actual threshold τ used in the algorithm is

τ = τ0 ×max
i

[

|ai,j(i)|

‖ai,:‖1

]

. (10)

This ensure that the worst rows on a relative basis will be rejected. The parameter τ0 should be

between 0 and 1 and typical values are in the range 0.1–0.3. If τ0 is strictly less than one, then at

least one row will be preselected.

The algorithm begins by computing the required norms and then in Line 4, it pre-screens the

rows by keeping only those that do show enough diagonal dominance (relative to other rows). This

initial rejection of poor candidate rows will reduce the cost of the next phase which involves a sort

(Line 9.) As discussed above, in order to reduce fill-in, the diagonal dominance ratios are modified.

They are divided by the number of nonzero elements in row i (see Line 7). The last stage of the

algorithm sorts the entries in D in descending order of the resulting ratios.

The above algorithm selects good candidates for diagonal entries according to a simple diagonal

dominance criterion. To complete the process we now need to select pairs to keep in M. We could,

for example, scan all pairs returned by Algorithm 3.1 and keep all the pairs as long as that they

do not violate the requirement in the definition (7). Clearly, the list should be traversed in the

same order in which it is provided by Algorithm 3.1. Therefore, the simplest strategy is a greedy

technique which scans the set D and accepts any pair (pi, qi) such that neither pi nor qi have already

been included in a pair of M.

Algorithm 3.2 Greedy matching set selection

0. Determine the ordered set D by a preselection algorithm. Set count = 0.

1. Set M = ∅ ; Set P (i) = Q(i) = −1 for i = 1, . . . , n

2. For k = 1, . . . , nD Do:

3. Get (ik, jk) the k-th pair in D

4. If (Q(jk) == −1) :

5. Add (ik, jk) to M: (a) count = count+ 1

6. (b) set P (ik) = count; Q(jk) = count ;
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7. EndIf

8. EndFor

Note that normally we would also require that P (ik) == −1 in Line 4, but this is unnecessary

since there is only one (ik, jk) selected for each row and therefore P (ik) can be assigned a positive

value only once. At the completion of the algorithm, the matching set is the set of all pairs (i, j)

such that P (i) and Q(j) are both non-negative. Note also that P (:) represents an incomplete

reverse permutation array. If completed it would simply be the ‘old-to-new’ usual mapping for the

row permutations. Similarly, the Q array represents an incomplete ‘old-to-new’ mapping for the

columns. The only remaining step now is to complete these two permutations. This is achieved by

a simple greedy procedure such as the following one, applied here to P .

1. For i = 1 : n Do:

2. if (P (i) < 0)

3. count = count+ 1

4. P (i) = count;

5. EndIf

6. EndFor

Note that, initially, count must have the value returned by the matching algorithm. The same

procedure as above is applied to complete the permutation Q. We will refer to this procedure as

the ‘greedy completion’ algorithm. It should be mentioned that this simple procedure will allow

zero entries to be introduced in the diagonal of the C block. This is not a problem, for two reasons.

First, it is the Schur complement matrix that counts and when it is built, fill-ins are likely to

be introduced into its diagonal. Second, this block will be further permuted anyway, either by the

recursive application of the process to the new level created, or, if the last level is reached, by column

pivoting in the ILUTP procedure, or the full Gaussian elimination, when solving the system.

This process is illustrated in Figure 1. In the 8× 8 matrix shown on the left of the figure, the

circled entries are the ones preselected by the algorithm, with the numbers in the circles indicating

the ranks attributed by the sorting step in Line 9 of the algorithm. The entries shown in shaded

squares are the other nonzero elements of the matrix.

Observe that, by its nature, the algorithm clearly selects at most one entry per row. However,

there may be more than one selected entry per column. If the greedy matching algorithm is applied,

it will end up accepting 5 pairs, and the status of the arrays P,Q at the end is as follows:

P 5 -1 3 2 -1 4 1 -1
Q 5 -1 -1 1 3 2 -1 4

These are then completed by ‘greedy completion’ into

P 5 6 3 2 7 4 1 8
Q 5 6 7 1 3 2 8 4

Once the permutation is found, the matrix is reordered into the form (2). The thick dashed

lines in the matrix on the right side of the figure correspond to the partitioning in the right-hand

side of (2). Note that there is no particular structure associated with the block B. In the next

block-elimination step, equations from 1 to 5 (first level) of the permuted matrix are eliminated and
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Figure 1: An 8× 8 matrix after the preselection algorithm (left side) and the result of the nonsym-
metric permutation obtained from the greedy matching procedure. Circled numbers are selected
entries and the numbers are the ranks attributed by the preselection algorithm (right).

dropping is applied to the resulting 3× 3 Schur complement matrix. This means that we compute

the factorization (3). This entails computing the ILU factorization of B (equation (4)), and then

computing an approximation to the Schur complement, as shown in (5). If desired, the process can

now be repeated on the next level, i.e., on the Schur complement matrix Al+1.

The outer (Gaussian) elimination procedure stops whenever either a maximum number of

levels is exceeded or the Schur complement becomes small enough. Assume that for the above

example, it is decided that only one level is performed. Then it only remains to solve this last

(3×3) linear system. In our code, this is done with a pivoting ILUTP procedure typically with very

little dropping (as dictated by a parameter). For all purposes, one can think of this as an accurate

solve with Gaussian elimination with column pivoting. ILUTP is selected for the cases when the

last block is not small enough, in order to provide more options to the procedure. Note that one

can easily obtain a singular Schur complement matrix S after dropping is applied. If no dropping

is applied then it is well-known that S will be nonsingular as long as the original matrix and B

are both nonsingular. An important point here is that the permutations P,Q that are sought at

a given level do not have to take into consideration the quality of the resulting Schur complement

Al+1. This matrix will be dealt with at the next level.

Of course, if the original matrix is strongly diagonally dominant, then the process will retain

many rows in the first one or two levels, so the algorithm will require very few levels. In general,

the algorithm requires a small number of levels, unless τ0 is close to one.

If B were to be a diagonal matrix, then the elimination process could be viewed as a multi-

elimination algorithm with complete pivoting. Instead of selecting one pivot at a time, the algorithm

selects the largest possible number of pivots allowed by a greedy approach, in which the selection

criterion attempts to compromise between a diagonal dominance requirement and the number of

nonzero entries in the rows.
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Note that one alternative to Algorithm 3.2, is to use the MC21 procedure which performs

a maximal transversal for bipartite matching, see, e.g., [23, 21, 20, 19]. This algorithm, whose

goal is to find a maximal set of matching pairs, is not expensive and is easy to implement. One

major difference with Algorithm 3.2 is that MC21 does not take into account numerical values, or

any weights assigned to entries. It only finds a row (or column) permutation P such that PA has

nonzero entries on the diagonal.

Another observation is that the procedure will fail when a row or column of the Schur com-

plement is zero. It turns out that this rarely happens in practice. Recall that if B is nonsingular,

and A is nonsingular then S is nonsingular, so the situation will not happen in this ideal case. The

only risk is to make S singular because of dropping, but this is rare with standard threshold-based

dropping procedures.

3.3 Diagonal Scaling

Scaling the row and columns of a general sparse matrix prior to attempting to compute its ILU

factorization is critical to the success of the preconditioner. The effect of row and column scaling on

the quality of the preconditioner is not too well understood, however. When scaling, e.g., the rows

of a non-diagonally dominant matrix by, say, their infinity norms, the effect may not necessarily be

beneficial to the accelerator. This may be due to the fact that scaling affects the degree of non-

normality. Diagonally, or nearly diagonally dominant matrices do not seem to be as much affected

by row/column scaling.

Our research code ARMS-C offers some options for scaling the matrices obtained at each level

and the last level. If requested, rows of the inter-level matrices Ai are first scaled by their 1-norms.

Then, if requested, columns of the resulting matrix are also scaled by their 1-norms. In particular

vectors must be allocated to save the scaling factors for the left and right scaling, at each level.

Though this strategy works well in many cases, experiments reveal that it is not always the best.

As was already mentioned, we have found that the use of scaling may yield a poorer preconditioner

than without any scaling at all (see the numerical tests section), though this situation is somewhat

uncommon. There are also cases when it is best to start scaling the columns first and then the

rows, or scaling rows only or columns only. The issue of scaling in the context of preconditioners

is a topic of great importance, and one that has not been given enough attention in the literature.

Scaling will be revisited in the numerical experiments section.

4 Matching heuristics

We now examine a few alternatives to the greedy approach of Algorithm 3.2. It may be desirable

for example to seek to enforce some form of diagonal dominance in the B part of (1). Having a B

matrix in a form that leads to easy solutions may also be appealing. We have tested a good number

of strategies but show only three here in addition to the greedy technique of Algorithm 3.2.

It is worth it to first examine carefully the problem of enforcing diagonal dominance in B. The

strategy of algorithm 3.2 does not guarantee to produce a B matrix that is diagonally dominant, in

general. The ideal situation would be to find permutations P,Q so that the B block in (2) is exactly

diagonally dominant, as well as of large size. Note that we are restricting the diagonal dominance
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requirement to the rows of B not those of A, i.e., entries in F do not matter. We can state that

the problem is to find a matching set, satisfying (7), such that the corresponding B matrix, which

is defined as

{ap(i),q(j)}i,j=1,...,nM

is diagonally dominant. As can be easily grasped this is a difficult problem since its requirement is

a global one, because the diagonal dominance requirement involves the matching set as a whole.

One possibility for obtaining a diagonally dominant B is simply not to accept any rows

that are not diagonally dominant as rows of A in the preselection algorithm. Taking τ = 0.5 in

Algorithm 3.1 forces candidate rows scanned in Line 4 of the algorithm to be diagonally dominant.

Since the corresponding B rows have fewer (non-diagonal) entries, than the same row of A, then

a fortiori the corresponding row in B will be diagonally dominant. However, this does not work

in general, simply because in many cases, A may not even have one single row that is diagonally

dominant. The sufficient condition used in this strategy is too restrictive. It should be mentioned

that in our codes, the scalar τ is determined on a relative basis by a formula such as (10).

Enforcing diagonal dominance in B is easily achieved by restricting B to be triangular. This

strategy is presented first in spite of its main limitation, which is that it tends to produce a B block

that is small. It will also serve as an introduction to the other matching strategies, which relax the

triangularity restriction.

4.1 Matching for a triangular diagonally dominant B

To obtain a lower triangular matrix, it suffices to mark all column indices of a selected row i so that

they will become ineligible for inclusion in the later steps. In addition, before adding (i, j(i)) to the

set M, we need to verify that the row is diagonally dominant. This gives the following modification

of Algorithm 3.2.

Algorithm 4.1 Reordering for a triangular B block

1. Set M = ∅ ; Set P (i) = Q(i) = −1 for i = 1, . . . , n; Set count = 0 ;

2. For i = 1, . . . , nD Do:

3. If (Q(j(i)) ! = −1) Continue (skip to next i)

4. Compute tB =
∑

k∈ SB(i) |aik|, where SB(i) = {k| k ∈ adj(A, i) ;Q(k) ≥ 0},

5. If tB ≤ |ai,j(i)| then

6. add (i, j(i)) to M : (a) count = count+ 1; (b) P (i) = Q(j(i)) = count;

7. Set Q(k) = −2 for all k’s in adj(A, i) with Q(k) == −1.

8. Endif

9. EndDo

10. Complete matching set M arbitrarily.

The set SB(i) introduced in Line 4, represents the set of column indices that have already been

accepted into B prior to step i. These will represent the indices of the nonzero entries of row P (i) of

the strict lower triangular matrix after permutation. Thus, step 4 computes the sum of the absolute

values of all entries in the strict lower part of the matrix that would become B after reordering.

The next line tests if the corresponding row is (weakly) diagonally dominant. If it is, then the
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candidate pair (i, j(i)) is accepted (Line 6) and all column indices in the row which are not yet

assigned are assigned the value −2, so that these columns will not be selected in future steps. This

ensures that B will be lower triangular. A negative value that is different from −1 is used to allow

proper completion by the greedy completion algorithm.

4.2 Matching for an augmented triangular B

Forcing B to be triangular may be restrictive. It leads to a B block that is typically much smaller

than with the greedy approach of Algorithm 3.2, resulting in a higher number of levels and a more

expensive factorization in the end. The algorithm described next can be viewed as a less restrictive

version of Algorithm 4.1 whereby some entries are allowed in the upper triangular part of B so long

as diagonal dominance is preserved.

At each i-th step, the modified algorithm begins by computing the quantity

t = |ai,j(i)| −
∑

k ∈ SB(i)

|aik| .

Recall that SB(i) is simply the set of indices that correspond to the lower triangular part of row

P (i) of the matrix B. Similarly, we denote by SF (i) the set of column indices that have been

rejected prior to step i. We set nB(i) = |SB(i)| and, similarly, nF (i) = |SF (i)|. Thus, there are

at most nz(ai,:) − nB(i) − nF (i) entries which have not yet been tagged as members of B or F .

If t is negative then this row cannot be diagonally dominant since the lower part of B is already

not diagonally dominant. In this case the algorithm will skip to the next candidate pair. If, on the

other hand, t is positive, then we may accept entries to the right of the diagonal entry of B. In this

case, the algorithm will proceed to accept entries that are not larger than

t

nz(ai,:)− nB(i)− nF (i))

where nB(i) is the number of entries of the row being examined, that are already in B, and, similarly,

nF (i) is the number of entries that are already in F . All other column entries are rejected, i.e., they

are tagged as part of F .

Algorithm 4.2 Augmented triangular B

1. Set M = ∅ ; Set P (i) = Q(i) = −1 for i = 1, . . . , n; Set count = 0.

2. For i = 1, . . . , nD Do:

3. If (Q(j(i)) ! = −1) Continue (skip to next i)

4. Let SB(i) = {k| k ∈ adj(A, i) ;Q(k) ≥ 0},

5. SF (i) = {k| k ∈ adj(A, i) ;Q(k) == −2}.

6. Compute tB =
∑

k∈ SB(i) |aik|, nB = |SB(i)|, and nF = |SF (i)|.

7. If tB ≤ |ai,j(i)| then

8. add (i, j(i)) to M : (a) count = count+ 1; (b) P (i) = Q(j(i)) = count;

9. Compute γ = (|ai,j(i)| − tB)/(nz(ai,:)− nB − nF )

10. For each k in adj(A, i) with Q(k) == −1 Do:

11. If |aik| > γ set Q(k) = −2

12. EndDo
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13. Endif

14. EndDo

15. Complete matching set M arbitrarily.

The resulting rows of B will be row diagonally dominant.

Proposition 4.1 When the permutations P,Q result from Algorithm 4.2 then the matrix B in (2)

is row-wise weakly diagonally dominant.

Proof.Recall that SB(i) is the subset of culumn indices that have been accepted into B prior to

step i and SF (i) is the set of rejected columns prior to step i. Define also S ′B(i) to be the set of all

culumn indices that have been accepted into B at the completion of step i, and Sa(i) to be the set

of entries that have been accepted at step i. So S ′B(i) = SB(i) ∪ Sa(i). Let na = |Sa(i)| and note

na + nB(i) + nF (i) ≤ nz(ai,:), i.e., na ≤ nz(ai,:)− nB(i)− nF (i). Then,

|ai,j(i)| −
∑

k ∈ S′

B
(i)

|aik| = |ai,j(i)| −
∑

k ∈ SB(i)

|aik| −
∑

k ∈ Sa(i)

|aik|

= t−
∑

k ∈ Sa

|aik|

≥ t− na ×
t

nz(ai,:)− nB(i)− nF (i)

≥ 0.

A variation on this procedure consists essentially of adjusting the average γ computed in Line

9 as new entries are accepted. The sum tB as well as the number nB are changed each time a new

entry is accepted into B. This allows to accept more entries. An algorithm of this type is described

next.

4.3 Matching based on dynamic averages

This technique assigns a ‘dynamic’ measure of diagonal dominance of a row when considered as a

row of B at a given step. Each step of the algorithm examines the selected pairs i, j(i) from D. It

begins by computing ρi = |ai,j(i)| which is the entry of the row with largest magnitude. The row

is then scanned to determine how much room is left for accepting new entries into B. This is done

as follows. Prior to step i the algorithm has accepted a number of entries already. These will show

up in the lower triangular part after reordering. The indicator ρi will be adjusted by subtracting

from it the absolute values of all these entries. It will be updated similarly every time a column is

accepted into the B part. Some columns have also been rejected and these will show up in the F

part after reordering. The columns that are left are potential candidates for being accepted in the

B part. The algorithm will reject columns among these based on a criterion similar to the one in

the previous algorithm.

When a row is scanned, an entry |aik| is tested against the current value of ρi divided by the

number of entries that may still potentially be candidates for being accepted in B. If it is less, then

it is accepted into B and ρi is decreased accordingly. If the test is not satisfied the column k is
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marked as not accepted. The counter of the number of entries in the row that are not in B is also

decremented.

Algorithm 4.3 Augmented triangular B with dynamic averages

1. Set M = ∅ ; Set P (i) = Q(i) = −1 for i = 1, . . . , n; Set count = 0.

2. For i = 1, . . . , nD Do:

3. If (Q(j(i)) ! = −1) Continue (skip to next i) (pair (i, j(i) not eligible)

4. Let SB(i) = {k| k ∈ adj(A, i) ;Q(k) ≥ 0},

5. SF (i) = {k| k ∈ adj(A, i) ;Q(k) == −2}.

6. ρ = |ai,j(i)| −
∑

k∈ SB(i) |aik|

7. nz = |adj(A, i)| − |SB(i)| − |SF (i)|.

8. If (ρ < 0) Continue (skip to next i) (reject pair (i, j(i)) )

9. add (i, j(i)) to M : (a) count = count+ 1; (b) P (i) = Q(j(i)) = count;

10. For each (j ∈ Adj(i) such that Q(j) == −1) Do:

11. If (nz ∗ |ai,j | > ρ) then

12. Q(j) = −2 (Reject j )

13. Else (Do not reject j)

14. ρ = ρ− |ai,j | (Update ρ)

15. EndIf

16. nz = nz − 1 (Update nz)

17. EndDo

18. EndDo

19. Complete matching set M arbitrarily.

We now briefly discuss the main steps of the algorithm. The variable ρ can be viewed as a

diagonal dominance indicator for the running row, as a row of B. As long as it is nonnegative then

the current row remains diagonally dominant. Lines 4 to 7 compute the value of ρ at the start,

which is the max value |ai,j(i)| minus the absolute values of the entries ai,j for which the column j

is already a row of B. The number of columns that are still ’undecided’, i.e., that are neither in B

nor in F , is also computed (Line 7) and it is called nz. If the computed initial value of ρ is negative

then clearly row i must be rejected as is done in Line 8. Otherwise the pair (i, j(i)) is added to M

by updating P , Q, and the counter count as is done in Line 9. The loop in Lines 10-17, scans row

i a second time. Each column j that is still undecided (Q(j) == −1), is examined. If |aij | > ρ/nz

then the column is tagged as rejected (Q(j) == −2). Otherwise it is accepted (so far), and the

B-diagonal dominance indicator ρ is updated accordingly. In either case, the number of undecided

columns is reduced by one. It is clear that acceptance into B is only tentative since a column that

is accepted at this step may be rejected later.

As can be easily established, the algorithm produces a matrix B that is row (weakly) diagonally

dominant.

Proposition 4.2 When the permutations P,Q result from Algorithm 4.3 then the matrix B in (2)

is row-wise weakly diagonally dominant.

Proof.Throughout step i of the algorithm, the variable ρ represents the absolute value of the

difference between ai,j(i) and the entries aij that are accepted into the B part, i.e., those for which
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Q(j) will wind up positive after step i−1. After Line 8, the B-part of row i is diagionally dominant

since ρ ≥ 0. When a column is not tagged with −2, then it can potentially become part of B.

Consider now the row at the completion of the next loop (Lines 10-17). At each step when a

column is not rejected (Lines 13-15), a new ρ is computed, ρnew = ρ − |aij | and the new total

potential entries in the B part of the row is also updated as nznew = nz − 1. We have

ρnew = ρ− |aij | ≥ nz|aij | − |aij | = nznew|aij |

which shows that ρ will remain non-negative throughout the step. In the end there will be fewer

entries that are finally accepted (as some columns will be rejected in later steps). Therefore the

resulting row of B will remain diagonally dominant.

5 Cost analysis of multilevel nonsymmetric orderings

The first concern when considering the use of the algorithms described above is likely to be in regards

to its cost, specifically the cost of obtaining the pair of permutations. Obtaining the permutations

may be expensive with a poor implementation or a poor choice of parameters.

Consider the preselection algorithm first and let nnzl be the number of nonzero elements in

Al. At each level there are nnzl potential candidates to become diagonal entries. The parameter τ

allows to eliminate a large fraction of them with the goal of reducing the cost. The algorithm starts

by obtaining the largest entry in each row at the cost of nnzl. In the second phase of the algorithm,

weight factors are computed for each of the nD entries of D at the cost of O(nD). Finally, the

entries in D are sorted according to these weights, at the cost of O(nD log nD). Since we do not

have an idea of the size of nD, we need to make an assumption which will enable us to obtain an

estimate. We will assume that from one level to the next the size nl of the matrix Al is reduced by

a constant ratio K. In other words, referring to the splitting (3), we assume that

size(Al)/size(Al+1) ≈ K > 1 .

On average this is a fairly representative model. It is clear that K will depend on τ as well as on

the structure of the matrix, its number of nonzero elements per row, etc.. At each level the size

of D is a fraction of nl, the matrix size at level l. Since we limit the fill-in in each row, (see the

parameters used in the experiments) the number nnzl of nonzero entries in Al is a multiple of nl

(in worse situations it can possibly be as high as nl log nl but this does not affect the end result).

With this the cost at each level becomes

O(nnzl) +O(nD log nD) ≤ βnl + γnl log nl ∼ γnl log nl .

If we have p levels the total cost will be of the form

T (n) = γ
[

n log n+
n

K
log

n

K
+

n

K2
log

n

K2
+ · · ·+

n

Kp
log

n

Kp

]

= γ

p
∑

i=0

[ n

Ki
log

n

Ki

]
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= γ

p
∑

i=0

[

n log n

Ki
− i

n logK

Ki

]

= γ

[

K −K−p

K − 1
n log n− n log(K)

p
∑

i=0

i

Ki

]

.

A close look at the second term in the final expression reveals that it is of order n, since the sum of

i/Ki is bounded by a constant which depends only on K (and not p). In the end,

T (n) ≈ γ
K

K − 1
n log n .

As can be seen, when K is close to one, the algorithm will do poorly, reflecting the fact that the

diagonal dominance criterion does not reject enough rows at each level. The analysis indicates that

the overall cost for obtaining the permutation is dominated by the sorting step in the preselection

phase. In fact, it is clear that an exact sort is not necessary and could easily be replaced by an

inexact and less expensive sort. For example, it is possible to reduce the cost of the sorting step by

grouping the ratios into a small number of nearby representatives and resorting to a bucket sort.

This would lead to a cost of O(n).

The cost of the matching algorithm, for example, Algorithm 4.2, is easier to estimate using a

similar model. Once again, the main assumption is that nnzl is a small multiple, say α, of nl - due

to the dropping strategy. So on average each row of Al has α nonzero elements. In this case the

cost of the i-th step of Algorithm 4.2 is O(nD)× α, with nD ≈ nl/K. Adding these costs for each

level, will yield

nα

[

1

K
+

1

K2
+ · · ·+

1

Kp

]

≈
nα

K − 1

a cost which is linear in n, and which shows a similar degradation as for the preselection algorithm,

when K is close to one.

6 Numerical tests

We have implemented a version of the algorithm described in earlier sections by using the ARMS

framework [36]. We refer to the resulting algorithm as ARMS-C (C for complete pivoting). The

goal of the experiments in this section is to illustrate the performance of the ARMS-C strategy as

well as to give an idea on its cost and the effect of some parameters. The experiments in Section 6.2

and 6.3 were performed on one processor of an IBM/SP computer. The processor is a 375 MHz

Power3 (Winterhawk) node with 4 GB of memory. All other experiments were performed on a

Linux platform with two 1.7 Xeon GHz processors, a 256KB cache, and 1GB of main memory.

6.1 Comparing matching strategies

We begin this section with a comparison of a few matching strategies. In the following experiments,

we use only one preselection technique, namely the one described by Algorithm 3.1. We run a

number of strategies and attempt to solve a sequence of linear systems from the Harwell-Boeing

collection [22]. The linear systems are obtained from all those matrices from the RUA collection

whose size is 500 or higher. There are 58 matrices that satisfy this criterion and their names are
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BP1000 822 BP1200 822 BP1400 822 BP1600 822
BP200 822 BP400 822 BP600 822 BP800 822
FS5411 541 FS5412 541 FS5413 541 FS5414 541
FS6801 680 FS6802 680 FS6803 680 FS7601 760
FS7602 760 FS7603 760 GEMAT11 4929 GEMAT12 4929
GRE1107 1107 GRE512 512 JPWH991 991 LNS3937 3937
LNS511 511 LNSP3937 3937 LNSP511 511 MAHINDAS 1258
HBMCFE 765 NNC1374 1374 NNC666 666 ORANI678 2529
ORSIRR1 1030 ORSIRR2 886 ORSREG1 2205 PDE9511 961
PORES2 1224 PORES3 532 PSMIGR1 3140 PSMIGR2 3140
PSMIGR3 3140 SAYLR3 1000 SAYLR4 3564 SHERMAN1 1000
SHERMAN2 1080 SHERMAN3 5005 SHERMAN4 1104 SHERMAN5 3312
HBSHL0 663 SHL200 663 SHL400 663 STEAM2 600
WATT1 1856 WATT2 1856 WEST0655 655 WEST0989 989
WEST1505 1505 WEST2021 2021

Table 1: The 58 matrices from the Harwell-Boeing collection with sizes (shown to their right) ≥ 500

listed in Table 1 along with their sizes. If one (or several) right-hand sides is (are) provided then

the system with this (the first) righ-hand side is solved. Otherwise an artificial right-hand side is

taken, which is formed by taking b = A∗e, where e is the vector of all ones. The iteration is stopped

whenever the residual norm has been reduced by 8 orders of magnitude. This does not necessarily

mean that the solution that is computed is accurate, because the matrices involved may be highly

ill-conditioned. Since right-preconditioning is used, the tests are on the actual residuals not the

preconditioned ones.

In spite of their rather small sizes, some of the matrices in this list cause difficulties to iterative

solvers. It is for example not easy to find an iterative procedure which solves all the systems with

the same input parameters. Most of the matrices are irregularly structured, and some have a very

irregular pattern. The next plots show a comparison of the performance of GMRES preconditioned

with ARMS-C with various matching strategies. We compare four methods:

• The greedy strategy of Algorithm 3.2,

• The triangular B algorithm described by Algorithm 4.1,

• The augmented triangular B technique as described by Algorithm 4.2

• The algorithnm of dynamic averages described by Algorithm 4.3.

The parameters used for the experiment are listed below

Drop tolerance Fill-max
nlevmax tolDD LU-B GW S LU-S LU-B GW S LU-S

100 0.1 0.001 0.01 0.001 0.01 10 10 10 5

In the table, nlevmax is the maximum number of levels allowed, tolDD is the tolerance τ0 used in

the preselection algorithm, see (10). The next 4 parameters define the dropping factors for the

factorization algorithms. The drop tolerance for LU-B is the one used in the ILUT factorization

[35] of the B block, while the one denoted by GW is used when computing the matrices Gl and
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Wl defined by (6) at each level. The drop tolerance used to compute S from Gl and Wl is given

next. Finally, the drop tolerance for the ILU factorization at the last level is given. The incomplete

factorization with column pivoting (ILUTP) is used for this. The next set of columns define the

upper limit for fill-ins for each of these computations in the same order. Note that these numbers

are the multiples of the average number of nonzero elements, i.e., at the l-th level the actual amount

of nonzero entries allowed in each row is fillmax ∗ nnz(Al)/n. Another parameter not shown here

is the cut-off dimension for the last level which is set to 100. This means that no further levels are

sought when the dimension of the Schur complement is ≤ 100 or when the maximum number of

levels allowed is reached. We ran ARMS-C with different matching strategies with the exact same

parameters given above for all 58 linear systems.
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Figure 2: Experiment with 58 HB matrices showing the number of converged systems among 58,
versus iteration count.

The incomplete factorizations were computable in all cases. However, the iteration phase was

not successful in all cases. An iteration was labeled as a failure when the residual norm was not

reduced by 8 orders of magnitude in fewer than 200 GMRES steps. We used GMRES with a restart

of 100. This was done in order to measure the quality of the preconditioner alone in distinction

from that of the accelerator.

The results are divided in two plots for better clarity. The left side of Figure 2 shows the

number of successful solves requiring iteration counts of 80 or less and the right side those requiring

more than 80 steps. For better visibility, the curves have been slightly shifted in order to avoid

superposition. As can be observed the strategy of Algorithm 4.3 handles harder problems quite well

(right side of figure) while Algorithm 4.1 yields faster convergence on easier problems (left side of

figure).

A standard preconditioner which is often used for comparison purposes is ILUTP (ILU with

Threshold and Pivoting [35]). When a good amount of fill-in is allowed the preconditioner can be

fairly robust. However, it does not perform well for matrices with highly irregular patterns and

when not enough fill-in is allowed. For comparison purposes, we ran ILUTP-GMRES under similar

conditions on the 58 problems. Specifically, we selected a drop tolerance of 0.01 and a fill-in limit of

3 ∗ nnz(A)/n, which means that each row of the factors L and U have at most 3 times the number
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Average Average Successful
Method Fill-fact Iter. count Iterations
ILUTP 2.71 12.12 43
Alg. 3.2 1.61 20.58 43
Alg. 4.1 1.87 15.00 51
Alg. 4.2 1.63 17.23 52
Alg. 4.3 1.65 22.11 54

Table 2: Some statistics on the tests with the 58 HB matrices

of nonzero elements per row of A. To give an idea on the overall performance, we show in Table 2

the average fill-factor and average iteration count for each successful case for all methods, including

ILUTP. The fill factor reflects the memory requirement of the preconditioner and is defined as the

ratio of the number of nonzero elements of the resulting preconditioner over that of the original

matrix.

It is interesting to note that ILUTP required far more fill-in to solve the same number of

problems (43) as the worst performer among the ARMS-C algorithms. The average iteration counts

are not indicative of robustness. Since the fill-in is rather high, the iteration counts for the easy

problems is usually a very small number for the (fewer) successful runs of ILUTP, which leads to a

low average among the 43 successful cases. This is in contrast with the ARMS-C strategies which

solve more of the harder problems but, as can be expected, at the cost of a larger number of GMRES

steps on average.

ILUTP was able to solve some of the problems for which it failed in the above test. However,

this was achieved at the cost of much more memory.

6.2 Effect of the filtering parameter τ0

We vary the parameter τ0 used in the preselection algorithm and compare the iteration number

and the times to compute the factorization for a system associated with the matrix twotone from

the University of Florida sparse matrix collection [16]. This matrix is known to cause difficulties

to standard ILUT and ILUTP preconditioners. The parameters used for the test are given in the

following table

Drop tolerance Fill-max
nlevmax tolDD LU-B GW S LU-S LU-B GW S LU-S

200 varies 0.001 0.0001 0.001 0.01 10 10 10 5

Algorithm 4.3 was used to obtain the P,Q permutations.

For this matrix the ARMS-C procedure requires unusually small values for the drop tolerances

before the preconditioner starts yielding a converging iteration. On the other hand, and somewhat

surprisingly, the resulting fill-factor is not too large, and convergence can be obtained for fill-factors

below 2. This phenomenon is not observed too often and is likely related to the structure of the

problem. ILUTP did not yield convergence for this problem, even for a fairly large fill-factor.

As τ0 increases from 0.0 to 0.4 one can observe a steady improvement in the convergence of

the algorithm while the fill-factor remains almost the same. Therefore a better quality factorization

is being computed with about the same amount of fill. Then the iteration count sees a sizable
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τ0 filf lev iter setup sec iters sec
0.00 1.75 91 81 5.96e+01 6.84e+01
0.10 1.79 90 74 6.05e+01 6.24e+01
0.20 1.75 97 87 5.90e+01 7.45e+01
0.30 1.78 117 71 7.01e+01 6.19e+01
0.40 1.80 145 47 8.70e+01 4.29e+01
0.50 1.89 193 34 1.18e+02 3.60e+01
0.60 1.91 200 28 1.46e+02 3.41e+01
0.70 1.95 200 27 1.64e+02 4.14e+01
0.80 1.95 200 29 1.72e+02 5.45e+01
0.90 1.91 200 35 2.34e+02 9.73e+01

Table 3: Performance of ARMS-C for various values of τ0 for the Twotone matrix

decrease, reaching the smallest number of 27 when τ0 = 0.7. At this point the maximum number of

levels, which has been set to 200, is reached and the fill-factor increases. Eventually, the iteration

starts to deteriorate slowly reaching 38 when τ0 = 0.9. For a small value of τ0 more entries are

initially preselected. For example when τ0 = 0 all the largest entries in each row are candidates.

They are then sorted using a measure which mixes diagonal dominance with the number of nonzero

entries. The resulting algorithm is more tolerant of nondiagonal dominance. Selecting a larger τ0

sets a stricter condition for accepting an entry as a candidate. Excluding more rows in this way

results in more robust, often faster, convergence, but this increases the number of levels as can be

seen in the table. In fact the number of levels shown in the table for τ0 ≥ 0.7 is the limit allowed.

One may wonder why the iteration time is not proportional to the amount of fill of the

factorization and the iteration count. For example when between τ0 = 0.8 and τ0 = 0.9, the

iteration time jumps 78% while the iteration count increases only 20%. This is likely due to the

fact that the last Schur complement is much larger for the latter case.

6.3 Effect of the number of levels

One important consideration when using ARMS-C, is the number of levels. At one extreme when

only one level is used, ARMS-C will yield the ILUTP factorization. Indeed, the procedure considers

the matrix at the top level to be the Schur complement matrix and uses ILUTP to factor it.

Large Schur complements are likely to lead to expensive factorizations. The current code uses as

a parameter the maximum number of levels and the smallest allowable Schur complement which is

usually set to 100, i.e., as soon as a matrix Al+1 in (3) reaches a size of 100 or smaller the procedure

stops generating more levels. In the next experiment we explore this with a goal of demonstrating

the beneficial effect of a multilevel approach in contrast with one that is based on one or very few

levels.

The matrix used in this test arises from the simulation of a 2-dimensional flow in a driven cavity

and is available from the matrix market 3 under the name E40R0100 in the collection DRIVCAV.

Its size is n = 17, 922 and it has nnz = 567, 467 nonzero entries. The Reynolds number for the

example is 100. The parameters used for the experiment are listed below

3http://math.nist.gov/MatrixMarket/
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Figure 3: Iteration and fill-factor for the driven cavity problem, versus the number of levels (left-
side) and τ0 parameter (right-side). The right plot uses a slightly different set of parameters.

Drop tolerance Fill-max
nlevmax tolDD LU-B GW S LU-S LU-B GW S LU-S
varies 0.2 0.01 0.05 0.05 0.01 6 6 6 6

The stopping criterion is as before, namely the norm of the residual should be reduced by 8

orders of magnitude. The case nlevmax = 0 corresponds to ILUTP - with the drop tolerance 0.01

and a max fill-in of 6 × nz/n. Figure 3 shows the number of GMRES iterations as well as the

resulting fill-factor when the number of levels varies fom zero to 30. Note that for this case only

27 levels were required before the Schur complement matrix reached the smallest allowable size of

100, so the case nlevmax = 30 was never reached. The plot shows a fairly regular decrease in the

fill-factor as the number of levels increases. At the same time, the iteration count increases and

then levels off at around 75.

A different perspective on this experiment would be to vary the parameter τ0 as was done in

the previous section and let the number of levels be as large as required. With the set of parameters

used in the previous experiment, the maximum number of levels for the matrix E40R0100 was 27.

In order to obtain larger numbers of levels, we tightened the drop tolerance slightly by halving the

two drop tolerance values of 0.05 used for the G,W matrices and the Schur complement to 0.025.

The parameter τ0 is varied from 0.0 to 0.7 with increments of 0.05. The plot to the right of Figure

3 shows the result. Essentially, the fill-factor remains in a rather narrow band [1.93 2.23], while

the iteration count changes but not substantially. The additional axis shows the number of levels

required for each case. These numbers are much bigger than the ones obtained with a drop tolerance

of 0.05. This last experiment as well as the one in Section 6.2 and others not reported here, suggest

that it is best not to limit the number of levels to a too small number. Limiting the number of

levels in this way may lead to a large last Schur complement matrix which is then poorly handled

by the ILUTP approach.
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6.4 Solution of KKT problems and a comparison

The ARMS-C procedure can be applied to solve saddle-point problems such as those arising from the

incompressible Navier-Stokes equations or from Karush-Kuhn-Tucker (KKT) optimality conditions

in nonlinear programming. In [28] Haws and Meyer focus on KKT problems and compare a few

methods for solving them. Such problems are symmetric and highly indefinite but one of the

methods tested in [28] is to ignore symmetry and use ILUT as a preconditioner on a reordered

system. The reordering used is MC64, the one-sided reordering developed in [23, 24, 33] whose goal

is to put large entries on the diagonal. Two sets of problems are tested in [28]. We only consider

the first set corresponding to the results reported in Table I of the paper.

Matrix n nnz nnzpre lev Iters Setup sec. Iter sec.
stiff4 8496 41318 73332 4 49 0.09 0.39
stiff5 33410 177256 341363 6 112 0.48 6.73
mass04 8496 56818 61799 2 7 0.07 0.04
mass05 33410 241012 259026 5 41 0.35 1.53
mass06 33794 257220 302009 6 20 0.47 0.73

Table 4: Results for solving five KKT problems with ARMS-C.

Matrix nnzpre Iters. Setup sec. Iter. sec
stiff4 77 118 28 0.129 0.786
stiff5 341417 135 0.575 15.48
mass04 68875 3 0.126 0.186
mass05 323299 32 0.705 3.902
mass06 394821 30 0.806 4.038

Table 5: Results for solving the five KKT systems of Table 4 with ILUT-MC64, as reported in [28].
Note that the times are not directly comparable with those of Table 4.

Table 4 shows the same statistics as those of Table I of [28] plus the number of levels (‘lev’)

required for each case for a similar approach which ignores symmetry and solves the problems by

an ARMS-C/GRMRES combination. In the table n and nnz are the size and number of nonzero

entries of the matrix, nnzpre is the number of nonzero entries required for the preconditioner, and

the rest of the data is self-explanatory. The parameters used for the experiment are listed below.

Drop tolerance Fill-max
nlevmax tolDD LU-B GW S LU-S LU-B GW S LU-S

100 0.25 0.05 0.01 0.01 0.01 4 4 4 4

The right hand side, initial guess, and convergence criterion are identical with those of [28]. As with

earlier tests we do not attempt in any way to tune the parameters for each separate case. These

were selected to yield a comparable number of nonzero elements for the preconditioners as in [28].

In fact all five problems tested here are relatively easy to solve with the ARMS-C procedure in the

sense that almost any parameter selection would yield convergence. This is not the case for some

matrices (see, e.g., Section 6.2).
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As a comparison we reproduce in Table 5 the statistics for the MC64-ILUT combination from

[28]. As can be seen for similar fill-in, the number of iterations obtained in each case are comparable.

Note that the accelerator used in [28] is BCGSTAB instead of GMRES. Execution times are not

easily comparable as they depend on many factors in addition to the raw speed of the processors

used. The processor used in [28] is an AMD Duron 800 Mhz processor, which is slower than the Xeon

1.7Ghz on which this experiment has been conducted. On the other hand the codes in [28] were

optimized with the use of ATLAS BLAS. In addition, the algorithms in [28] are coded in FORTRAN

whereas the ARMS-C code is coded mostly in C. The ARMS-C codes have not been optimized in

any way. All that can be said is that by taking into account the speeds of the processors, the times

obtained in these experiments are within a comparable range.

Note that the MC-64/ILUT procedure was not the best overall method reported in [28].

However, the point of this experiment is not to show that the method discussed in this paper can

compete with specialized solvers tailored to a given application or structure. It is only to show that

the method can perform reasonably well as a general-purpose solver, in that it can handle KKT

problems as easily as a problem arising from the discretization of PDEs.

Matrix order nonzeros Application (Origin)
barrier2-9 115,625 3,897,557 Semiconductor Device (UFL, Schenk set)
matrix 9 103,430 2,121,550 Semiconductor Device (UFL, Schenk set)
matrix-new 3 125,329 2,678,750 Semiconductor Device (UFL, Schenk set)
ohne2 181,343 11,063,545 Semiconductor Device (UFL, Schenk set)
para-4 153,226 5,326,228 Semiconductor Device (UFL, Schenk set)
cir2a 482,969 3,912,413 circuit simulation
scircuit 170998 958936 Digital circuit simulation (UFL, Hamm set)
circuit 4 80209 307604 Circuit simulation (UFL, Bomhof set)
wang3.rua 26064 177168 Device simulation (UFL, Wang set)
wang4.rua 26068 177196 Device simulation (UFL, Wang set)

Table 6: General information on 10 test matrices

6.5 Tests with larger matrices

Apart from the test in Section 6.2 with the matrix twotone, the linear systems of the earlier

numerical tests are all relatively small. In this section we report on some tests performed with

larger, more realistic, matrices arising from applications which are known to cause difficulties to

iterative solvers. We selected 10 matrices, most of which have already been used as test problems in

the literature. The first 5 matrices were taken from [38]. They are the largest linear systems in size

taken from [38], if the matrix pre2 therein is ignored. For the system pre2 no method among those

reported in [38] worked and a similar conclusion was reached with ARMS-C. These 5 matrices,

which originate from device simulation, are available from the Schenk sets of the University of

Florida collection [16]. Along with these matrices, we also selected the two largest matrices from

the paper [2], namely the matrix circ2a and the matrix scircuit. The matrix scircuit can

also be obtained from the set Hamm of the University of Florida collection, while the larger matrix

circ2a was sent to us by Achim Basermann [2]. Finally, we added the 2 largest matrices (wang1,
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wang2) from the Wang set of the University of Florida collection, and the largest matrix (circuit 4)

from the set Bomhoff of the same collection. These examples are all from circuit simulation. Some

general information on all 10 matrices is shown in Table 6.

We tested ARMS-C, based on the ddPQ ordering given by Algorithm 4.3 on all 10 matrices

with the following parameter settings:

Drop tolerance Fill-max
nlevmax tolDD LU-B GW S LU-S LU-B GW S LU-S

40 0.1 0.01 0.01 0.01 1.e-05 3 3 3 20

The parameters for the ILUTP preconditioner for the last level essentially lead to a direct solve.

Another parameter not shown here is the cut-off dimension for the last level which is set to 300.

No further levels are sought when the dimension of the Schur complement is ≤ 300 or when the

maximum number of levels allowed (40) is reached.

We ran two tests with the GMRES accelerator, one with a restart dimension of 60, the other

with a restart dimension of 100. Note that memory is allocated dynamically for the basis vectors

required by GMRES(k). In both cases, the iteration was stopped whenever either a maximum

number of iterations of 300 was reached or the initial residual was reduced by 10−8. The times are

in seconds on the 1.7Ghz Xeon processor mentioned earlier. The iteration times are repeated for

the case when GMRES(60) and GMRES(100) take the same number of iterations (these correspond

to the exact same operations and should be the same under ideal conditions).

Of all the matrices tested, only scircuit failed to reduce the residual by 8 orders of magnitude

in 300 steps with the set of parameters selected above. In 300 steps the residual norm was reduced

by ≈ 1.8 × 10−07 by GMRES(100) and by 3.13 × 10−7 by GMRES(60). This particular matrix is

a good representative of those situations mentioned earlier in which row/column scaling does not

necessarily help. If the exact same parameters are used, but no row or column scaling is performed

(set by parameters in ARMS-C) then, as is shown in Table 8, GMRES(100) does succeed in reducing

the residual norm by 8 orders of magnitude in 297 steps, while GMRES(60) also achieves the same

result in 400 steps. Table 8 also shows an additional test for the same matrix when no scaling is

used. Here the drop tolerance parameters labeled “LU-B”, “GW”, and “S”, which were set to 0.01

Fill Set-up GMRES(60) GMRES(100)
Matrix Factor Levels Time Its. Time Its. Time
barrier2-9 0.62 5 4.01e+00 113 3.29e+01 93 3.02e+01
matrix-new 3 0.89 8 7.53e+00 40 1.02e+01 40 1.00e+01
matrix 9 1.77 9 5.53e+00 160 4.94e+01 82 2.70e+01
ohne2 0.62 6 4.34e+01 99 6.35e+01 80 5.43e+01
para-4 0.62 5 5.70e+00 49 1.94e+01 49 1.93e+01
wang3 2.33 4 8.90e-01 45 2.09e+00 45 1.95e+00
wang4 1.86 4 5.10e-01 31 1.25e+00 31 1.20e+00
scircuit 0.90 4 1.86e+00 Fail 7.08e+01 Fail 8.80e+01
circuit 4 0.75 2 1.60e+00 199 1.69e+01 96 1.07e+01
circ2a 0.76 3 2.19e+02 18 1.08e+01 18 1.03e+01

Table 7: Solution of the 10 systems in Table 6 with GMRES(60) and GMRES(100) preconditioned
with ARMS-C.
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Fill Set-up GMRES(60) GMRES(100)
Factor Levels Time Its. Time Its. Time

Same parameters 0.89 4 1.81e+00 400 9.13e+01 297 8.79e+01
Drop-tol = 0.001 1.00 5 1.89e+00 98 2.23e+01 82 2.27e+01

Table 8: Solution of the system scircuit when no scaling is used, using two different sets of
parameters.

in this experiment, are changed to 0.001. The resulting convergence is much faster. It should be

noted that convergence is also achieved with these values of the drop tolerance for the situation

when row/column scaling is used, although it is much slower.

Observe that the fill-factors, the memory required for the preconditioner normalized by that

required for the original matrix A, are generally quite modest. It is less than one in 7 of the 10 cases.

Not seen in the reported results is a peculiar behavior of the solver with the matrix circuit 4 as

well as with the matrix circ2a. In contrast with most other systems, results with circuit 4 were

exceedingly sensitive to parameters and even to the initial guess (which is always a random vector).

Regarding the matrix circ2a, it can be observed in the table that the time to compute the

preconditioner appears to be abnormally high, relative to the other test cases. This matrix is the

largest in size among the 10 tested, but it is not the largest in terms of the number of nonzero

entries. The first reaction to this might be that the algorithms have some hidden cost associated

with the size n rather than the nonzero entries. A test with the matrix pre2 mentioned earlier

disproved this. This matrix is of size n = 659, 033 and has nz = 5, 959, 282 nonzero entries. Yet,

the same parameters produced the factorization in almost an order of magnitude less time (24.2

seconds to be exact) on the same platform. The fill-factor was 0.99 which was even higher than that

for circ2a. We examined the sizes and numbers of nonzero entries of the matrices obtained at each

level. The method stopped prematurely with a C block of size zero yielding the previous level (3rd

one in this case) as the last level. This level had a size of 4,679 which is somewhat large. Indeed, no

fill-minimizing ordering is performed prior to factoring the last Schur complement, because in most

cases the last Schur complement is a small matrix of size a few hundreds at most. However, further

examination revealed that, quite remarkably, this last Schur complement is a diagonal matrix. This

in fact explains why the algorithm stopped prematurely. In the end, we reached the only plausible

explanation that some intermediate matrices that were generated were quite dense, before they

were sparsified by dropping. Selecting a different filter parameter τ0 can force a larger number of

levels and reduce the set-up substantially in this case. For example, with τ0 = 0.7, 18 levels were

used, with a fill factor of 0.77, quite close to the previous case. The set-up time was reduced to

43 seconds. The number of GMRES steps was also reduced from 18 to 12 (but the iteration time

increased slightly to 12.1 seconds due to the larger number of levels).

6.6 Available software and other tests

The algorithms described in this paper are part of a recent package, called ILUPACK, developed

primarily by Matthias Bollhöfer [11]. The package is available from Bollhöfer’s web-site, see [12]. It

offers a large selection of preconditioners, many of which utilize the inverse-based dropping technique
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mentioned in the introduction, see also [9]. Along with software, the site offers also a repository of

statistics on a sizable number of numerical experiments with various methods. These experiments

show in particular a number of comparisons with the similar MC-64 strategy.

7 Conclusion

We conclude with a few remarks and observations regarding the performance of ARMS-C and on

issues remaining to be examined. Our first observation is that the method seems to perform well

as a general purpose alternative to a direct solver. Though the algorithms do not compete with

the robustness of direct solvers, they can often tackle problems that were inaccessible to iterative

solvers so far, at a small fraction of the memory and computational costs required by direct solvers.

Note also that the methods perform in a similar way for problems with a very poor structure as

for systems which arise from discretized PDEs. There are, however, a number of questions that

remain to be answered and issues to be examined for a better understanding of the general approach

proposed in this paper.

One of the primary concerns with a strategy such as the one described in this paper is the

large number of tunable parameters available. With such variety it may be indeed difficult to find

the best fit for a given linear system. However, in a software package, one may simply fix most

of these parameters without causing serious harm to performance. The primary candidates for

this ‘hard-wiring’ are the maximum number of levels allowed (along with the minimum size of the

Schur complement before switching to ILUTP), and the diagonal dominance filtration parameter τ0.

Indeed, when the better matching algorithms are used (Alg. 4.3 or Alg. 4.2) performance does not

vary too much with these parameters for most problems. The other parameters left are those that

control fill-in, i.e., the accuracy of the factorization. Although our research code provides separate

fill-in parameters for various parts of the factorization at a given level, these can be taken to be

the same as was done in most of our experiments. The drop tolerance and fill-in parameters can

be fixed to provide a very accurate factorization for the last level Schur complement matrix. In the

end all that remains to select are the drop tolerances and the max fill-in allowed for the interlevel

matrices (those for LU-B and GW in the various tables). This would not be too different from the

parameters required by ILUT [35].

We observed that fill-in does not necessarily improve the quality of the factorization. In fact

the contrary is often seen. While the same observation can be made for ILUT, we note that it is

not as common. This behavior underscores the difficulty in predicting the effect of dropping small

terms in the factors, on the conditioning of the preconditioned system. The dropping strategies

which were tested utilize a simple threshold criterion but it is clear that one based on estimating

the condition number of the factors [9] would be ideal in this situation.

A diagonal dominance criterion was selected as a means of building a good B block, because

it is easy to apply and ensures large diagonal entries in a relative sense to the 1-norm of the row.

However, one can ask if it is possible to find a more elaborate criterion, for example one that takes

into account the “stability” of the resulting factors. A related subquestion is the problem of selecting

the parameter τ . The choice made in this paper uses a relative measure which keeps the best rows

according to a rule based on a parameter input by the user. There remains to find a rigorous way
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to select the parameter τ .

Another important issue that deserves further investigation is that of scaling. As was reported,

the performance of the preconditioners is significantly affected by scaling. Yet, it still remains

difficult to devise scaling strategies whose effects on the preconditioner are well understood and

predictable.

Finally, our current codes do not attempt to reduce fill-in by other means than dropping.

A simple strategy which can be employed is to use fill-reducing (symmetric) orderings on the B

matrices after they have been generated.
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