
Using the Parallel Algebraic Recursive

Multilevel Solver in Modern Physical

Applications ?

X. Cai a, Y. Saad b, M. Sosonkina c;�

aSimula Research Laboratory and University of Oslo, P.O. Box 1080, Blindern,
N-0316 Oslo, Norway

bDepartment of Computer Science and Engineering, University of Minnesota, 200
Union Street S.E., Minneapolis, MN 55455, USA

c Department of Computer Science, University of Minnesota Duluth, 320 Heller
Hall, 1114 Kirby Dr., Duluth, MN 55812, USA

Abstract

The recently developed Parallel Algebraic Recursive Multilevel Solver (pARMS) is
the subject of this paper. We investigate its behavior in solving large-scale sparse
linear systems. In particular, we study the e�ect of a few parameters and di�erent
algorithms on the overall performance by conducting numerical experiments that
stem from a number of realistic applications including magneto-hydrodynamics,
nonlinear acoustic �eld simulation, and tire design.

Key words: Parallel algebraic multilevel preconditioning; Distributed sparse linear
systems; Nonlinear acoustic �eld simulation; Magnetohydrodynamic
ows; Tire
design

? This work was supported in part by NSF under grants NSF/ACI-0000443 and
NSF/INT-0003274, and in part by the Minnesota Supercomputing Institute.
� Corresponding author.
Email addresses: xingca@simula.no (X. Cai), saad@cs.umn.edu (Y. Saad),

masha@d.umn.edu (M. Sosonkina).
URLs: http://www.ifi.uio.no/~xingca (X. Cai),

http://www.cs.umn.edu/~saad (Y. Saad), http://www.d.umn.edu/~masha (M.
Sosonkina).

Preprint submitted to Elsevier Science 6 June 2002

1 Introduction

Viable solutions of modern computational problems that arise in science and
engineering should eÆciently utilize the combined power of multi-processor
computer architectures and concomitant algorithms. For many large-scale ap-
plications, solving large sparse linear systems is the most intensive compu-
tational task. The important criteria for a suitable solver include numerical
eÆciency, robustness, and good parallel performance. However, many exist-
ing parallel solvers are either designed for a particular problem class, such as
symmetric positive de�nite linear systems, or are very application- and data
format-speci�c. There is a limited selection of \general-purpose" distributed-
memory iterative solution implementations. Among the better known pack-
ages that contain such implementations are PETSc [1] and hypre [6]. While the
former focuses mainly on domain decomposition preconditioning techniques,
the latter has a wide range of preconditioners including various distributed
incomplete LU factorizations and an algebraic multigrid method. In this pa-
per, we consider the Parallel Algebraic Recursive Multilevel Solver (pARMS)
[14], which is a suite of distributed-memory iterative accelerator and precon-
ditioners targeting the solution of general sparse linear systems. It adopts a
general framework of distributed sparse matrices and relies on the solution
of the resulting distributed Schur complement systems. We will discuss some
issues related to the performance of pARMS on parallel computers for a few
sparse linear systems that arise in realistic applications. Section 2 gives an
introduction to the framework of distributed sparse linear systems, whereas
Section 3 explains the ARMS/pARMS methods and discusses issues that arise
especially in the pARMS method. Section 4 contains numerical experiments
arising from three realistic applications. Finally, Section 5 presents some con-
cluding remarks.

2 Distributed Sparse Linear Systems

The framework of distributed linear systems [18,21] provides an algebraic rep-
resentation of the irregularly structured sparse linear systems arising in the
Domain Decomposition methods [25]. A typical distributed system arises, e.g.,
from a �nite element discretization of a partial di�erential equation on a cer-
tain domain. To solve such systems on a distributed memory computer, it is
common to partition the �nite element mesh and assign a cluster of elements
representing a physical sub-domain to one processor. Each processor then as-
sembles only the local equations restricted to its assigned cluster of elements.
In the case where the linear system is given algebraically, a graph containing
vertices that correspond to the rows of the linear system can be partitioned.
For both cases, the general assumption is that each processor holds a set

2

of equations (rows of the global linear system) and the associated unknown
variables.

Figure 1 shows a `physical domain' viewpoint of a distributed sparse linear
system, for which a vertex-based partitioning has been used without overlap-
ping the unknowns. As is often done, we will distinguish between three types
of variables: (1) Interior variables are those that are coupled only with lo-
cal variables by the equations; (2) Inter-domain interface variables are those
coupled with non-local (external) variables as well as local variables; and (3)
External interface variables are those variables that belong to neighboring
processors and are coupled with the above types of local variables. The local
equations can be represented as shown in Figure 2. Note that these equations
need not be contiguous in the original system. The matrix represented in Fig-
ure 2 can be viewed as a reordered version of the equations associated with a
local numbering of the equations/unknowns pairs.

points

Internal points

External interface
points

Interdomain interface

Fig. 1. A local view of a dis-
tributed sparse linear system

local
Data

External data External data

OO Ai
iX Xi

Fig. 2. The corresponding local matrices Ai

and Xi

The rows of the matrix assigned to a certain processor have been split into two
parts: a local matrix Ai which acts only on the local variables and an interface

matrix Xi which acts only on the external interface variables. These external
interface variables must be �rst received from neighboring processor(s) before
a distributed matrix-vector product can be completed. Thus, each local vector
of unknowns xi (i = 1; : : : ; p) is also split into two parts: the sub-vector ui
of interior variables followed by the sub-vector yi of inter-domain interface
variables. The right-hand side bi is conformally split into the sub-vectors fi
and gi,

xi =
�
ui
yi

�
; bi =

�
fi
gi

�
: (1)

The local matrix Ai residing in processor i is block-partitioned according to

3

this splitting, leading to

Ai =

0
BBB@

Bi Fi

Ei Ci

1
CCCA : (2)

With this, the local equations can be written as follows:

�
Bi Fi

Ei Ci

��
ui
yi

�
+
�

0P
j2Ni

Eijyj

�
=
�
fi
gi

�
: (3)

The term Eijyj is the contribution to the local equations from the neighboring
sub-domain number j and Ni is the set of sub-domains that are neighbors to
sub-domain i. The sum of these contributions, seen on the left side of (3),
is the result of multiplying the interface matrix Xi by the external interface
variables. It is clear that the result of this product will a�ect only the inter-
domain interface variables as is indicated by the zero in the upper part of the
second term on the left-hand side of (3). For practical implementations, the
sub-vectors of external interface variables are grouped into one vector called
yi;ext and the notation

X
j2Ni

Eijyj � Xiyi;ext

will be used to denote the contributions from external variables to the local
system (3). In e�ect, this represents a local ordering of external variables to
write these contributions in a compact matrix form. With this notation, the
left-hand side of (3) becomes

wi = Aixi +Xiyi;ext : (4)

Note that wi is also the local part of a global matrix-vector product Ax in
which x is a distributed vector which has the local vector components xi.

2.1 Additive Schwarz Preconditioning

Preconditioners for distributed sparse linear systems are best designed from
the local data structure described above. Additive and (variants of) multiplica-
tive Schwarz procedures are the simplest preconditioners available. Additive
Schwarz procedures update the local solution by the vector obtained from
solving a linear system formed by the local matrix and the local residual. The

4

exchange of data is done through the computation of the residual. In simple
terms, the Additive Schwarz preconditioners can be stated as follows:

Algorithm 2.1 Additive Schwarz

1. Update local residual ri = (b� Ax)i.
2. Solve AiÆi = ri.
3. Update local solution xi = xi + Æi.

This loop is executed on each processor simultaneously. Exchange of informa-
tion takes place in Line 1, where the (global) residual is updated. Note that
the residual is \updated" in that only the y-part of the right-hand side is
changed. The local systems AiÆi = ri can be solved in three ways: (1) by a
(sparse) direct solver, (2) by using a standard preconditioned Krylov solver,
or (3) by performing a backward-forward solution associated with an accu-
rate ILU (e.g., ILUT) preconditioner. In particular, a multi-level ILU type
procedure could be used to solve AiÆi = ri approximately [16,3,4,24,23].

2.2 Schur Complement Techniques

Schur complement techniques refer to methods which iterate on the inter-
domain interface unknowns only, implicitly using interior unknowns as inter-
mediate variables. These techniques are at the basis of what will be described
in the next sections. Schur complement systems are derived by eliminating the
variables ui from (3). Extracting from the �rst equation ui = B�1

i (fi � Fiyi)
yields, upon substitution in the second equation,

Siyi +
X
j2Ni

Eijyj = gi � EiB
�1
i fi � g0i; (5)

where Si is the \local" Schur complement

Si = Ci � EiB
�1
i Fi: (6)

The equations (5) for all sub-domains i (i = 1; : : : ; p) constitute a global
system of equations involving only the inter-domain interface unknown vectors
yi. This global reduced system has a natural block structure related to the
inter-domain interface points in each sub-domain:

0
BBBB@

S1 E12 : : : E1p

E21 S2 : : : E2p

...
. . .

...
Ep1 Ep�1;2 : : : Sp

1
CCCCA

0
BBBB@
y1
y2
...
yp

1
CCCCA =

0
BBBB@
g01
g02
...
g0p

1
CCCCA : (7)

5

The diagonal blocks in this system, the matrices Si, are dense in general. The
o�-diagonal blocks Eij, which are identical with those involved in (3), are
sparse.

The system (7) can be written as Sy = g0, where y consists of all inter-
domain interface variables y1; y2; : : : ; yp stacked into a long vector. The matrix
S is the \global" Schur complement matrix. An idea proposed in [19] is to
exploit methods that approximately solve the reduced system (7) to develop
preconditioners for the original (global) distributed system. Once the global
Schur complement system (5) is (approximately) solved, each processor will
compute the u-part of the solution vector (see (1)) by solving the system
Biui = fi � Eiyi obtained by substitution from (3). In summary, a Schur
complement iteration may be expressed by the following algorithm:

Algorithm 2.2 Schur Complement Iteration

1. Forward: compute local right-hand sides g0i = gi � EiB
�1
i fi.

2. Solve global Schur complement system Sy = g0.
3. Backward: substitute to obtain ui, i.e., solve Biui = fi � Eiyi.

For convenience, (5) is rewritten as a preconditioned system with the diagonal
blocks:

yi + S�1
i

X
j2Ni

Eijyj = S�1
i

h
gi � EiB

�1
i fi

i
: (8)

This can be viewed as a block-Jacobi preconditioned version of the Schur
complement system (7). This global system can be solved by a GMRES-like
accelerator, requiring a solve with Si at each step.

3 Parallel Algebraic Recursive Multilevel Solver

Multi-level Schur complement techniques available in pARMS [14] are based
on techniques which exploit block independent sets, such as those described in
[22]. The idea is to create another level of partitioning of each sub-domain. An
illustration is shown in Figure 3, which distinguishes one more type of interface
variables: local interface variables, where we refer to local interface points as
interface points between the sub-sub-domains. Their couplings are all local to
the processor and so these points do not require interprocessor communication.
These sub-sub-domains are not obtained by a standard partitioner but rather
by the block independent set reordering strategy utilized by ARMS [22].

6

Interior
points

interface
Interdomain

points

points
Local interface

Fig. 3. A two-level partitioning of a domain

3.1 ARMS and pARMS

In order to explain the multilevel techniques used in pARMS, it is necessary to
discuss the sequential multilevel ARMS technique. In the sequential ARMS,
the matrix coeÆcient of the at the l-th level is reordered in the from

PlAlP
T
l =

�
Bl Fl

El Cl

�
; (9)

where Pl is a \block-independent-set permutation", which can be obtained in
a number of ways. At the zero-th level (l = 0), the matrix Al is the original co-
eÆcient matrix of the linear system under consideration. The above permuted
matrix is then approximately factored as

PlAlP
T
l �

0
B@ Ll 0

ElU
�1
l I

1
CA�

0
B@Ul L

�1
l Fl

0 Al+1

1
CA ; (10)

where I is the identity matrix, Ll and Ul form the LU (or ILU) factors of Bl,
and Al+1 is an approximation to the Schur complement with respect to Cl,

Al+1 � Cl � (ElU
�1
l)(L�1

l Fl): (11)

During the factorization process, approximations to the matrices for obtaining
the Schur complement (11) are computed.

To de�ne a recursive multilevel strategy, all we need is a strategy for solving
the reduced system obtained by eliminating the unknown associated with the
block Bl. This leads to a certain system with the matrix Al+1. Now recursivity
is invoked and this system is partitioned again in the form (9) in which l is
replaced by l+1. At the last level, the reduced system is solved using GMRES
preconditioned with ILUT [17]. In the parallel version of ARMS, the same

7

overall strategy is used except that now the global block-independent sets are
across domains.

Consider a one-level pARMS for simplicity. In the �rst level reduction, the
matrix A1 that is produced, will act on all the interface variables, whether local
or inter-domain. Thus, a one-level pARMS would solve for these variables and
then obtain the interior variables in each processor without communication.
We denote byexpanded Schur complement the system involving the matrix A1

that acts on inter-domain and local interface unknowns. For a more detailed
description of pARMS see [14].

3.2 Diagonal Shifting in pARMS

Extremely ill-conditioned linear systems are diÆcult to solve by iterative meth-
ods. A possible source of diÆculty is due to the ine�ective preconditioning of
such systems. The preconditioner may become unstable (i.e., has large norm
of its inverse). To stabilize the preconditioner, a common technique is to shift
the matrix A by a scalar and use this shifted matrix A+ �I during precondi-
tioning, see, e.g., [15]. Because the matrix is shifted, its preconditioner might
be a rather accurate approximation of A + �I. It is also more likely to be
stable. However, for large shift values, the preconditioner might not represent
accurately the original matrix A. So the choice of the shift value is important
and leads to a trade-o� between accuracy and stability of the preconditioner.
We have considered this trade-o� in [10,20]. In [7], a strong correlation be-
tween stability of the preconditioner and the size of E = log (k(LU)�1kinf) is
shown and is suggested as a practical means of evaluating the quality of a
preconditioner. We can inexpensively compute E� = log (k(LU)�1ek1), where
e is a vector of all ones and LU is an incomplete LU factors of A + �I. The
estimate E� can be used in choosing a shift value: if this estimate is large,
then we increase shift value and recompute (adjust) the preconditioner. Note
that eÆcient techniques for updating a preconditioner when a new shift value
is provided is beyond the scope of this paper. One such technique has been
outlined in [8].

In the pARMS implementation, we have adapted a shifting technique for a dis-
tributed representation of linear system. Speci�cally, we perform the shifting
and norm E� calculation in each processor independently. Thus, each processor
i can have a di�erent shift value depending on the magnitude of its E i

�. Such an
implementation is motivated by the observation that shifting is especially im-
portant for diagonally non-dominant rows, which can be distinguished among
other rows by a local procedure. In each processor, the choice of shift value is

8

described by the following pseudo-code:

Algorithm 3.1 Matrix shifting

1. Select initial shift � � 0: B = A+ �I.
2. Compute parallel preconditioner M for B.

3. Calculate local E�.
4. If E� is large,

5. Increase shift �;
6. Adjust preconditioner.

Note that in Line 6 of Algorithm 3.1, depending on the type of preconditioner,
the adjustment operation may be either local or global. For example, Additive
Schwarz type preconditioners may perform adjustments independently per
processor, whereas all the processors may need to participate in the adjustment
of a Schur complement preconditioner. In addition, Lines 3 { 6 may need to
be repeated several times.

4 Numerical Experiments

In this section we describe a few realistic applications, which give rise to large
irregularly structured linear systems that are challenging to solve by iterative
methods. Such applications as ultrasound simulation, magnetohydrodynamics,
and tire design are considered. The linear systems arising in ultrasound simu-
lation were generated using Di�pack, which is an object-oriented environment
for scienti�c computing, see [9,13]. The magnetohydrodynamics application
has been generously provided by Azzeddine Soulaimani and Ridha Touihri
from the \Ecole de Technologie Superieure, Universit�e du Qu�ebec", and the
linear systems arising in tire design have been supplied by John T. Melson of
Michelin Americas Research and Development Corporation. All the numerical
experiments have been performed on the IBM SP system at the Minnesota
Supercomputing Institute. Each computing node (of type Nighthawk) of the
IBM SP system has four 222 MHz Power3 processors sharing 4GB of memory
and all the nodes are connected through a high performance switch. We have
tested several preconditioning techniques available in our pARMS code when
solving the linear systems iteratively. As the criterion for convergence, we have
always required that the residual is reduced by a factor of 106.

Before describing the applications, let us �rst introduce some notation for the
sake of convenience.

add ilut denotes an additive Schwarz procedure without overlapping in
which ILUT is used as a preconditioner for solving the local systems. These

9

systems can be solved with a given number of GMRES inner iterations or
by just applying the preconditioner.
add iluk is similar to add ilut but ILU(k) is used as a preconditioner in-
stead of ILUT.
add arms is similar to add ilut but ARMS is used as a preconditioner for
local systems.
sch gilu0 denotes a method that is based on approximately solving the
expanded Schur complement system with a global ILU(0)-preconditioned
GMRES. The ILU(0) preconditioning requires a global order (referred to as
a schedule in [11]) to traverse the equations. A global multicoloring of the
domains is used for this purpose as is often done with global ILU(0).
no its is the suÆx added to above methods whenever no local (inner) iter-
ations are used.
sh is the suÆx added to above methods if they use shifted original matrix
for the preconditioner construction.

4.1 Simulation of 3D Nonlinear Acoustic Fields

The propagation of 3D ultrasonic waves in a nonlinear medium can be modeled
by the following system of nonlinear PDEs:

r2'�
1

c2
@2'

@t2
+

1

c2
@

@t

2
4(r')2 + B=A

2c2

@'

@t

!2

+ br2'

3
5 = 0; (12)

p� p0 = �0
@'

@t
; (13)

where the primary unknowns are the velocity potential ' and pressure p. For
the involved parameters, c is the speed of sound, �0 is the density, p0 is the
initial pressure, b is the absorption parameter, and B=A is the nonlinearity
parameter. The above mathematical model is to be supplemented with suitable
initial and boundary conditions.

The numerical scheme consists of using �nite elements in the spatial dis-
cretization and �nite di�erences for the temporal derivatives. At each time
level, the discretization of (12) gives rise to a system of nonlinear algebraic
equations involving ' from three consecutive time levels. We apply Newton-
Raphson iterations for the nonlinear system. We refer to [5] and the references
therein for more information on the mathematical model and the numerical
solution method. As a particular numerical test case, we use a 3D domain:
(x; y; z) 2 [�0:004; 0:004]� [�0:004; 0:004]� [0; 0:008]. On the face of z = 0,
there is a circular transducer with radius r = 0:002, i.e., the pressure p is
given within the circle. On the rest of the boundary we use a non-re
ective
boundary condition.

10

We consider solving the linear system during the �rst Newton-Raphson iter-
ation at the �rst time level. The linear system has 185; 193 unknowns and
the sparse matrix contains 11; 390; 625 nonzero entries. Figure 4 presents
the iteration numbers (left) and solution times (right) needed for solving
this linear system. Two preconditioning techniques, sch gilu0 no its and
add arms no its have been tested on various numbers of processors.

It is observed that sch gilu0 no its preconditioning consistently leads to
a faster convergence than add arms no its. Both methods, however, show
almost no increase in iterations when the number of processors is increased.
The timing results are slightly better for sch gilu0 no its preconditioner
except for the 16-processor case.

4 6 8 10 12 14 16 18 20 22 24
8

10

12

14

16

18

20

Processors

Ite
ra

tio
ns

Ultrasound problem, (n=185,193 nnz=11,390,625)

add_arms no its
sch_gilu0 no its

4 6 8 10 12 14 16 18 20 22 24
4

6

8

10

12

14

16

18

Processors

S
P

 W
al

l−
cl

oc
k

tim
e,

 s
ec

on
ds

Ultrasound problem, (n=185,193 nnz=11,390,625)

add_arms no its
sch_gilu0 no its

Fig. 4. Iterations (left) and timing results (right) for the (�xed-size) ultrasound
problem

4.2 Simulation of Magnetohydrodynamic Flow

In [14], we have described the solution of a rather hard problem which arises
from simulatingmagnetohydrodynamic (MHD)
ows. The mathematical model
describing the
ow consists of the Maxwell equations coupled with the incom-
pressible Navier-Stokes equations. Here, we provide only a brief outline of a
sample problem along with its solution and study the solution process when
shifting techniques are used. The conservative magnetohydrodynamic system
is modeled by the Maxwell equations, written as:

@B

@t
�r� (u�B) + �r� (r�B) +rq=0 ; (14)

r �B=0 ; (15)

where �, B, u and q are, respectively, the magnetic di�usivity coeÆcient, mag-
netic induction �eld, velocity �eld, and the scalar Lagrange multiplier for the

11

magnetic-free divergence constraint. In fully coupled magnetohydrodynamics,
this system is solved along with the incompressible Navier-Stokes equations

@u

@t
+ (u � r)u� �r2u +rp= f ; (16)

r � u=0 ; (17)

where p, � and f are, respectively, pressure, kinematic viscosity, and body
force. The coupling between the two systems is through the body force f =
1

�
(r � B) � B, which represents the Lorentz (Laplace) force due to the in-

teraction between the current density j = 1

�
(r � B) and the magnetic �eld,

where � is the magnetic permeability.

It is uncommon to solve the fully coupled problem described by the equations
(14-17) along with their coupling via the body forces, because this usually
requires an excessive amount of memory. Instead, segregated approaches are
often applied which alternatively solve the two coupled problems until a certain
convergence criterion is satis�ed. For time-dependent problems, these coupling
iterations are embedded into the time-stepping procedure. For a few details
on this problem, its discretization, and the segregated solution procedure, we
refer to [27].

Here, we only consider solving the linear systems arising from the Maxwell
equations. In order to do this, a pre-set periodic induction �eld u is used in
Maxwell's equation (14). The physical region is the three-dimensional unit
cube [�1; 1]3 and the discretization uses a Galerkin-Least-Squares discretiza-
tion. The magnetic di�usivity coeÆcient is � = 1. The sparse matrix of the
resulting linear system (denoted by MHD1) has n = 485; 597 unknowns and
24; 233; 141 nonzero entries. The function q in (14) corresponds to Lagrange
multipliers, which arise from imposing the magnetic-free divergence constraint.
Its gradient should be zero at steady-state. Though the actual right-hand side
was supplied, we preferred to use an arti�cially generated one in order to check
the accuracy of the process. A random initial guess was taken. Little di�erence
in performance was seen when the actual right-hand and a zero vector initial
guess were used instead. For the details on the values of the input parameters
see [14].

We observed that all the methods without inner iterations experienced stag-
nation for the MHD1 problem. Additive Schwarz (add arms no its) with or
without overlap does not converge for any number of processors while the
Schur global ILU(0) (sch gilu0 no its) stagnates when executed on more
than nine processors. On four and nine processors, sch gilu0 no its con-
verges in 188 and 177 iterations, respectively. On the IBM SP system, this
amounts to 2,223.43 and 1,076.27 seconds, respectively. This is faster than
2,372.44 and 1,240.23 seconds when �ve inner iterations are applied and the

12

number of outer iterations decreases to 119 and 109 on four and nine proces-
sors, respectively. The bene�ts of iterating on the global Schur complement
system are clear since the Schur complement-based preconditioners converge
for all the tested processor numbers as indicated in Figure 5, which presents
the timing results (left) and outer iteration numbers (right). This positive
e�ect can be explained by the fact that the Schur complement system is com-
puted with good accuracy. Figure 5 also shows the usage of the shift value
� = 0:1 in the sch gilu0 sh preconditioner construction. For this problem,
shifting does not help convergence and results in larger numbers of outer it-
erations. Since a good convergence rate is achieved without shifting of the
original matrix, the shift value applied in sch gilu0 sh may be too large and
the resulting preconditioner may not be a good approximation of the original
matrix. The number of nonzeros in sch gilu0 sh, however, is smaller than
in sch gilu0. Therefore, the construction of sch gilu0 sh is always cheaper,
and sch gilu0 sh appears to be competitive for small processor numbers.

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

Processors

S
P

 w
al

l−
cl

oc
k

tim
e,

 s
ec

on
ds

MHD1 Syst. (n=485,597 nnz=24,233,141)
sch_gilu0_sh construct.
sch_gilu0 construct.
sch_gilu0_sh application
sch_gilu0 application

0 5 10 15 20 25 30 35
100

110

120

130

140

150

160

170

180

190

Processors

Ite
ra

tio
ns

MHD1 problem (n=485,597 nnz=24,233,141)

sch_gilu0_sh
sch_gilu0

Fig. 5. Solution times (left) and outer iteration numbers (right) for the MHD1
problem with and without diagonal shifting

4.3 Linear Systems Arising in Tire Design

Tire static equilibrium computation is based on a 3D �nite element model with
distributed loads (see, e.g., [2]). The computation involves minimizing the po-
tential energy �(u) with respect to the displacement �eld u = (u1; u2; u3)
subject to nonlinear boundary conditions, which change the symmetry of a
tire. The equilibrium equations of the model are obtained by setting the vari-
ation Æ�(u) to zero, or equivalently

r �(u) = 0:

The Jacobian matrix of the equilibrium equations is obtained by �nite di�er-
ence approximations. The distributed load is scaled by a (loading) parameter

13

Table 1
Solution of tire modelM on four processors using di�erent parallel iterative meth-
ods. No local iterations are used

Method ��nal maxi E
i
�=0 Iter Time

add ilu(2) 0.1 45 475 175.19

add ilut 0.1 116 476 116.55

sch gilu0 0.2 146 566 99.99

�, and as � varies the static equilibrium solutions trace out a curve. The dif-
�culty of the �nite element problems and concomitant linear systems varies
considerably along this equilibrium curve, as well as within the nonlinear it-
erations to compute a particular point on this curve.

In [26], the problems of varying matrix characteristics are considered. All of
the problems pose a challenge for iterative methods since the treatment of
stationary solutions of rotation makes the systems extremely ill-conditioned
during the nonlinear convergence process. It has been observed that an ac-
ceptable convergence was achieved only when a rather large shift was applied
to the matrix diagonal to stabilize the preconditioner. The size of the shift
is very important: while making the preconditioner more stable, large shift
values cause the preconditioner to be a poor approximation of the original
matrix.

Table 1 shows the results of a few experiments, in which we use pARMS on
a sample linear system, medium tire model M, with 49; 800 unknowns and,
on average, 84 nonzeros per row in the matrix. In pARMS, a shift � is chosen
automatically: starting with the zero shift, the preconditioner is reconstructed
with a new shift (augmented by 0.1) if the estimate E i

� of the preconditioner
inverse is large (greater than 7). In Table 1, we list the �nal value of �,
the maximum E i

� among all the processors when � = 0, the number Iter

of iterations needed for converge, and the preconditioner application time
Time spent when running on four processors. Metis [12] has been used for
the partitioning of the problem among processors.

Note that the sch gilu0 preconditioner is more ill-conditioned initially and
thus causes two augmentations of the shift value. For sch gilu0, the larger
number of outer iterations (566) may be attributed to the resulting precondi-
tioner being much sparser than the other preconditioners tested. However, this
di�erence in the iteration numbers sustains the timing advantage of a sparser
preconditioner despite the communication overhead incurred by sch gilu0.

Due to the diÆculty of this problem, which is also unpredictably a�ected by
partitioning, the convergence was not observed consistently on any processor
numbers. For example, no convergence has been achieved on eight processors

14

for moderate values of �.

5 Concluding Remarks

In this paper, we have studied the performance of a recently developed pARMS
code in several realistic applications. For all the problems considered, it is
bene�cial to use preconditioners based on Schur complement techniques, en-
hanced by a local multi-level procedure. In addition, a few inner (local to
a sub-domain) preconditioning iterations enhance convergence for a problem
arising from a magneto-hydrodynamics application.

We have also proposed an implementation of matrix shifting in the framework
of distributed linear systems. It allows a shift value to be assigned indepen-
dently in each sub-domain. An automatic procedure for the shift value se-
lection has also been implemented to stabilize the distributed preconditioner
and overcome stagnation. We would like to underline the
exibility of the
pARMS framework, which, with a proper selection of input parameters, al-
lows to choose among many available options for solving real-world problems.

References

[1] S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith. PETSc users
manual. Technical Report ANL-95/11 - Revision 2.1.0, Argonne National
Laboratory, 2001.

[2] K.J. Bathe and E.L. Wilson. Numerical Methods in Finite Element Analysis.
Prentice-Hall, Englewood Cli�s, New Jersey, 1976.

[3] E. F. F. Botta and W. Wubs. MRILU: it's the preconditioning that
counts. Technical Report W-9703, Department of Mathematics, University of
Groningen, The Netherlands, 1997.

[4] E.F.F. Botta, A. van der Ploeg, and F.W. Wubs. Nested grids ILU-
decomposition (NGILU). J. Comp. Appl. Math., 66:515{526, 1996.

[5] X. Cai and �A. �deg�ard. Parallel simulation of 3D nonlinear acoustic �elds on
a Linux-cluster. Proceedings of the Cluster 2000 conference.

[6] E. Chow, A. Cleary, and R. Falgout. hypre User's manual, version 1.6.0.
Technical Report UCRL-MA-137155, Lawrence Livermore National Laboratory,
Livermore, CA, 1998.

[7] E. Chow and Y. Saad. Experimental study of ILU preconditioners for inde�nite
matrices. Journal of Computational and Applied Mathematics, 87:387{414,
1997.

15

[8] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM Journal on Scienti�c Computing, 19:995{1023, 1998.

[9] Di�pack World Wide Web home page. http://www.nobjects.com.

[10] P. Guillaume, Y. Saad, and M. Sosonkina. Rational approximation
preconditioners for general sparse linear systems. Technical Report umsi-99-
209, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis,
MN, 1999.

[11] D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete
factor preconditioning. Technical Report (preprint), Old-Dominion University,
Norfolk, VA, 2000.

[12] G. Karypis and V. Kumar, Metis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Tech. Rep., Department
of Computer Science, University of Minnesota, 1995; also available online at
http://www.cs.umn.edu/~karypis/metis.

[13] H. P. Langtangen. Computational Partial Di�erential Equations { Numerical
Methods and Di�pack Programming. Springer-Verlag, 1999.

[14] Z. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic
recursive multilevel solver. Technical Report UMSI-2001-100, Minnesota
Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2001.

[15] T.A Manteu�el. An incomplete factorization technique for positive de�nite
linear systems. Mathematics of computation, 32:473{497, 1980.

[16] Y. Saad. ILUM: a multi-elimination ILU preconditioner for general sparse
matrices. SIAM Journal on Scienti�c Computing, 17(4):830{847, 1996.

[17] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New
York, 1996.

[18] Y. Saad and A. Malevsky. PSPARSLIB: A portable library of distributed
memory sparse iterative solvers. In V. E. Malyshkin et al., editor, Proceedings
of Parallel Computing Technologies (PaCT-95), 3-rd international conference,
St. Petersburg, Russia, Sept. 1995, 1995.

[19] Y. Saad and M. Sosonkina. Distributed Schur Complement techniques for
general sparse linear systems. SIAM J. Scienti�c Computing, 21(4):1337{1356,
1999.

[20] Y. Saad and M. Sosonkina. Enhanced preconditioners for large sparse least
squares problems. Technical Report umsi-2001-1, Minnesota Supercomputer
Institute, University of Minnesota, Minneapolis, MN, 2001.

[21] Y. Saad and M. Sosonkina. Solution of distributed sparse linear systems using
PSPARSLIB. In B. K�agstr�om et al., editors, Applied Parallel Computing,
PARA'98, Lecture Notes in Computer Science, No. 1541, pages 503{509, Berlin,
1998. Springer-Verlag.

16

[22] Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for
general sparse linear systems. Technical Report umsi-99-107-REVIS, Minnesota
Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2001.
Revised version of umsi-99-107.

[23] Y. Saad and J. Zhang. BILUM: Block versions of multi-elimination and multi-
level ILU preconditioner for general sparse linear systems. SIAM Journal on
Scienti�c Computing, 20:2103{2121, 1999.

[24] Y. Saad and J. Zhang. BILUTM: A domain-based multi-level block ILUT
preconditioner for general sparse matrices. SIAM Journal on Matrix Analysis
and Applications, 21, 2000.

[25] B. Smith, P. Bj�rstad, and W. Gropp. Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Di�erential Equations. Cambridge
University Press, New York, 1996.

[26] M. Sosonkina, J. T. Melson, Y. Saad, and L. T. Watson. Preconditioning
strategies for linear systems arising in tire design. Numer. Linear Alg. with
Appl., 7:743{757, 2000.

[27] A. Soulaimani, N. B. Salah, and Y. Saad. Enhanced GMRES acceleration
techniques for some CFD problems. Int. Journal of CFD, 16:1{20, 2002.

17

