ACCELERATION OF GMRES CONVERGENCE FOR
SOME CFD PROBLEMS: preconditioning and
stabilization techniques

Azzeddine Soulaimani*

Département de Génie Mécanique, Ecole de technologie supérieure,
1100 Notre-Dame Ouest, Montréal (Québec), H3C 1K3, Canada
email: asoulaimani@mec.etsmtl.ca

Nizar Ben Salah
Laboratoire de Mécanique, Matériaux et Procédés
ESSTT, 5 Avenue Taha Hussein, Tunis, Tunisia

Yousef Saad
Department of Computer Science and Engineering,
University of Minnesota,4-192EE/CSci Building,
200 Union Street S.E., Minneapolis, MN 55455

Abstract: Large CFD problems are often solved
using iterative methods. Preconditioning is
mandatory to accelerate the convergence of iter-
ative methods. This paper presents new results
using several preconditioning techniques. These
preconditoners are non-standard in the CFD
community. Several numerical tests were carried
out for solving three-dimensional incompressible,
compressible and magneto-hydrodynamic (MHD)
problems. A selection of numerical results is
presented showing in particular that the Flexi-
ble GMRES algorithm preconditioned with ILUT
factorization provides a very robust iterative
solver.

1 Introduction

The solution of partial differential equations of
fluid dynamics by any time and space discretiza-
tion method often leads to solving a non-linear
problem in the Euclidian space R™:

F(z) = 0. (1)

*Corresponding author,

A well known strategie to solve (1) is the Newton
iterative method: let 2y € R™, then
Tit1 — T; + J_l(cci)F(:ci) 1 >0,
where J(z;) is the Jacobian associated with F

and evaluated at x;.
Thus, at each iteration ¢ one has to solve a linear
problem

J(zi)y = F(z;). (2)

For a relatively large dimension n, iterative meth-
ods such as GMRES or BiCGSTAB are pref-
ered over direct solvers such as Gauss elimination
method.

To summarize, a solution strategy often used to
solve CFD problems consists of tow nested loops,
the first one over time and the second one over
Newton’s iterations. This can be sketched as fol-
lows

ALGORITHM 1.1 General solution strategy

1. Do i=1, number — time — steps
2. Compute and factorize the Jacobian
matrix (or an approximation) when necessary
3. Do k=1,number — Newton — iterations
4. Compute the residual F(z;) and
solve the linearized system (2)

5. Check for convergence
6. EndDo
7. EndDo

At each time step, one is then concerned oby
the convergence of Newton’s iterations and the
cost of solving the linearized problem (2). For
steady problems, one is also concerned by the
global convergence. In practice, two different dif-
ficulties may be encountred, the divergence of
Newton’s iterations and the stagnation of the
global loop. Possible cures can be found in the
use of one or a combination of the following ac-
tions:

- (a) reduction of the time step,

- (b) a judicious selection of the initial solution,

- (c) add some robustness to the solution al-
gorithm for the linearized problem: increase the
Krylov-space dimension, use of a better precon-
ditioning...

- (d) use of stabilization techniques for dis-
cretization,

- (e) use of multigrid methods or adaptive
meshing techniques, etc.

In this paper, some techniques related to options
(c) and (d) above are proposed and numerically
tested. For simplicity, we rewrite the system (2),

using linear algebra notations, as: Az = b. Pre-
conditioning is the way by to accelerate the con-
vergence of iterative methods. Generally, a new
system equivalent to (2) is built using a precon-
ditioning matrix M:

AM Mz = b,

where M is generally an approximation of A.
Roughly speaking, M is an approximation of A
such that the conditioning number of AM~! is
close to unity. The convergence of the iterative

method is strongly related to the choice of M. It
has been a big challenge in iterative methods to
develop robust and wide-range use precondition-
ers. However, it is not possible to know which
one performs best in all situations. Very often,
one method can perform well in a particular class
of problems but may be expensive, slow or even
diverge in other problems. Thus, it is very im-
portant to have at hand a large range of iterative
methods in order to choose the best suited one for
a particular problem. This paper contributes to
testing and validating several non-standard pre-
conditioners on incompressible, compressible and
MHD flow problems. These preconditioners in-
clude the ILUT factorization of the Jacobian ma-
trix, a higher order update of the Jacobian using
the Flexible GMRES method, a lower order up-
date of the Jacobian using the Broyden method
and the Deflated GMRES algorithm. The test
problems chosen are particularly hard to solve
with classical iterative methods. Useful stabilized
finite element techniques for space discretization
are also discussed. The space discretization plays
an important role not only to obtain stable and
accurate solution but it affects also the conver-
gence of iterative solvers. By stabilizing the stan-
dard Galerkin finite element method for , the
eigenvalues of the stiffness matrix are shifted to
the right and the conditioning is improved.

The outline of this paper is as follows. First,
we present several choices of building the pre-
conditioner. In the second section, we briefly
describe the CFD model problems used for the
validations. A selection of numerical results
for three-dimensional incompressible, compress-
ible and MHD problems are shown. Finally, some
concluding comments are drawn.

2 Preconditioners

First, the preconditioners used in this work are
briefly presented. More details are given in the
references. We begin with a review of the right-
preconditioned GMRES algorithm [1,2].

ALGORITHM 2.1 Right preconditioned GMRES

1. Compute rg = b — Axg, [:=||ro||2,
v1 == 19/B- B
2. Define the (m + 1) x m matrix H, =
{hij}i<i<mi1,1<j<m- Set Hm = 0.
3. For j =1,2,...,m Do:
Compute w; := AM 'v;
Fori=1,...,5 Do:
hij := (wj, vi)
Wy ‘= wWj — hz'j’l),'
EndDo
hjt1,i = llwjll2- If hjr5 = 0 set
m = j, goto 12
10. ’Uj+1 == ’U)J/h]+1"7
11. EndDo
12. Compute y,, the minimizer of
||Ber — Hiyll2 and T = 0 + Vinyym.-
13. If satisfied Stop, else set gy := x,, goto 1.

© X NS O

Remark. In exact Newton method, A represents
the true Jacobian matrix. However, it is not al-
ways pssible to compute it analytically or it may
be expensive to recompute it at every iteration,
especially for CFD problems. It is preferable to
compute an approximation of the Jacobian and
freeze it for a prescribed number of time steps
and Newton iterations. This matrix will be used
to construct the preconditioner M. On the other
hand, the action of the Jacobian on a vector (i.e.
the matrix-by-vector product in line 4 (i.e. Az;))
is approximated using a finite difference quotient
such as: [F(zo+€z;) — F(xo)]/€, where € is an ap-
propriate small number. All the problems consid-
ered in this paper are solved using this non-linear
version of GMRES.

2.1 ILUT preconditioner

We now describe three preconditioning tech-
niques. The first one is the incomplete factor-
ization ILUT(,p) of A. One of the most com-
mon ways to define the preconditioning matrix
M is through Incomplete LU factorizations. In
essence, an ILU factorization is simply an ap-
proximate Gaussian elimination. When Gaus-
sian Elimination is applied to a sparse matrix A,
a large number of nonzero elements may appear
in locations originally occupied by zero elements.

These fill-ins are often small elements and may be
dropped to obtain Incomplete LU factorizations.
So ILU is in essence a Gaussian Elimination pro-
cedure in which fill-ins are dropped.

The simplest of these procedures is ILU(0)
which is obtained by performing the standard LU
factorization of A and dropping all fill-in elements
that are generated during the process. In other
words, the L and U factors have the same pattern
as the lower and upper triangular parts of A (re-
spectively). More accurate factorizations denoted
by ILU(k) and IC (k) have been defined which
drop fill-ins according to their ‘levels’. Level-1
fill-ins for example are generated from level-zero
fill-ins (at most). So, for example, ILU(1) con-
sists of keeping all fill-ins that have level zero or
one and dropping any fill-in whose level is higher.

Another class of preconditioners is based on
dropping fill-ins according to their numerical val-
ues. One of these methods is ILUT (ILU with
Threshold). This procedure uses basically a form
of Gaussian elimination which generates the rows
of L and U one by one. Small values are droped
during the elimination using a parameter 7. A
second parameter, p, is then used to keep the
largest p entries in each of the rows of L and U.
This procedure is denoted by ILUT(7,p) of A.
More details on ILUT and other preconditioners
can be found in [?]. Practical values of p and
T are p = NNZ/NEQ + lfil , with NNZ the
number of non-zero entries of the original matrix,
N EQ the number of unknowns and [fil is a pos-
itive or negative integer, and 1073 < 7 < 107°.

AvLGoRrIiTHM 2.2 ILUT

1. Do i=1, n

2. Do k=1,i-1

3. Aig = Aip/Ark

4. If |A; x| is not too small then
Doj=k+1,n

5. Ai,j = Ai,j — Ai,k * Ak,j

6. EndDo

7. EndDo

8. Drop small elements in row A; .

9. EndDo

2.2 Broyden update

The construction of the next preconditioner is in-
spired by the following fact: The construction of
M and its factorization are time consuming when
the dimension of the problem is large. Further-
more, for non-linear problems, the preconditioner
should in principle be recomputed at each New-
ton iteration. A simple strategy to reduce this
cost is to compute only one ILUT factorization
of the approximate Jacobian matrix (denoted by
M,) and to keep it for a number of iterations and
time-steps. For each subsequent Newton itera-
tions, M, ~! is updated using a low order Broyden
correction [4]:

S — M*ilyi)SEM*il
SgM*ilyi

M*l — M*fl 4+ (

where M, ! is the computed ILUT precondition-
ner of M,, s; = z;+1 — x; is the correction of the
solution z; at iterationiand y; = F(zit1)—F ().

ALGORITHM 2.3 Broyden update

1. Set M, = A~ (ilut).

2. Compute 7o = b — Az, B := ||ro]]2,
v = 7"0/5 _

3. Define the (m + 1) x m matrix H,, =

{hijhi<i<m+1,1<j<m. Set H,, =0.
4. FOI'j = 1,2’ ey DO.'

5. Compute w; := AM_lfuj

6. Fori=1,...,5 Do:

7. hij = (’LUj,’Ui)

8. wj = wj — h;jv;

9. EndDo

10. hj+1,j = ||’Ujj||2. Ifhj+1,j =0 set

m = j, goto 12
11. Vj4+1 = wj/th’j
12. EndDo
13. Compute y,, the minimizer of ||Be; — Hpyl|2
and Ty, = 29 + VinYm-
If satisfied Stop, else set g := T,
set so = Tm — Tm—1, Y0 = Ym — Ym—1,
M- =M+ (so—Mx"'yo)st M ™!

sE M Tyo
and goto 2.

14.

2.3 Flexible GMRES

The second preconditioner presented here is the
Flexible GMRES algorithm [5]. It is basically
identical to the GMRES algorithm where step (4)
is solved more accurately using an inner-iterative
solver such as GMRES itself. In other words, ap-
plying M~! to any direction z is equivalent to
solving My = z. This system is solved approx-
imately by GMRES using also a preconditioner
which could be the ILUT(7/,p') factorization of
M with p' generally smaller than p.

Recall from what was said above that the role
of the preconditioner M is to solve the linear sys-
tem Az = b approzimately and inerpensively. At
one extreme, we can find a preconditioner M that
is very close to A, leading to a very fast conver-
gence of GMRES, possibly in just one iteration.
However, in this situation it is likely that M will
require too much memory and be too expensive to
compute. At the other extreme, we can compute
a very inexpensive preconditioner such as one ob-
tained with ILU(0) — but for realistic problems,
convergence is unlikely to be achieved.

If the goal of the preconditioner is to solve the
linear system approximately, then one may think
of using a full-fledged iterative procedure, uti-
lizing whatever preconditioner is available. The
resulting overall method will be an inner-outer
method, which includes two nested loops: an
outer GMRES loop as defined earlier, and an in-
ner GMRES loop in lieu of a preconditioning op-
eration. In other words, we wish to replace the
simple preconditioning operation in line 4 of al-
gorithm (2.3) by an iterative solution procedure.
The result of this is that each step the precon-
ditioner M is actually defined as some complex
iterative operation — and we can denote the re-
sult by z; = M]_—1,0]__ Therefore, the effect of this
on algorithm (2.3) is that the preconditioner M
varies at every step j. However, algorithm (2.3)
works only for constant preconditioners M. It
would fail completely for the variable precondi-
tioner case. To remedy this, a variant of GMRES
called Flexible GMRES (FGMRES) has been de-
veloped, see [?]. For the sake of brevity, we will
not sketch the method. The main difference be-

tween FGMRES and algorithm (2.3) is that the
vectors z; generated in line 4 must now be saved.
These vectors are then used again in Line 13, in
which they replace the vectors v; of the basis V,,
used to compute the approximation z,,. This
gives the following algorithm:

AvLGORITHM 2.4 FGMRES

1. Computerqg=b— Axg, B := Hro_||2, vy = 1o/p.

2. Define the (m + 1) x m matrix H,, =
{hijh<i<m+1,1<j<m- Set Hy = 0.
3. Forj=1,2,....,m Do:
4. Compute zj := Mj_lvj
5. Compute w; := Az;
6. Fori=1,...,57 Do:
7. hi]’ = (’LUj,'UZ')
8. wj = wj — h;jv;
9. EndDo
10. hjy1,5 = |[wjllo-
If hji1,; =0 set m := j, goto 13
1. wjp1 = wj/hji,
12. EndDo
13. Define Z, = |z1, ..., 2m], and

Hpm = {hijhi<i<mt1,1<j<m.
14. Compute y,, the minimizer of

||/661 - HmyH? and z,;, = o + VipYm-
15. If satisfied Stop, else set zy := x,, goto 1.

A non-linear version of FGMRES is obtained,
similar to the standard case of GMRES, by com-
puting the matrix-by-vector product Az; in line
5 via a finite difference formula.

2.4 Deflation

Deflation is another technique used to acceler-
ate the convergence when the matrix A has some
small eigenvalues. When used in the framework
of GMRES algorithm, it consists of adding to the
Krylov subspace a set of eigenvectors of A which
are associated to the smallest eigenvalues. After
constructing the m-dimensional Krylov subspace
(step 13 of algorithm 2.1), p vectors are computed
which are associated to the p smallest eigenvalues
of A using a projection method (For more details,
see [6,7]). Then, in the subsequent GMRES (or

Newton) loop, a m + p-dimensional Krylov sub-
space is constructed using the available p eigen-
vectors..

ALGORITHM 2.5 DEFLATED GMRES

1. Set p=0.
2. Compute g = b — Az, B := ||ro|2,

v = 7“0/,3 o
3. Define the (m + 1) x m matrix H,, =

{hi,j}1§i§m+1,1§j§m. Set H,, = 0.
4. For 3 =1,2,...,m Do:

Set { v;
w; =

Uj—m+p(€eigenvector)

ifj<m-—p
otherwise

6. Compute z := AM 1w,
7. Fori=1,...,7 Do:
8. hij == (z,v;)

9. z =z — hj;jv;

10. EndDo

1. ki = [l2lle- v = 2/hjt1

12. EndDo

13. Define V41 := [v1, ..., U] and
Wi = [wi, ..., wpy] B

14. Compute y,, the minimizer of ||Be; — Hpyl|2
and z,, = o + VinYm.

15. If satisfied Stop.

16. Set zg := z,, and the number p of
eigenvalues to be used.

17. Compute p eigenvectors 1, ..., u, of AM~1
and goto 2.

3 Model problems and
Stabilization techniques

Several three-dimensional CFD model problems
are used for performing numerical experiments
on the proposed preconditioners. The three-
dimensional Navier-Stokes equations are solved
for incompressible and compressible flows us-
ing stabilized finite element formulations. Also,
we consider a two-field coupled problem where
the incompressible Navier-Stokes equations are
solved along with the Maxwell equations. All

these problems are challenging, especially for rel-
atively high Reynolds, Mach or Hartman num-
bers, for the iterative methods. These problems
are good benchmark tests to assess the robustness
and accuracy of the proposed preconditioners. In
the following, the governing equations and the
finite element formulations used are briefly pre-
sented.

Let © be a bounded domain of R™ (nd = 3)
and I' = 09 be its boundary. The outward unit
vector normal to I' is denoted by n. Throughout
this paper, we consider a partition of the domain
) into elements 2° where piecewise continuous
approximations for the independent variables are
employed. We will use the standard notation: a
subscript A to a function denotes a finite element
approximation.

3.1 Incompressible flows

The conservation equations for momentum and
mass for an incompressible flow are written in
differential form as:

%—?—F(u-V)u—VVQu—i—Vp:f (1)

Veu =0 (2)

where p, p, v and f are, respectively, pres-
sure, density, kinematic viscosity and body force.
The stabilized discrete formulation correspond-
ing to these equations is established using either
the Galerkin-Least-Squares method of Hughes et
al. [8,9] or the regularized Galerkin method
of Pitkaranta and Brezzi [|. In general, the
GLS method is more stable than the regularized
method for high Reynolds numbers. The discrete
solution (up, pp) is the solution of the variational
problem: find (up, py) such that for all weighting
functions (v, gp) one has

/Vh- (ﬁ—l—(uh-V)uh —f)dQ

Q ot

+/Vvuh-VVth—/phV-vth
Q Q

-I-/thvh-ndf (3)

— /(uVuh-n)-vhdI‘+/p}§(V-uh)dQ
T Q

+ >
QeeQp
((uh V)un — vViup + Vp, —f) .

+ ¥ q/ (Vs - Vpn) dQe = 0
Qe VS

71/ ((uh -V)vp — vV2vy, + Vp}’;)

with thes parameters 7 and e¢; functions of the
mesh size h and the local Reynolds number Re;, =
|lul|h/2. For the GLS method €; = 0 and 7 =

—1/2
((@)2 T <%)2> - 21/\/’}1:6%44'

regularized stabilized technique €; = «
with « <1 and 14 = 0.

For the
h2

2v4/ Rei+4

3.2 Magnetohydrodynamic flows

The conservative magnetohydrodynamic system
of equations is obtained from the Maxwell equa-
tions [10], and is written as:
0B 2
E—Vx (uxB)—nV*B+7nV(V-B)+Vg=10
(4)
V-B=0 (5)

where 1, B, u and ¢ are respectively the mag-
netic diffusivity coeflicient, magnetic induction
field, velocity field and the scalar Lagrange mul-
tiplier for the magnetic free divergence constraint
(5). For magnetohydrodynamics, this system
is solved along with the incompressible Navier-
Stokes equations where the body force is f =
1(V x B) x B which represents the Lorentz
(Laplace) force due to the interaction between the
current density j = %(V x B) and the magnetic
field where p the magnetic permeability. Since in
real applications the magnetic-Reynolds number
Rem = WML g gmall (where L is a represen-
tative length), the discrete stabilized variational
formulation used for the magnetic problem (4-5)
is similar to the regularized method used in (3)
and is stated as: find (By, ¢;) such that for all
weighting functions (Bj,, ¢;) one has

OBh
B - —1 40
/Qh o S

/ n VBL - VBth—/ Bi. V x (ux By) dO
Q Q

+/QB;;- Yan dQ-l—(TQ—n)/Q(V- By) (V-BL) O
— [7 (- VBW)-Bj, — (n- B}) (V- By)) dr

+ [6 (VB do+ 3 e [Vo Ve a0 =0
Q QeEFh Qe
(6)

The parameter ey is a function of the mesh size
h and local magnetic Reynolds number (Rem; =

[[ullhy & - h?

7) given by €3 = o/ Remi T The parameter
T is a penalization factor given by 79 = ||ul||h/2.
Note that 79 —n = n(RC;leL —1). For 2 < Remy,

(T — 7)) tends to w and ez tends to QH}LH'

3.3 Coupling strategy

The fully-coupled problem is described in its weak
form by the variational statements (3) and (6).
As an alternative to the simultaneous solution ap-
proach which would require huge computational
requirements in terms of memory and computa-
tional time, one can use a segregated scheme.
Segregated methods consist of a sequence of so-
lutions of the two-way coupled problems. The
process is terminated when a certain convergence
criterion is achieved during the iterative process.
For time-dependent problems, coupling iterations
are actually time steps. The generic form of the
segregated algorithms could then be presented as:

Generic form of the Segregated Algorithm

1- Choose initial solutions {U°} and {B"} and
convergence criterion e
2- Time Steps: For i=1,2,...,nsteps

-2.1. Solve the Magnetic Problem:
(K™ {aB'} = - {rR(B, U}
-2.2. Update the Magnetic solution:

{51} ={57"} +{aB)

-2.3. Solve the Fluid Problem:

Jwty {avi} = - {rw*, B}

-2.4. Update the Fluid Solution:
{ur} ={v} +{av]

-2.5. If || {R(U, B")} [, < €Stop
3- End of Time Steps
4- End

In the above algorithm, {U™} and {B"} are
respectively the fluid and the magnetic solutions
at certain previous mth and nth iterations with
m < iand n <iand K(U™) is the stiffness ma-
trix for the magnetic problem and J(U?) is the
approximate Jacobian matrix for the fluid prob-
lems. For instance, setting m =¢—1 and n =1
gives the simplest segregated algorithm referred
to as segregated-coupling algorithm (1). In the
segregated algorithm (1), the magnetic field lags
one step behind the flow field. However, when the
fluid and the magnetic problems are strongly cou-
pled, this strategy may not converge. More tight
coupling is possible by setting n = ¢ which means
that magnetic field is computed at the same time
as the for the flow field. In practice, this is diffi-
cult to implement. It is however possible to up-
date the magnetic field whenever the flow field is
perturbed, as in Newton-GMRES iterations, so
that to keep the magnetic and flow fields tightly
coupled . The resulting algorithm, referred to as
segregated algorithm (2) involves magnetic-field
solves in Newton-GMRES loops. The stiffness
matrix K(U) is infact computed and factorized
only at every N time steps.

3.4 Compressible flows

The Euler and averaged Navier-Stokes equations
are solved along with the Spalart-Allmaras (high
Reynolds numbers) turbulence model [11]. The
governing system of equations is written in a com-
pact form and in terms of the conservation vari-
ables V. = (p,U, E,1;)! for the averaged N-S
equations or V' = (p,U, E)! for Euler equations
as

Vit Fi V) =F I (vy+F (1)

where U is the vector of specific momentum, p
the density, E the specific total energy and v4 the
turbulent kinematic viscosity (in the case of tur-
bulent regime), F% and F;-iif I are respectively
the convective and diffusive fluxes in the ith-space
direction, and F is the source vector. Lower com-
mas denote partial differentiation and repeated
indices indicate summation. The diffusive fluxes
can be written in the form

Fil = Kyv,

while the convective fluxes can be represented by
diagonalizable Jacobian matrices A; = F“d”i,v.
Recall that any linear combination of these ma-
trices has real eigenvalues and a complete set of
eigenvectors.

It is well known that the standard Galerkin fi-
nite element formulation often leads to numeri-
cal instabilities for convective dominated flows.
In the Galerkin-Least-Squares method (or the
generalized Streamline Upwind Petrove Galerkin
method), the Galerkin variational formulation is
modified to include an integral form depending
on the local residual R(V') of equation (7), i.e.
R(V) =V, + Fi(V) - F{ (V) — F, which
is identical to zero for the exact solution. The
SUPG formulation reads : find V' such that for
all weighting functions W,

S [W (Ve+ Pl = F)+ WaF) g
e €

- / W.F47 p; dr (8)
T
+Z/ (AW ;) -7 -R(V) dQ = 0.
e €

In this formulation, the matrix 7 is referred to
as the matriz of time scales. The SUPG for-
mulation is built as a combination of the stan-
dard Galerkin integral form and a perturbation-
like integral form depending on the local resid-
ual vector [12,13]. The objective is to reinforce
the stability inside the elements. The matrix of
time scales used here is given by 7 = (3 |B;|) !,
for i = 1,nd where B; = %Aj and gl are
J

the components of the element Jacobian matrix

[ref.]. Recently, a new method referred to as
the Edge-Based-Stabilized finite element method
(EBS) was introduced [14,15] aiming to stabilize
the standard Galerkin method while considering
the real characteristics of the flow as computed
on the normal direction of element edges. This
method has been proven to be stable and more ac-
curate for solving viscous and inviscid compress-
ible flows at all Mach numbers. However, it in-
troduces very strong nonlinearities which could
be difficult to solve with standard iterative meth-
ods. Let us now briefly describe the EBS formu-
lation, for more details see |].

Consider the eigen-decomposition of A, =
S Aing, A, = SnAnSn_l. Let Pe; =)\ih/Zl/
be the local Peclet number for the eigenvalue
Ai, h a measure of the element size on the el-
ement boundary, v the physical viscosity and
Bi = min(Pe;/3,1.0). We define the matrix B,
by

B, =S,LS, ! (9)

where L is a diagonal matrix whose entries are
given by L; = (14+6;) if \; > 0; L; = —(1—3) if
Ai <0and Ly =0if \; =0.

The EBS formulation reads as follows: find V'
such that for all weighting function W,

Z/Qe[w . (V’t _{_anj’l) —f') + W’ZF;hff] d<
e

—/ w.F4 ;v (10)
T

+> FeW-rgd-R(V) dl' =0

with 7¢¢ the matrix of intrinsic length scales
given by

h
,red

n :i'Bn (11)

and computed on the element boundaries I'®. The
function of the SUPG and EBS formulations is to
add an amount of artificial viscosity in the charac-
teristic directions. Since these formulations lead
to a high-order scheme, high frequency oscilla-
tions in the vicinity of shocks or stagnation points
can occur. A shock capturing viscosity depend-
ing on the discrete residual R(V') as proposed in

[?] is employed. More dissipation is then added
in high gradient zones to avoid any undesirable
local oscillations.

4 Numerical experiments

Several numerical tests have been carried out to
compare the performance of the proposed iter-
ative methods related to the stabilization tech-
niques used. The first problem presented here is
the classical lid-driven cavity problem in case of a
laminar incompressible flow at a Reynolds num-
ber R, = 1000. The second test problem concerns
an MHD flow in the lid-driven 3D cavity where a
constant transversal magnetic field By is imposed.
At last, main results are drawn concerning nu-
merical tests carried out on compressible inviscid
and viscous flows using respectively GMRES and
FGMRES. For all test problems, a time march-
ing procedure is employed. The Jacobian matrix
is computed and factorized using ILUT after each
10 time steps. At each time step, quasi-Newton
iterations are performed. All the computations
are done using a SUN-Ultra 167 MHz processor.

4.1 Incompressible flow problem

For the incompressible problem, results are ob-
tained for the classical lid-driven cavity problem.
The cavity is a cubic domain (0 < z < 1,0 <
y < 1,0 < z < 1) and the fluid movement in
the cavity is induced by the imposed boundary
condition u = wug of the plane y = 1. The Dirich-
let boundary conditions are imposed for the ve-
locity field, thus expressing the non-slip prop-
erty at solid walls (Figure 1). The hydrodynamic
Reynolds number is set to Re = 103. The numer-
ical parameters of the solution algorithm are set
to the following:

e Time step is At = 5.0.
e Number of time steps is N = 100.
e Number of Newton Iterations is set to 5.

e The dropping tolerance parameter in ILUT
is set to 107° and the fill-in parameter is
Ifil = 2.

e The Preconditionning Matrix is computed
each 10 time steps.

e For the GMRES algorithm, the number of
Krylov basis vectors is m = 12 and and
the convergence criteria is ||r||/||ro|| < 1073
where ||r|| is the euclidian norm of the resid-
ual vector and rq is the initial residual vec-
tor.

e For the inner FGMRES loop, the number of
directions is set to 2.

e For the Deflation algorithm, the number of
deflation directions is 6.

Results have been obtained using all algorithms
described in section (2). Convergence histories
are shown in figures (2) to (4). It is seen that
when Galerkin Least Squares formulation is used,
all the preconditionning algorithms exhibit al-
most the same patern of convergence (Figure 2).
When the stabilization of the finite element for-
mulation is performed through the regularization
term with a = 1.0, again the performance of all
the preconditionners are almost the same (Fig-
ure 3). When a = 0.1, FGMRES and DEFLA-
TION algorithms show the best results among
the preconditionners. The BROYDEN and the
ILUT algorithms lag behind with both algorithms
showing stagnation plateau (Figure 4). In terms
of CPU time, the FGMRES algorithm is the
most efficient preconditionner far ahead of the
three other algorithms and especially when as-
sociated with the Galerkin Least Squares stabi-
lization (Table 1).

As a first conclusion, FGMRES seems to be ro-
bust and efficient compared to the other methods.
The deflation method helps significantly in the
case of incompressible flows tested so far. Broy-
den update of the Jacobian improves the pre-
conditioner but in general it is less efficient than
FGMRES.

4.2 Coupled MHD problem

For the coupled MHD problem, results are ob-
tained for the lid-driven cavity problem under

a constant transversal magnetic field By. When
the external imposed magnetic field is zero, the
problem becomes the classical hydrodynamic lid-
driven cavity problem (Figure 1). The velocity
field induces a perturbation of the magnetic field
in the fluid domain. Moreover, the interaction be-
tween the velocity and the magnetic fields creates
the electromagnetic Lorentz body forces which
are responsible for the change of the structure
of the flow. A stronger coupling between the flow
field and the magnetic field results as the Hart-
mann number H, = BOLW increases. The
hydrodynamic and magnetic Reynolds numbers
are respectively set to Re = 103 and Re,, = 1
and the Hartmann number to Ha = 20. The nu-
merical parameters of the solution algorithm are
the same as for the incompressible lid-driven cav-
ity problem. The Dirichlet boundary conditions
are imposed for both the velocity field and the
magnetic field, thus expressing the non-slip prop-
erty at solid walls and the non-perturbation of
the external magnetic field by the induced one.
Again, results have been obtained respectively
for ILUT, FGMRES, BROYDEN and DEFLA-
TION algorithms with two versions of the seg-
regated algorithm: algorithm (1) and algorithm

2).

Segregated coupling algorithm (1) Figures
(5) to (7) concern the segregated algorithm
(3). Figure (7) shows the convergence history
when the finite element formulation is stabilized
through a regularization term with o = 0.1. Tt
is seen that while the ILUT and the BROY-
DEN algorithms experience a stagnation plateau,
the FGMRES and the DEFLATION algorithms
reach a zero machine precision. The DEFLA-
TION algorithm reachs this residual few time
steps before the FGMRES algorithm. However,
the FGMRES algorithm converges in much less
CPU time (Table 2). When the regularization
factor is set to & = 1.0 and since the stabilization
term is more important, all the preconditionning
algorithms, all the preconditionning algorithms
perform very well and reach a machine zero con-
vergence (Figure 6). But again, the FGMRES

10

algorithm performs better (Table 2). In figure 5,
the convergence history is shown when the for-
mulation is stabilized through a Galerkin-Least-
Squares term. The convergence histories of all the
algorithms are quite identical and again FGM-
RES is the moste efficient s (Table 2). As a con-
clusion, the FGMRES is the fittest algorithm as it
does not seem to be sensitive to the stabilization
technique and as it uses the less CPU resources.

Segregated coupling algorithm (2) Results
for the segregated algorithm (2) show the same
qualitative behavior with the four precondition-
ners experiencing stagnation plateau in almost all
the cases (Figures (8) to (10)). However, when
the BROYDEN algorithm is associated with the
Galerkin Least Squares formulation, the conver-
gence reaches a level of (107'2). The FGMRES
algorithm is again the fastest preconditionner in
terms of CPU time.

4.3 Compressible flows

Several numerical tests have been conducted for
GMRES as preconditioned by ILUT and for
FGMRES on compressible inviscid and turbulent
flows using SUPG and EBS formulations. For
instance, some tests are carried out for a vis-
cous flow around a flat plate at a Mach number
M, =1.9. As a general trend, we can assert that
for a reasonable fill-in parameter (around 15) and
for inviscid or laminar flows GMRES performs as
well as FGMRES in terms of convergence. At
each time step FGMRES uses fewer Krylov di-
rections (Figure 11) than GMRES. But, the pre-
conditoning inner-loop of FGMRES calls for more
matrix-vector products (or residual evaluations).
In some cases, it is observed that FGMRES is
much faster than GMRES, but this is not al-
ways the case. As the problem to solve becomes
harder as in the case of turbulent flows, we ob-
serve that GMRES may diverge. For instance,
Figure 12 shows the convergence for a turbulent
flow around the Onera-M6 wing at M, = 0.8447,
R, = 11.710%, and an angle of attack of 5.06 de-
grees. GMRES diverges in this case.

Acknowledgments

This research has been funded by the Natu-
ral Sciences and Engineering Research Council
of Canada (NSERC), PSIR research program of
ETS and by Bombardier.

References

[1]

[2]

Y. Saad. “Iterative Methods For Sparse Lin-
ear Systems”, Numerical Linear Algebra with
Applications, 1:387-402, (1994).

Y. SAAD AND M.H. SCHULTZ. “GMRES:
A Generalized Minimun Residual Algorithm
For Solving Nonsymmetric Linear Systems”,
SIAM J. Sci. Stat. Comput., 7, 856-896,
(1986).

Y. Saad. “ILUT : A Dual Treshold Incom-
plete ILU Factorisation”, Numer. Linear Al-
gebra Appl., 1, 387-402, (1994).

J.E. Dennis and R.B.Schnabel. “Numer-
ical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations”, Prentice-
Hall, Inc., New-Jersey, (1983).

R.B. Morgan. “A Restarted GMRES
method augmented with eigenvectors”,
SIAM J. Matriz Analysis and Applcations,
16, 4, 1154-1171, (1995).

Y. Saad. “A Flexible inner-outer precondi-
tionned GMRES Algorithm”, SIAM J. Sci.
Comput., 14, 461-469, (1993).

A. Chapman and Y. Saad. “Deflated and
augmented Krylov subspace Techniques”,
Numer. Linear Algebra Appl., to appear.

T.J.R. Hughes, L.P. Franca and Hul-
bert. “A new finite element formu-
lation for computational fluid dynamics:
VIII. The Galerkin/least-squares method
for advective-duffusive equations”, Com-
puter Methods in Applied Mechanics and En-
gineering, 73, 173-189 (1989).

A. Soulaimani and Y. Saad. “An ar-
bitrary Lagrangian-Eulerian finite element-
method for solving three-dimensional free

11

[10]

[11]

[12]

[13]

[14]

[15]

surface flows”, Computer Methods in Ap-
plied Mechanics and Engineering, 162, 79-
106, (1998).

N. Ben Salah, A. Soulaimani, W. G. Habashi
and M. Fortin. “A Conservative Stabilized
Finite Element Method for the magneto-
hydrodynamics equations ”, International
Journal for Numerical Methods in Fluids,

29, 535-554, (1999).

P.R. Spalart and S.R. Allmaras. “A one-
equation turbulence model for aerodynamic
flows”, La Recherche Aerospatiale, 1, 5-21
(1994).

A. Soulaimani and M. Fortin. “Finite
Element Solution of Compressible Viscous
Flows Using Conservative Variables”, Com-
puter Methods in Applied Mechanics and En-
gineering , 118, 319-350 (1994).

T.J.R. Hughes and Mallet. “ A new fi-
nite element formulation for computational
fluid dynamics: III. The generalized stream-
line operator for multidimensional advective-
diffusive systems”, Computer Methods in

Applied Mechanics and FEngineering, 58,
305-328 (1986).
A. Soulaimani and C. Farhat. “On a fi-

nite element method for solving compressible
flows”, Proceedings of the ICES-98 Confer-
ence: Modeling and Simulation Based En-
gineering. Atluri and O’Donoghue editors,
923-928, October (1998).

A. Soulaimani, A. Rebaine and Y. Saad.
“An Edge Based Stabilized Finite Element
Method For Solving Compressible Flows:
Formulation and Parallel Computation”, to
appear in the Proceedings of the Seventh
Aerodynamics Symposium, 46th CASI An-
nual Conference, May, (1999).

Table 1: Computational performance of different preconditioners for the incompressible problem. CPU
time in seconde.

ILUT FGMRES BROYDEN DEFLATION
GLS 1.00 0.52 0.61 0.60
Regularized method, a = 1.0 1.12 0.59 0.78 0.64
Regularized method, a = 0.1 1.50 0.80 1.19 0.78

Table 2: Computational performance of different preconditioners for the coupled MHD problem.
Segregated algorithm (1). CPU time in seconde.

ILUT FGMRES BROYDEN DEFLATION
GLS 1.00 0.33 0.66 0.57
Regularized method, o = 1.0 1.15 0.40 0.80 0.64
Regularized method, a = 0.1 1.53 0.54 1.22 0.79

Table 3: Computational performance of different preconditioners for the coupled MHD problem.
Segregated algorithm (2).

ILUT FGMRES BROYDEN DEFLATION
GLS 1.00 0.36 0.75 0.55
Regularized method, a = 1.0 2.76 1.87 2.16 2.84
Regularized method, a = 0.1 2.64 0.84 2.22 2.93

12

| |50

|

|

|

|

|

|

I I
~= X

//

Figure 1: MHD flow. Domain and boundary conditions.

Normalized Residual vs Time Steps
T T T T
2k ilut (g.l.s.) -— |
fgmres (g.l.s.) —+-
broyden (g.l.s.) -8--
deflation (g.l.s.) -

log(|IrlI/Ir_Ol)

0 20 40 60 80 100
Time Steps

Figure 2: Incompressible flow, lid-driven cavity problem. Convergence history for the GLS method.

13

Normalized Residual vs Time Steps

T T T T
2 L ilut (without g.l.s. alpha=1) <-— |
fgmres (without g.l.s. alpha=1) -+-
broyden (without g.l.s. alpha=1) -&--
0 deflation (without g.l.s. alpha=1) -x
-2+ -
~ _4 B 7
)
= st 1
=
o
-8 -
-10 + ¥ 4
12 + .
14 +
1 1 1 1
0 20 40 60 80 100

Time Steps

Figure 3: Incompressible flow, lid-driven cavity problem. Convergence history for the regularized
method wilth a = 1.0

Normalized Residual vs Time Steps

T T T T
2k ilut (without g.l.s. alpha=0.1) <— |
fgmres (without g.l.s. alpha=0.1) -+-
broyden (without g.l.s. alpha=0.1) -8--
o deflation (without g.I.s. alpha=0.1) -
2+
=~ 4
3
_l
= sf
=
k=]
-8
-10
-12
14
1 1 1 1
0 20 40 60 80 100

Time Steps

Figure 4: Incompressible flow, lid-driven cavity problem. Convergence history for the regularized
method wilth a = 0.1

14

Normalized Residual vs Time Steps
T T T T

log(lirli/llr_ol)

0 20 40 60 80 100
Time Steps

Figure 5: MHD flow. Convergence history for the GLS method and segregated algorithm (1).

Normalized Residual vs Time Steps

T T T T
2 L fgmres with alg. 3 (without g.I.s. alpha=1) ~<— |
ilut with alg. 3 (without g.l.s. alpha=1) -+-
broyden with alg. 3 (without g.l.s. alpha=1) -&--
0 deflation with alg. 3 (without g.l.s. alpha=1) -x
-2+ -
~
e
. 4 | *ﬁr%]
= S
S i
c e
= S
= 6 e T
= S
= R
j=2) >k*
o e
8| e 4
het
e,
RE

-10 e,]
*,
S
iy
e
212 + oy 4
i
K
hw*
e
14 F b
1 1 1 1
0 20 40 60 80 100
Time Steps

Figure 6: MHD flow. Convergence history for the regularized method wilth o = 1.0 and segregated
algorithm (1).

15

Normalized Residual vs Time Steps

T T T T
2 L fgmres with alg. 3 (without g.l.s. alpha=0.1) <— |
ilut with alg. 3 (without g.l.s. alpha=0.1) -+-
broyden with alg. 3 (without g.l.s. alpha=0.1) -&--
0 deflation with alg. 3 (without g.l.s. alpha=0.1) -x
H—H—H—H\
-2+ DY -
X

4 ‘gng ‘ E
= X
i
= sof 1
g 5

-8 -

-10 e

%
Pa
12 + % .
14 +
1 1 1 1
0 20 40 60 80 100
Time Steps

Figure 7: MHD flow. Convergence history for the regularized method wilth o = 0.1 and segregated
algorithm (1).

Normalized Residual vs Time Steps

T T T T
2 L fgmres with alg. 5 (with g.l.s.) <=— |
ilut with alg. 5 (with g.l.s.) -+~
broyden with alg. 5 (with g.l.s.) -8-
0 deflation with alg. 5 (with g.l.s.) -x
-2+ -
~ _4 B 7
3,
= " i
= sf 1
=
o
-8 -
10 b ==]
212 + T ol b
N TEESIEENIEEOaTEEnaTEDS TEERL]
14 + .
1 1 1 1
0 20 40 60 80 100

Time Steps

Figure 8: MHD flow. Convergence history for the GLS method and segregated algorithm (2).

16

log(|Irli/lIr_0I1)

-14

Figure 9: MHD flow.

algorithm (2).

log(lIrli/llr_olI)

-10

-12

-14

Normalized Residual vs Time Steps

fgmres with alg. 5 (without g.l.s. alpha=1) <— |

ilut with alg. 5 (without g.l.s. alpha=1) -+-

broyden with alg. 5 (without g.l.s. alpha=1) -8--
deflation with alg. 5 (without g.l.s. alpha=1) -*

ey

gk
iy Rt e

20

40

60 80 100
Time Steps

Convergence history for the regularized method wilth a = 1.0 and segregated

Normalized Residual vs Time Steps

fgmres with alg. 5 (without g.l.s. alpha=0.1) <— |
ilut with alg. 5 (without g.l.s. alpha=0.1) -+-
broyden with alg. 5 (without g.l.s. alpha=0.1) -&--
deflation with alg. 5 (without g.l.s. alpha=0.1) -x

Ko 5%

o &
EDD TEE - PR

X%&Wx&&m&%%
. oo |

XX,

20

40

60 80 100
Time Steps

Figure 10: MHD flow. Convergence history for the regularized method wilth @ = 0.1 and segregated

algorithm (2).

17

" Standard GMRES —+—
FGMRES -

Normalized Residual: log(]|r||/||r_O[|)
&
T
1

12 .

0 2 4 6 8 10 12 14

Krylov direction

Figure 11: Compressible flow over a flat plate at Mach=0.1.9 and Re=100.

T T T T
GMRES +—
FGMRES -+-
o 1
5
K=]
= i
>
h=]
0
1S
e}
[}
N
©
E i
S +
z t‘*ﬁﬂmw N,
et
m*
2 **%-q N .
/ g
M%ﬁ*‘%& hoh
i)
-3+ \+_
-4 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Time steps

Figure 12: Compressible flow around Onera-M6 wing at Mach=0.85 and angle of attack=5

18

