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Abstract

When solving a linear system in parallel, a large overhead in using an incomplete
LU factorization as a preconditioner may annihilate any gains made from the improved
convergence. This overhead is due to the inherently sequential nature of such a
preconditioning. Multicoloring of the subdomains assigned to processors is a common
remedy for increasing the parallelism of a global ordering. However, the achieved
degree of parallelism is still limited since different colors must be processed sequentially.
Further reductions of the parallel overhead are possible. Here we suggest several
strategies to decrease the idle time in the multicolor block Gauss-Seidel preconditioning.

1 Introduction

Parallel preconditioners may be developed in two distinct ways: extracting parallelism
from efficient sequential techniques or designing a preconditioner from the start specifically
for parallel platforms. Preconditioners developed from the first approach yield the same
good convergence properties as those of a sequential method but often have a low degree
of parallelism, leading to inefficient parallel implementations. In contrast, preconditioners
developed from the second approach enjoy a higher degree of parallelism, but may have
inferior convergence properties. This approach is based on the ideas from Domain
Decomposition methods and considers distributed sparse linear systems as distributed
objects. For discussions of this viewpoint, see [19, 7, 16] and references therein. A
substantial progress has been made in extracting parallelism from inherently sequential
preconditioning techniques using various multicoloring strategies (see, e.g., [8] and [10]).
Multicoloring of subdomains assigned to processors is a way to maximize the parallelism
of a global ordering. This paper focuses on reducing the parallel overhead incurred by the
sequential execution remaining in the multicolor processing order of subdomains. First, we
describe a strategy of representing several colors in each processor resulting in two-level
multicolor preconditioner. Second, block iterative methods are considered. Using these
methods also reduces the overhead of multicoloring when different colors are assinged to
the local vectors in a block-vector. Thus for both strategies, the degree of parallelism for
the multicolor preconditioning reaches that of the preconditioning based on the Domain
Decomposition ideas. We show how these two strategies can be applied to the block Gauss-
Seidel preconditioning.

*Work supported by NSF under grant CCR-9618827, and in part by the Minnesota Supercomputer
Institute.

tDepartment of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E.,
Minneapolis, MN 55455, saad@cs.umn.edu.

iDepartment of Computer Science, University of Minnesota at Duluth, 320 Heller Hall, 10 University
Drive, Duluth, MN 55812, masha@d.umn.edu.



2

The paper is organized as follows. Section 2 gives general definitions for solving a
distributed linear system as a distributed object and describes the standard multicolor
block SOR preconditioner In Section 3, a way to represent several colors in each processor
is considered and the resulting Gauss-Seidel preconditioning is constructed. A combination
of block iterative techniques and multicolor Gauss-Seidel is shown in Section 4. Section 5
contains numerical experiments followed by the conclusions section.

2 Standard multicolor block SOR preconditioner for distributed linear
systems

Consider a linear system Ax = b, where A is a large sparse nonsymmetric real matrix of
size n. To solve such a system on a distributed memory computer a graph partitioner is
first invoked to partition the adjacency graph of A. Based on the resulting partitioning, the
data is distributed to processors such that pairs of equations-unknowns are assigned to the
same processor. Thus, each processor holds a set of equations (rows of the linear system)
and vector components associated with these rows.

Figure 1 shows a “physical domain” viewpoint of a sparse linear system. This repre-
sentation borrows from the Domain Decomposition literature. Thus term “subdomain” is
often used here instead of the more proper term “subgraph”. Note that the concepts of
a “subdomain” and a “point” are defined algebraically and do not necessarily have direct
geometrical representations. Each point (node) belonging to a subdomain is actually a pair
representing an equation and an associated unknown. It is common to distinguish between
three types of unknowns: (1) Interior unknowns that are coupled only with local equations;
(2) Local interface unknowns that are coupled with both non-local (external) and local
equations; and (3) External interface unknowns that belong to other subdomains and are
coupled with local equations [13, 15, 7, 19, 6, 18, 9].

External
/ interface points

Fic. 1. A local view of a distributed sparse matriz.

The matrix assigned to a certain processor 7, (i = 1,...,p) is split into two parts: the
local matrix A;, which acts on the local variables and an interface matriz X;, which acts
on the external variables. Accordingly, the local equations can be written as follows:

(1) Aizi + XY ext = bi-

where z; represents the vector of local unknowns, ¥; ¢+ is the vector of the external interface
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variables, and b; is the local part of the right-hand side vector. It is common to reorder
the local equations in such a way that the interface points are listed last after the interior
points. The local vector of unknowns z; is split into two parts: the subvector u; of internal
vector components followed by the subvector y; of local interface vector components. The
right-hand side b; is conformally split into the subvectors f; and g;. In accordance with
these splittings, the local equations (1) can be written as follows:

) (z 6) G+ (s ) = ()

Here N; is the set of indices for subdomains that are neighbors to the subdomain i. The
term Fj;jy; is a part of the product Xjy; ..+ which reflects the contribution to the local
equation from the neighboring subdomain j. The result of the multiplication by X; affects
only the local interface unknowns, which is indicated by a zero in the top part of the second
term of the left-hand side of (2).

The most important operation when solving distributed sparse linear systems is
undoubtedly the preconditioning operation. The simplest Domain Decomposition-based
preconditioner is the additive Schwarz procedure, which is a form of the block Jacobi
iteration, where the blocks refer to matrices associated with entire subdomains. Another
preconditioner, block Gauss-Seidel, may be derived from the multiplicative Schwarz
procedure. A block Gauss-Seidel iteration can be carried out as a sequence of eliminations
of the local residual components followed by the updates of the local components of the
unknown and of the global residual vector. Thus, a global order in which to perform these
eliminations as well as some global stopping criterion are required

A global ordering can be based on an arbitrary labeling of the subdomains provided it is
consistent, i.e., two neighboring subdomains have a different label. The most common global
ordering is multicoloring of the subdomains, which increases parallelism [2, 4, 3, 12, 17].
Thus, if the subdomains are colored and the global ordering of the subdomains defined by
the colors, the Gauss-Seidel iteration is performed in each processor as follows:

ALGORITHM 2.1. Multicolor Block Gauss-Seidel Iteration

1. Docol =1,...,numcols

2 If (col.eq.mycol) Then

3 Obtain external data y; eqt

4. Update local residual r; = (b— Az); = b; — Aixi — XiYi ext
5. Solve Az(sz =T;

6 Update solution x; = x; + 6;

é EndIf

8. EndDo.

Many variations are possible such as overlapping of the domains, inaccurate solves in step
5, inclusion of the relaxation parameter w.

3 Variants of two-level multicolor block SOR preconditioner

Although the multicoloring of subdomains is a way to extract parallelism from the precon-
ditioning, for large subdomains, however, sequential processing still takes a considerable
amount of time in multicolor preconditioners. Thus it is desirable to reduce the size of
color subdomains. A general approach is to split each subdomain into several parts: those
that can be processed in parallel and those that require a sequential processing order. For



Fic. 2. Coloring of subdomains (left), 2-level coloring of subdomains (right).

example, the interior nodes in all subdomains can be processed in parallel followed by a
solve with the interface nodes in each subdomain [10], such that the order of the solves is
given by multicoloring of subdomains. However, the reduction in the idle time comes at
expense of sacrificing the quality of preconditioning (see [10] for more details). By using a
level-set expansion technique more advantageous splitting into parts can be achieved in a
subdomain. Then all the parts are colored consistently (Figure 2). To minimize the idle
time due to ordering, each subdomain should contain the same number of colors. Alterna-
tively, all the colors of subdomains should be represented in each subdomain.

A variation of this approach to splitting is to represent first each part of a subdomain
by a node in a graph, define consistent coloring of this graph, and then select color parts by
grouping certain nodes for each color. To define a consistent coloring (we call it “interface-
coloring”), assume that the local points interfaced to each neighbor are separated into
different color parts. Based on this assumption we can create a quotient graph, each node
of which represents a set of the local interface points sent to a certain neighbor. Then
this graph is colored with any graph coloring technique (see, e.g., [11, 14]). A consistent
coloring can now be obtained if the local interface points that are sent to more than one
processor (we call such points “multi-interface points”) undergo a special treatment. Once
the quotient graph is colored, a single separate color is found for all the multi-interface points
in a subdomain. Note that in the quotient graph, multi-interface points are represented by
more than one node. To assign colors to the interior points a level-set technique can be
used, such that initially each subdomain has only its local interface points colored.

Load balancing among color parts is extremely important for a subdomain splitting since
imbalanced computations could cause a performance degradation, as will be indicated in
the numerical experiments. In particular, the interface-color splitting lacks load balancing
when the number of multi-interface points is small compared with the average size of a color
part. This happens for a rectangular partitioning of regular grids, for example. One way to
improve load balancing is to color certain interior points in the color of the multi-interface
points. Such points can be taken as “center” points in each subdomain. Let these “center”
points be the points of the last level-set of each color part. A local view of the color parts
in a subdomain is shown in Figure 3. An additional benefit of this choice is that these
interior points together with the multi-interface points may be used as a coarse grid solver
for a multilevel preconditioner [1].

A splitting of the subdomain 4 into color parts defines a symmetric permutation matrix
P; for the local variables, such that P,A;P; = A{ 4+ Ff, where the matrix A{ is a block
diagonal matrix with the number of blocks equal to the number numcols of colors in the
subdomain 7. Therefore local equations (1) can be rewritten as

Afaf + Fiai + 47 = b,
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Fic. 3. Local view of color parts in each subdomain.

where vectors z, 1, and b§ are obtained by applying the permutation P; to vectors z;,
(0,...,0,(X;yiext)T)T, and b;, respectively. Let R;_, be a restriction operator from the
entire subdomain ¢ into a color part col, (col = 1,...,numcols). Then for a permuted
vector z{, R; 2 = 2¢°0 belongs to the color part col, and for any matrix M,
R; , MfRZol = M. An interface-color multicolor SOR, algorithm follows.

ALGORITHM 3.1. Interface-color Block Gauss-Seidel Iteration

1. Docol =1,...,numcols

3 Obtain external data y; eqt

4 Update residual r¢o = R, Pi(b— Az); = bgol — R, ,(P;A;P;)x§ — col
5. Solve Agolgeol = peol

6 Update solution 2% = % 4 §¢°

7. EndDo.

Note that R; ,(PA;P)zé = APz + R;  Ffz$ in line 4. Thus, compared with
Algorithm 2.1, one extra matrix-vector multiply with a part of the matrix Ff has to be

performed to compute the residual components involving unknowns of the color part col.

4 Block Krylov accelerators and multicolor block SOR preconditioner

Another way to break the sequential color loop is to use a block version of a Krylov
accelerator such that each local vector of the block is associated with a different color.
The implementational details will reveal that a flexible version of a block accelerator is
needed because at each iteration a different preconditioner is applied to each vector in a
block.

In the block Krylov subspace methods the subspace of approximants is defined from a
set (block) of initial vectors. For example, given s initial vectors

V = [t 03,.. 0f],
the m-th block-Krylov subspace is defined as

(3) span {V, AV,...,A™" 'V} .
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Thus the dimension of the subspace is m X s, where s is the dimension of the block.
A block-Arnoldi generalization of the Arnoldi process can be easily derived, and a block
GMRES algorithm can be defined from it (see, e.g., [5] for details). Without describing the
algorithm completely, we can show its main matrix operations — the matrix-vector products
and the preconditioning application. In a right-preconditioned GMRES algorithm, these
two operations take the form:

ALGORITHM 4.1. Block Arnoldi

1. Doj=s,...,m

2. Solve Mwy, = v s fork=35+1,...,57+s

3. EndDo

4. Doj=s,....,m

5. wg = Awg_gsfork=j5+1,...,5+s

6. EndDo.

Then the vectors wy are orthogonalized against all the previous v1,...,vr_1 vectors by a

modified Gram-Schmidt algorithm, for example.

How to exploit parallelism in matrix-vector multiplies (lines 4-6) is well known,
whereas the preconditioning step (lines 1-3) requires more attention. Note that a single
preconditioning matrix M acts on all the columns of the block V[j +1 : j +s]. If M
is associated with a standard multicolor Gauss-Seidel operation, a straightforward use of
a block accelerator is not beneficial. However, it is possible to apply multicolor SOR
differently to each column of the block: Establish a different processing order of the local
subvectors for each vector in the block. In particular, at a color iteration col, processor i
performs SOR operations (updates and a solve) on the local vector z7,j € {1,...,s}. The
column j (among 1,...,s) on which a given processor ¢ will work next is determined as
J := mod(mycol + col, s) + 1 where mycol is the color of processor i. Note that the block
size s should be equal to the numbers of colors numcols.

ALGORITHM 4.2. Multicolumn Block Gauss-Seidel Iteration

1. Docol=1,...,s
2 Select column: j := mod(mycol + col, s) + 1
3. Obtain external data yzj, -
4 Update local residual
r] = (b—Az); = b] — Aiz] — Xiy] .

5 Solve Al =1l
6. Update solution =] = z} + 6]
7. EndDo.

An illustration of the computational order of columns is provided in Figure 4. In the
illustration, four subdomains are distributed among processors P1,...,P4 and colored into
four colors corresponding to the processor numbers. Thus the size of the block-vector is
also 4. The sequence of numbers in each sub-block represents the order of columns handled
in a given processor. For example, processor P4 starts with (its part of) the second column
followed by the processing of columns 3, 4, and 1, respectively. Because of the different
processing order, the preconditioner application changes from column to column of the
block-vector and the idea of flexible GMRES [14] can be used to cope with this. We have
implemented a flexible-preconditioning capability in the block GMRES algorithm described
in [5] following the way in which flexible GMRES is constructed from a standard GMRES
implementation.
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Fi1Gg. 4. Multicolumn SOR iteration.

5 Numerical experiments

We consider a linear system which arises from a 2-dimensional regular mesh problem.
Specifically, consider the elliptic equation:

—Au + 1006”’@ + 1006_‘”y8—u —100u = f
or Oy

on the square (0,1)2 with Dirichlet boundary conditions. The shift term —100u makes
the problem indefinite. A 9-point centered-differences scheme has been used to obtain
the derivatives. When discretized such that there are 360 interior mesh points in each
direction, the resulting linear system is of size n = 360? = 129,600. A flexible variant of
restarted GMRES (FGMRES) [14] with a subspace dimension of 10 has been used to solve
the problem to reduce the residual norm by 108. In Algorithm 4.2 (multicolumn SOR), we
have used a flexible variant of block GMRES(10 x 4), in which 4 is the block size and 10 is
the number of restart block-vectors.

The preconditioning phase performs 5 iterations of SOR. In each SOR iteration, a
backward-forward substitution with the ILUT factors has been used. For ILUT, the fill-
in and tolerance parameters were taken as 15 and 10~*, respectively. Since a 9-point
stencil is used, the minimum number of subdomain colors is four and one additional color
is assigned to the multi-interface points in interface-color SOR. Figure 5 compares the
solution times and number of matrix-vector multiplications for the three variants of the SOR
preconditioner. The gains of splitting subdomains into color parts are especially pronounced
for the smaller processor numbers when the subdomain size is large. However, if the load
is imbalanced in the interface-color SOR preconditioner, e.g., one of the colors is assigned
to the multi-interface points only, then the time per iteration grows when the number
of processors increases (Table 1). In Table 1, the load-imbalanced version of interface-
color SOR is labeled “no centers”. For multicolumn SOR, the workload is larger than for
the other SOR variants (cf. the number of matrix-vector multiplications in Figure 5 —
right). However, the performance of multicolumn SOR is superior if the linear systems
with multiple right-hand sides are to be solved.

In the following experiments we test scalability of the preconditioners: by increasing the
total problem size with the increase in processor numbers. One way to increase the total
problem size is to keep the size of a subdomain constant. For example, if we fix a 50x50
mesh size per processor, then on 4 processors, the total problem size is 50 x 50 x 4 = 10, 000,
whereas on 100 processors the total problem size is 50 x 50 x 100 = 250, 000. The solution
parameters are the same as for the 360x360 mesh problem. Figure 6 shows the solution
times and numbers of matrix-vector multiplications for the three multicolor SOR variations.
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Fic. 5. Solution times and iterations for solving a 360 x 360 problem with 3 variations of
multicolor SOR.

Keeping subproblem sizes fixed while increasing the number of processors increases the
overall size of the problem making it harder to solve and thus increasing the solution time.

TABLE 1
Time to perform an iteration for several variations of SOR.

Time per iteration

Processors 4 ‘ 9 ‘ 16 ‘ 36 ‘ 81 ‘ 100
Standard 3.88 | 1.89 | 1.14 | 0.66 | 0.43 | 0.41
Interface-color 2.66 | 1.24 | 1.02 | 0.50 | 0.36 | 0.34

Interface-color (no centers) || 3.69 | 1.49 | 0.35 | 0.48 | 0.53 | 0.64

Additional tests were performed with the multicolumn and standard SOR. precondi-
tioners on the problem Au = f of the same size (50x50 mesh per processor) and with
the same boundary conditions using the same solution parameters for flexible GMRES(20).
Five-point centered differences were used to approximate derivatives. Thus only two colors
appear in the domain coloring and the subspace size of block GMRES is 20x2, in which
2 is the block size. Table 2 shows the wall-clock timing results for the preconditioner ap-
plication, the whole iterative solution (prec. and total sec., respectively), and the iteration
numbers (iter.) on 4, 9, 16, and 25 processors of a CRAY T3E. The preconditioning ap-
plication and overall solution times for standard SOR are larger than the corresponding
times for the multicolumn SOR. The extra storage and computational cost for multicolumn
SOR are compensated by the reduced parallel overhead when a block of colors is used in
conjunction with a block of vectors and by the enhanced convergence properties of the block
Krylov subspace methods.
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Fi1c. 6. Solution times and iterations for solving a problem with 50 x 50 subdomain sizes with
3 variations of multicolor SOR.

TABLE 2
Multicolumn vs standard SOR for solving a problem with 50 x 50 subdomain sizes.

Multicolumn Standard
Processors || prec. ‘ total sec. ‘ iter. || prec. ‘ total sec. ‘ iter.
4] 1.04 1.15 30 || 1.08 1.26 18
9 1.33 1.50 36 || 1.53 1.82 25
16 || 1.80 2.05 50 || 2.02 2.40 32
25| 1.94 2.23 54 || 3.02 3.58 45

6 Conclusions

This paper addresses the reduction of the parallel overhead incurred in a standard multicolor
SOR preconditioner. Two main approaches have been proposed: (1) to represent several
colors within each subdomain and (2) to use a block Krylov accelerator such that, in
a multicolor SOR iteration, each local column of the block-vector is associated with a
different color. Both approaches appear to be beneficial when the local problem size is
large, i.e., when the sequential computation within a multicolor SOR iteration takes a
considerable amount of time. For the first approach to be effective, a good load balancing
should be achieved among the color parts within each subdomain. Having an equal number
of colors per subdomain is one way to balance the workload. Adding a few center points
to the color part consisting of the points coupled with more than one neighbor subdomains
not only improves the load balancing but also has a potential of being used in a coarse
grid solver. When multiple linear systems are to be solved, combining a block Krylov
accelerator and multicolor SOR is especially advantageous as in approach 2. In addition,
enhanced convergence properties of the block methods can decrease an overall solution time
despite their amount of work per iteration being larger than that of point methods.
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