pARMS: A Package for the Parallel Iterative Solution of General
Large Sparse Linear Systems*
User’s Guide

Yousef Saadt Masha Sosonkina¥

December 30, 2003

*This work was supported in part by NSF under grants NSF/ACI-0000443, NSF/ACI-0305120, and NSF /INT-
0003274, and in part by the Minnesota Supercomputing Institute

tDepartment of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., Min-
neapolis, MN 55455, saad@cs.umn.edu.

#Ames Laboratory, Iowa State University, Ames, IA 50011, masha@scl.ameslab.gov.

Contents

Overview of pARMS

1.1 Distributed sparse linear systems Lo

1.2 Solution methods in pARMS oo
1.2.1 ARMS as the building block for preconditioners in pARMS
1.2.2 Additive Schwarz preconditioning 0oL
1.2.3 Schur Complement techniques. L.

PARMS components

2.1 List of available preconditioners o000,
2.2 List of available accelerators
2.3 Functions used to construct distributed matrix

Template drivers in pARMS

3.1 TESTS/GENERAL directory
3.2 Input parameters Lo e e e
3.3 TESTS/GRIDS directory,
3.4 Auxiliary files in the TESTS/GRIDS directory
3.5 Input parameters
3.6 Vertex-based and edge-based partitioning

Installation of pARMS
4.1 How to run the template driverso Lo o .

Version and contact information

Appendix A: pARMS directory structure

ii

UL O W N = =

N0 o,

o 0o g

1 Overview of pARMS

Viable solutions of modern computational problems that arise in science and engineering
should efficiently utilize the combined power of multi-processor computer architectures and ef-
fective algorithms. For many large-scale applications, solving large sparse linear systems is
the most intensive computational task. The important criteria for a suitable solver include
numerical efficiency, robustness, and good parallel performance. The Parallel Algebraic Re-
cursive Multilevel Solver (pARMS) [1] is a suite of distributed-memory iterative accelerators
and preconditioners targeting the solution of general sparse linear systems. It adopts a general
framework of distributed sparse matrices and relies on the solution of the resulting distributed
Schur complement systems.

1.1 Distributed sparse linear systems

The framework of distributed linear systems [3, 4] provides an algebraic representation of the
irregularly structured sparse linear systems arising in the Domain Decomposition methods. A
typical distributed system arises, e.g., from a finite element discretization of a partial differential
equation on a certain domain. To solve such systems on a distributed memory computer, it is
common to partition the finite element mesh and assign a cluster of elements representing a
physical sub-domain to one processor. Each processor then assembles only the local equations
restricted to its assigned cluster of elements. In the case where the linear system is given
algebraically, a graph containing vertices that correspond to the rows of the linear system can
be partitioned. For both cases, the general assumption is that each processor holds a set of
equations (rows of the global linear system) and he associated unknown variables.

Figure 1 shows a ‘physical domain’ viewpoint of a distributed sparse linear system, for which
a vertex-based partitioning has been used without overlapping the unknowns. As is often done,
we will distinguish between three types of variables: (1) Interior variables are those that are
coupled only with local variables by the equations; (2) Inter-domain interface variables are
those coupled with non-local (external) variables as well as local variables; and (3) External
interface variables are those variables that belong to neighboring processors and are coupled
with the above types of local variables. The local equations can be represented as shown in
Figure 2. Note that these equations need not be contiguous in the original system. The matrix
represented in Figure 2 can be viewed as a reordered version of the equations associated with a
local numbering of the equations/unknowns pairs.

The rows of the matrix assigned to a certain processor have been split into two parts: a
local matrix A; which acts only on the local variables and an interface matrix X; which acts
only on the external interface variables. These external interface variables must be first received
from neighboring processor(s) before a distributed matrix-vector product can be completed.
Thus, each local vector of unknowns z; (¢ = 1,...,p) is also split into two parts: the sub-vector
u; of interior variables followed by the sub-vector y; of inter-domain interface variables. The
right-hand side b; is conformally split into the sub-vectors f; and g;,

xz=(zz> ; bi=(§z> : (1)

The local matrix A; residing in processor i is block-partitioned according to this splitting, leading

External interface
points

local
Data

=i

K— External data— External data !

\ o ,
‘. Interdomain interface |,
NG points _-~

S O | A O

Xi Xij
Figure 1: A local view of a distributed Figure 2: The corresponding local matrices A; and
sparse linear system X;
to
B; F;
A = (2)

With this, the equations assigned to processor 7 can be written as follows:

@j gi) <Z:> ! (ZjEN?Eijyj> B G:) 3)

The term FE;jy; is the contribution to the local equations from the neighboring sub-domain
number j and Nj; is the set of sub-domains that are neighbors to sub-domain i. The sum of
these contributions, seen on the left side of (3), is the result of multiplying the interface matrix
X; by the external interface variables. It is clear that the result of this product will affect only
the inter-domain interface variables as is indicated by the zero in the upper part of the second
term on the left-hand side of (3). For practical implementations, the sub-vectors of external
interface variables are grouped into one vector called y; ¢;+ and the notation

Z Eijy;j = Xi¥ient
JEN;
will be used to denote the contributions from external variables to the local system (3). In effect,

this represents a local ordering of external variables to write these contributions in a compact
matrix form. With this notation, the left-hand side of (3) becomes

w; = AT + XY ext - (4)

Note that w; is also the local part of a global matrix-vector product Az in which z is a distributed
vector which has the local vector components z;.

1.2 Solution methods in pARMS

Multi-level Schur complement techniques available in pARMS are based on techniques which
exploit block independent sets, such as those described in [6] for the sequential ARMS precon-
ditioner.

Figure 3: Group-independent set reorderings of a 9-point matrix: (a) Small groups (fine-grain),
(b) large groups (coarse-grain)

1.2.1 ARMS as the building block for preconditioners in pARMS

The sequential version of ARMS is rooted in Multi-level ILU type techniques which exploit
independent sets. An independent set is a set of unknowns that are not coupled to each other.
Such orderings transform the original linear system into a system of the form

(& ¢)()-() <5>

where B is a diagonal matrix. The concept of independent sets has been generalized to blocks
or groups [7]. A group-independent set is a collection of subsets (blocks) of unknowns such that
there is no coupling between unknowns of any two different groups (blocks). Unknowns within
the same group (block) may be coupled. When the unknowns of the group independent sets are
labeled first, the matrix A will have the block structure (5) in which the B block is block diagonal
instead of diagonal. An illustration of a matrix permuted with two different group-independent
set orderings is given in Figure 3.
In ARMS, the following block factorization is computed ‘approximately’

B F L 0 U L7'F
~ -1 X ’ (6)
(% ¢)=(eom 7)*(5 "W")
where LU ~ B, and A; =~ C — (EU ')(L 'F).

Conceptually, the ARMS factorization algorithm is quite simple to describe because of its
recursive nature. In a nutshell, the ARMS procedure consists of essentially two steps: first,
obtain a group-independent set and reorder the matrix in the form (5); second, obtain an ILU
factorization B ~ LU for B and approximations to the matrices L~'F, EU~!, and A;. The
process is repeated recursively on the matrix A;, which may now be renamed A, until a selected
number of levels is reached. At the last level, a simple ILUT factorization, possibly with pivoting,
or an approximate inverse method can be applied. Figure 4 sketches the ARMS procedure, in
which darker shaded areas represent Schur complements that are formed consecutively.

Figure 4: A step of the ARMS procedure to form consecutive Schur complements

The consecutive Schur complement matrices A; remain sparse but will get denser as the
number of levels increases, so small elements are dropped in the block factorization to maintain
sparsity. The matrices EU™!, L~'F (or their approximations) need not be saved. They are
needed only to compute an approximation to A;. Once this is accomplished, they are discarded
to save storage. Subsequent operations with L~ 'F and EU ! are performed using U, L and the
blocks F and F'.

Recursive multilevel strategies of various types can be defined. Essentially, a preconditioning
step amounts to an approximate solve with the factorization (5). Such a solve consists of three
steps. The first step will solve with the first matrix on the right-hand side of (6). This will
yield a new right-hand side for the second part of (5), which is gy = ¢ — EU~!f. Then the
resulting Schur complement system A,y = g is solved (iteratively). Finally, a back-substitution
step is performed to obtain the variable u = U~![f — L= Fy]. It is not specified how the Schur
complement system Aiy = g1 is to be solved — and this provides a source of many possible
variations. Recursivity can clearly be exploited: if another level in the ARMS factorization
is available, we can repeat the process and descend to the next level, solve (recursively), and
ascend back to the current level. When the last level is reached, one can solve the system by
an ILUT-preconditioned GMRES iteration [2] or a simple solve with the ILUT factors (without
iteration).

Now let us apply a full-fledged ARMS procedure as a local solver in the construction of
a global Schur complement preconditioner. For simplicity, consider a one-level ARMS acting
locally in each subdomain in the pARMS setting. In Figure 5, solid thick lines determine the
boundaries of subdomains. The local group-independent sets are constructed only on those local
unknowns that are decoupled from external unknowns by producing local separators (dashed-
dotted lines in Figure 5). The inter-domain interface unknowns (dashed lines in Figure 5) are
a priori assigned to the Schur complement by the ARMS procedure. Thus in each subdomain,
the local Schur complement matrix A, produced in the first level of ARMS reduction, will act
on the inter-domain interface variables plus the separator variables, termed the local-interface
variables. In other words, the Schur complement variables y;, i = 1,...p (see (9)), are the union
of the inter-domain interface variables and the variables separating the group-independent sets.
We denote by expanded Schur complement the system involving the matrix A; that acts on the
inter-domain and local interface unknowns. Upon solving the global system for all the variables
1y, the interior variables are obtained without communication by back substitution in ARMS
within each processor.

Interior

Local interface i points
points

Interdomain
interface points

Figure 5: Classification of unknowns when ARMS is used as a local solver in the pARMS setting

1.2.2 Additive Schwarz preconditioning

When an additive Schwarz procedure is used as a preconditioner, the local residual vector
is updated by a global iterative solver. The resulting local residual vector is then used as the
local right-hand side. Of course, an exchange of data must precede the local residual vector
update, such that each sub-domain receives from its neighbors the latest values of its external
interface variables and sends to the neighbors the latest values of its inter-domain interface
variables. Once the latest values of the external interface variables and the local right-hand
side are available, the additive Schwarz procedure can be used to find a correction to the local
solution. In simple terms, the Additive Schwarz preconditioners can be stated as follows:

ALGORITHM 1.1 Additive Schwarz with minimum overlap
1. Update local residual r; = (b — Azx);.
2. Solve Az(sz =T;-
3. Exchange §; among neighboring subdomains.
4. Update local solution x; = x; + 0;.

This loop is executed on each processor simultaneously. Exchange of information takes place in
Line 1, where the (global) residual is updated. Note that the residual is “updated” in that only
the y-part of the right-hand side is changed. The local systems A;0; = r; can be solved in three
ways: (1) by a (sparse) direct solver, (2) by using a standard preconditioned Krylov solver, or
(3) by performing a forward-backward solution associated with an accurate ILU (e.g., ILUT)
preconditioner. Experiments show that option (3) or option (2) with only a very small number
of inner steps (e.g., 5) is quite effective.

1.2.3 Schur Complement techniques

Schur complement techniques refer to methods which iterate on the inter-domain interface
unknowns only, implicitly using interior unknowns as intermediate variables. Schur complement
systems are derived by eliminating the variables u; from (3). Extracting from the first equation
u; = B} Y(f; — Fyy;) yields, upon substitution in the second equation,

Swi+ Y Bijy; = 9i — EiB{ ' fi = gi, (7)
JEN;
where S; is the “local” Schur complement

S;=C; — E;B;'F;. (8)

The equations (7) for all sub-domains i (i = 1,...,p) constitute a global system of equations
involving only the inter-domain interface unknown vectors y;. This global reduced system has
a natural block structure related to the inter-domain interface points in each sub-domain:

S1 Eip ... Ey Y1 91
E21 SQ PR Egp y2 gé

| i B (9
Epl Ep_l’g .. Sp Yp g;)

The diagonal blocks in this system, the matrices S;, are dense in general. The off-diagonal blocks
E;j, which are identical with those involved in (3), are sparse.

The system (9) can be written as Sy = ¢', where y consists of all inter-domain interface vari-
ables y1,¥s,...,yp stacked into a long vector. The matrix S is the “global” Schur complement
matrix. One can exploit approximate solvers for the reduced system (9) to develop precondi-
tioners for the original (global) distributed system. Once the global Schur complement system
(9) is (approximately) solved, each processor will compute the u-part of the solution vector (see
(1)) by solving the system B;u; = f; — E;y; obtained by substitution from (3). In summary, a
Schur complement iteration may be expressed by the following algorithm:

ALGORITHM 1.2 Schur Complement Iteration

1. Forward: compute local right-hand sides g; = g; — E;B; ! fi-
2. Solve global Schur complement system Sy = ¢'.
3. Backward: substitute to obtain u;, i.e., solve Byu; = f; — F;y;.

For convenience, (7) is rewritten as a preconditioned system with the diagonal blocks:
yi+ 87> Eijy;=S;" 9 — EiBy il (10)
JEN;

This can be viewed as a block-Jacobi preconditioned version of the Schur complement system (9).
The system (10), which couples local and external unknowns, can be solved by a GMRES-like
accelerator, requiring a solve with S; at each step (see, e.g., [5]).

2 pARMS components

2.1 List of available preconditioners
1. Additive Schwarz type: add_ilu0, add_ilut, add_iluk, add_arms;

2. Schur complement-based: 1sch_ilu0, Isch_ilut, Isch _iluk, Isch_arms, rsch_ilu0, rsch_ilut,
rsch_iluk, rsch_arms;

3. Schur complement-based with enhancements: sch_gilu0, sch_sgs.

In this list,

add_X indicates additive Schwartz preconditioner with local X preconditioner, where X stands
for ILUO, ILUT, ILUK, or ARMS.

Isch_X indicates left Schur complement preconditioner with X as local preconditioner.
rsch_X indicates right Schur complement preconditioner with X as local preconditioner.
sch_gilu0 stands for distributed ILUO preconditioner on interface nodes.

sch_sgs stands for distributed Gauss-Seidel preconditioner on interface nodes.

2.2 List of available accelerators
Three distributed accelerators (see [2]) are currently available:

1. fgmresd is a distributed version of flexible GMRES, which permits iterations in precon-
ditioner application;

2. dgmresd is a distributed version of deflated GMRES, which uses eigenvalue deflation;
3. begstabd is a distributed version of bi-CG stabilized.

Important note. When you use deflated GMRES or BCGSTABD, you cannot use iterations
in preconditioner application (i.e., in the inner solve), because this requires flexible precondi-
tioner.
2.3 Functions used to construct distributed matrix

The following functions need to be called for constructing a preconditioner.

1. CreateMat allocates memory for the Distributed Matrix;
2. bdry constructs arrays of local interface variables;

3. setup permutes the local matrix, such that rows corresponding to the interior nodes
precede the rows of the interface nodes;

4. CreatePrec constructs a preconditioners from the list above.

3 Template drivers in pARMS

There are a few template programs that may be compiled and run to solve a distributed
linear system. These templates are provided in the TESTS/GENERAL and TESTS/GRIDS
directories, which are used to solve, respectively, (i) a general sparse linear system stored in the
Harwell-Boeing sparse matrix (or user-defined) format as a single file and (ii) a model partial-
differential equation generated in distributed manner, such that processor generates its local
points only. All the template drivers use preconditioned FGMRES.

3.1 TESTS/GENERAL directory

dd-HB-allread.c reads the matrix simultaneously by all the processors. Then each processor
calls the partitioner. After and the submatrices assigned to a given processor are extracted,
the global matrix is then discarded. In this driver, the right-hand side is either set-up
artificially to be A*ones(1:n) or the driver dd-HB.c uses the right-hand side provided.

dd-HB.c is a simplified version of dd-HB-allread.c which does not read parameters from an
input file but uses a function to set default values. It also writes information on standard
output instead of a file. This driver outputs less information on performance, but this is
the simplest driver to run and is recommended as a starting point.

dd-HB-bcast.c reads the matrix a single processor. After being partitioned, its rows are
distributed to other processors according to a global mapping.

As a partitioner in dd-HB-allread, dd-HB, and dd-HB-bcast, we use “DSE” (Distributed
Site Expansion). This is a simple partitioner based on the level-set expansion and on finding
partition centers as the starting points.

We also provide drivers dd-HB-metis.c and dd-HB-parmetis.c to use with the sequen-
tial Metis and parallel ParMetis partitioners, respectively, developed by Kumar and Karypis
(see http://www.cs.umn.edu/~karypis). Except for partitioners, dd-HB-metis.c and dd-HB-
parmetis.c have the functionality similar to dd-HB-allread.c, when artificial right-hand side is
used.

Important note. Neither Metis nor ParMetis are distributed with pARMS. To run the tem-
plate drivers which require them, you need to install these libraries if they do not exist already
in your system. You then need to add the proper links to makefile.in (or in configure.in prior to
running the configure script).

3.2 Input parameters

All test drivers except dd-HB.c will read test parameters from a file. The sample input file
called “inputs” in TESTS/GENERAL is read by default (i.e., when the executables are invoked
with no arguments on the command line). Another file can be specified for the inputs by entering
it as an argument at the command line

For example:

Jmpirun -np <proc_number> dd-HB-metis.ex The file called ”inputs” will be read by the
executable.

Jmpirun -np <proc number> dd-HB-metis.ex my_inputs The file called "my_inputs” will
be read by the executable. The driver dd-HB.c does not read info from an input file. Instead
these are entered by the function set_def_params in setpar.c.

Consider a description of the input parameters (see also file ”inputs”) in the order required
by the template drivers.

1. filename (character) is a full path to the location of matrix file.
2. iov (boolean) is an indicator of overlap: 1 = yes 1-level overlap, 0 = no overlap.

3. scale (boolean) is an indicator: 1 = scale the system by 2-norm rows then columns, 0 =
do not scale.

10.

11.
12.

13.

14.

15.
16.

17.
18.
19.
20.

usmy (boolean) is an indicator: 1 = symmertize the matrix pattern (nonzero places), 0 =
do not perform symmetrizing.

prec_meth (character) is a one of the names from the list of existing preconditioners in
PARMS.

eps (double) is the tolerance for the inner iteration of GMRES within a preconditioner.
Should be rather low for faster preconditioner application.

eps! (double) is the tolerance for outer iteration.

nlev (integer) is the number of levels for the application of the sequential ARMS precon-
ditioner locally. The larger it is, the smaller is the local last reduced system at expense
of the increased local ARMS solution time. Note that this system cannot be smaller than
the size of the inter-domain interface. Good nlev values, for example, are 3-6.

bsize (integer) is the block size for block independent sets to be found by the sequential
ARMS preconditioner locally. The larger it is, the more storage is needed locally and the
fewer nlev levels may be found in a matrix. Good bsize values , for example, are 10-100.

tolind (double) is the tolerance used by the sequential ARMS preconditioner locally to
determine block independent sets. Only rows that are more diagonally dominant than a
normalized tolind may be included in a block independent set. The larger tolind is the fewer
block independent sets may be found and thus the larger is the local Schur Complement
system. The values of tolind typically range from 0.0 to 1 with a good starting value being
0.1. Note that tolind is the important parameter the quality of the preconditioner and
should be experimented with, if the desired accuracy of the solution cannot be reached
with the default values of the “inputs” file.

im (integer) is the Krylov subspace size for outer iteration.
mazits (integer) is the number of the outer FGMRES iteration.

kim (integer) is the Krylov subspace size for inner iteration of the preconditioner applica-
tion. This parameter should not be large, equal, for example, to 5, to make a preconditioner
inexpensive.

itsgmr (integer) is the number of the inner GMRES iterations used within the precondi-
tioner. This parameter should not be large to make a preconditioner inexpensive.

Ifil0 (integer) is the fill-in for the B-, E-, and F-parts of ARMS, or for ILUK, ILUT.

Ifil} (integer) is the fill-in for the sparsity of the successive Schur Complements in ARMS,
or unused otherwise.

Ifil5 (integer) is the fill-in for the L and U parts of the local last reduced system.
droptol() (double) is the drop tolerance corresponding to Ifil0.
droptolj (double) is the drop tolerance corresponding to Ifil4.

droptol5 (double) is the drop tolerance corresponding to Ifil5.

21. multicol (boolean) is used by sch_sgs and sch_gilu0 preconditioners to indicated whether
to use multicolor ordering (1) or global number ordering (0).

Note on the inputs parameters. Most drivers use the userread Fortran subroutine in
uread.f. userread looks at the first line of ”inputs”. If the first character is not “1”, then it
expects that line to be the path of a Harwell Boeing matrix. Otherwise it assumes that the rest
of the line is the filename of a file containing a pathname to a matrix that is read by userread
using any format. The user may substitute the uread file with her/his own routine and this will
allow to read matrices in any format.

All the rsch_X and Isch_X preconditioners require inner iterations, so kim, itsgmr, eps should
be greater than zero for these preconditioners on the input.

3.3 TESTS/GRIDS directory

GRIDS contains test drivers related to simple 2-D and 3-D centered finite difference elliptic
PDEs on rectangular domains. The drivers call subroutines included in the library to generate a
linear systems associated with the 5-point (or 7-point) discretization of a simple elliptic operator
on a rectangular region. Each node generates its own part of the 5/7-point matrix using a simple
regular partitioning. The makefile provided will make the executable by invoking its name.

grid.ex is a driver (dd-grid.c) for a vertex-based partitioned problem only; FGMRES is used
as a solver

grid-simple.ex This is a simplified version (dd-grid-simple.c) of grid.ex which does not read
parameters from an input file but uses a function to set default values. It also writes
information on standard output instead of a file (less information is provided on perfor-
mance, but this is the simplest driver to run and is recommended as a starting point.)
The test driver is to be run on 4 processors with the default mesh size of 30 per processor
and the default preconditioned add ilut. For the rest of default settings, see function
set_def params().

grid-edge.ex is a driver (dd-grid-edge.c) for an edge-based partitioned problem only; FGM-
RES is used as a solver.

grid-solver.ex is a driver (dd-grid-solver.c) to test multiple accelerators and partitionings.
FGMRES, deflated GMRES, and BCGSTAB are the available accelerators for the outer
iterations. You may use one of them as a solver by changing the definition of SOLVER in
dd-grid-solver.c to fgmresd, dgmresd, and bcgstabd, respectively. In addition, this driver
supports vertex-based as well as edge-based partitioning. [In edge-based partitioning, at
least one line overlaps between two neighboring domains]

3.4 Auxiliary files in the TESTS/GRIDS directory

fdmat.f is a suite or routines adapted from SPARSKIT for generating 5-point and 7-point
finite difference matrices

functs.f contains functions for defining the PDE being solved on the unit square. It is needed
by fdmat.f;

setpar.c reads input parameters for the run from a file also sets default parameters in function
set_def params () if input is not read from a file;

10

inputs is a sample input file for various parameters.

3.5 Input parameters

The parameters prec_meth, eps, epsl, nlev, bsize, tolind, im, maxits, kim, itsgmr, Ifil0, Ifil},
Ifil5, droptol0, droptoly, droptols, multicol are the same as for the drivers in the TESTS/GENERAL
directory.

mprocz (integer) is the number of processors in the z direction of the processor grid.
mprocy (integer) is the number of processors in the y direction of the processor grid.

nmesh (integer) is the number of mesh points per processor.

Thus the total number of points is as follows: nmesh X mprocz X mprocy. To preserve the
aspect ratio, it is advisable to use mprocx = mprocy. The number of processors mprocz in the
z direction is given as mprocz = numproc/(mprocz X mprocy).

Important note. The input for the GRIDS template drivers specifies the problem size in each
processor rather than the problem size of the whole problem in all the processors. Thus the
execution time may increase with the number of processors since the total size of the problem
also increases. In a perfectly scalable case, the execution time should be constant.

3.6 Vertex-based and edge-based partitioning
VERTEX based:

subdomain 1 subdomain 2
B e T BT +
|61 62 63 64 65 | 66 67 68 69 70 |
I | I
|51 52 53 b4 55 | 56 57 58 59 60 |
I I I
|41 42 43 44 45 | 46 47 48 49 50 |
o o |
|31 32 33 34 35 | 36 37 38 39 40 |
I I I
|21 22 23 24 25 | 26 27 28 29 30 |
I I I
[11 12 13 14 15 | 16 17 18 19 20 |
I I I
| 1 2 3 4 51 6 7 8 9 10 |
B e ——— B e ———— +

subdomain 3 subdomain 4

EDGE based [element-based or cell-based actually]:

11

subdomain 1 subdomain 2
e e e e +

|61 62 63 64 65 66 67 68 69 70

[61 52 53 54 556 56 57 58 59

D
o

[41 42 43 44 45 46 47 48 49 50

I I
21 22 23 24 25 26 27 28 29 30

I

I

I

I

I

I
|31---32----33----34----35---36----37---38---39---40-- |
I

I

I I I
I

I

I

[11 12 13 14 15 16 17 18 19 20

I I

| 1 2 3 4 5 6 7 8 9 10

B T T +

subdomain 3 subdomain 4

Cells (elements or volumes) are assigned to processors, such that there is always at least one
shared line of nodes between neighboring subdomains. For example, nodes 66, 55, 45, 35 are
shared by subdomain 1 and subdomain 2.

4 Installation of pARMS

The code has been tested on the IBM SP, SGI Origin3800, and Linux PC and Sun clus-
ters using MPICH at the Minnesota Supercomputing Institute, University of Minnesota and
elsewhere. To run the test examples on other machines, it should be necessary only to edit
makefile.in and compile. A configure script is also provided which will automatically create the
file makefile.in for certain common platforms. You need to first provide some paths in the file
configure.in and then type ”configure”. This will generate the file “makefile.in” which contains
the machine specific directives, such as the names of the C and FORTRAN compilers and the
path names for the MPI and BLAS libraries. Once the makefile.in file is ready the command
makefile will make the library libparms.a in LIB. You may have to alter makefile.in in some
cases but you need not change anything to the file “makefile”.

There are three makefiles. The makefile in the top directory creates the library LIB/libparms.a.
Makefiles in the directories TESTS/GENERAL and TESTS/GRIDS are for running the sample
template drivers therein. Instructions on how to make the library libparms.a and sample drivers
are given below.

If configure does not work for you (because it does not recognize the system) you can alter
the makefile.in directly. See the configure file for more details. After modifying makefile.in,
typing 'make’ creates the library. 'make tests’ will make the library libparms.a AND sample
template drivers. However, it is recommended to just make the pARMS library and then go to
TESTS/GENERAL (general sparse problems) or TESTS/GRIDS (finite difference problems) to
run some or all of the sample template problems provided.

12

4.1 How to run the template drivers

Once you have the driver driver.ex, where driver is one of grid, grid-edge, grid-solver, you
can execute driver.ex as follows: For example, on the IBM SP, type

%poe driver.ex -hostfile host.file -procs 4
to execute on 4 processors. In this case, the driver will use the input file ”inputs” given above
and will write the results on standard output. You can also specify different input and output
files:

%driver.ex [inp [out]]
For example on the IBM SP:

%poe driver.ex inp out -hostfile host.file -procs 4
uses the file inp as input file and out for output.
Note that the driver grid-simple.ex will not use an input file to read the test parameters. Also
results are printed to standard output. For example:

Jmpirun grid-simple.ex -np 4
will execute grid-simple.ex on 4 processors.

5 Version and contact information

Current version is 0.2. The list of known bugs:
1. rsch_arms preconditioner is not stable on Linux clusters.

Please submit bug reports to saad@cs.umn.edu or to masha@cs.umn.edu by providing an
exact error message, stating the computing platform, and briefly describing the problem. Future
updates of pARMS will be posted in www.cs.umn.edu/~saad/software/PARMS.

References

[1] Z. L1, Y. SAAD, AND M. SOSONKINA, pARMS: A parallel version of the algebraic recursive
multilevel solver, Numerical Linear Algebra with Applications, 10 (2003), pp. 485-509.

[2] Y. SAAD, lterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2nd ed., 2003.

[3] Y. SAAD AND A. MALEVSKY, PSPARSLIB: A portable library of distributed memory sparse
iterative solvers, in Proceedings of Parallel Computing Technologies (PaCT-95), 3-rd inter-
national conference, St. Petersburg, Russia, Sept. 1995, V. E. M. et al., ed., 1995.

[4] Y. SAAD AND M. SOSONKINA, Solution of distributed sparse linear systems using
PSPARSLIB, in Applied Parallel Computing, PARA’98, B. Kagstrom et al., eds., Lecture
Notes in Computer Science, No. 1541, Berlin, 1998, Springer-Verlag, pp. 503-509.

[5] Y. SAAD AND M. SOSONKINA, Distributed Schur Complement techniques for general sparse
linear systems, SIAM J. Scientific Computing, 21 (1999), pp. 1337-1356.

[6] Y. SAAD AND B. SUCHOMEL, ARMS: An algebraic recursive multilevel solver for general
sparse linear systems, Tech. Rep. umsi-99-107, Minnesota Supercomputer Institute, Univer-
sity of Minnesota, Minneapolis, MN, 1999.

13

[7] Y. SAAD AND J. ZHANG, BILUM: Block versions of multi-elimination and multi-level ilu
preconditioner for general sparse linear systems, STAM Journal on Scientific Computing, 21

(2000).

14

6 Appendix A: pARMS directory structure

‘ PARMS |

‘ SRC | ‘ INCLUDE | ‘ LIB | ‘ TESTS |

‘ ARMS HPSPARSLIBH DGMR H SPKIT ’ ‘ GRIDS HGENERAL’ ‘MATRICES’

SRC/ the library source files

ARMS sequential ARMS

PSPARSLIB | files containing parallel implementations

DGMR files needed by deflated GMRES

SPKIT sequential FORTRAN and C sparse matrix routines
TESTS/ driver programs, input files

GRIDS/ template drivers for regularly structured programs

extras sample input files and batch scripts for GRIDS
GENERAL/ | test drivers for general problems
extras sample input files and batch scripts for GENERAL

MATRICES | sample problems in the Harwell-Boeing format
INCLUDE header files
LIB directory in which the pARMS library is stored
COPYRIGHT | copyright file
GNU GNU licensing agreement
README information file
configure a script to automatically modify makefile.in
configure.in a template for the configure script
makefile.in a part of the makefile that may be modified
makefile complete makefile (does not need modification)

15

