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Abstract

The standard preconditioning techniques for conjugate gradient methods often
fail for matrices that are indefinite and/or strongly nonsymmetric. The most com-
mon alternatives considered for these cases are either to use expensive direct solvers
or to resort to one of many techniques based on the normal equations. This paper
examines several such alternatives and compares them. In particular an incomplete
LQ factorization is proposed and some of its implementation details are described.
A number of experiments are reported to compare these methods.

1 Introduction

Despite the tremendous efforts devoted in the last few decades to the development of
numerical methods for solving general large sparse linear systems, the current state of the
art in iterative methods remains unsatistfactory in many respects. It is often observed that
iterative methods are still not as commonly used as direct methods in large production
codes despite their appeal for large two or three-dimensional simulations. The main
weakness of iterative solvers is their poor robustness, or rather their narrow range of
applicability. Often, a particular iterative solver may be found to be very effective for
a specific class of problems or for certain conditions on the coefficient matrix. However,
when this iterative solver is integrated into a large production or research package, the
code can encounter “bad” cases for which the iterative method will either not converge,
be excessively slow or simply break down. Sometimes, the failure to converge is not a
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big problem because the iterative solver is a part of another iterative loop such a Newton
scheme, and the occasional misbehavior of the solver may not ruin the convergence of the
overall process. It may, on the other hand, become a more serious problem if the linear
system solver fails systematically as might happen in the case of Newton’s method when
the Jacobian at the solution point is indefinite, and a CG like scheme is used.

Thus, the main weakness of iterative solvers as compared with direct solvers is that
they are not robust enough to handle as wide a class of matrices. The interesting question
as to whether there might exist an iterative solver that could handle effectively any linear
system of a given type, more effectively than the best available direct solver remains open.
Clearly, there are problems where direct methods will always be preferred, such as narrow
banded systems or systems whose matrix has a graph that is close to that of a tree [4].
For a large class of problems, namely all those originating from three-dimensional Partial
Differential Equations, iterative solvers may be far more effective than direct solvers.
However, much work remains to be done to improve the robustness of existing methods
and to develop other ones that can handle a broader range of matrices than those than
can be treated by currently available techniques.

In this paper we consider a class of linear systems that have been given little attention
in the past, namely nonsymmetric and indefinite systems. What is often meant by an
indefinite linear system is one whose coefficient matrix A has a symmetric part %(A + AT)
that is not positive definite. This class of problems has been identified by many authors as
the hardest one to handle with iterative methods. Indefinite problems arise in many areas
of scientific computing, one of the best known examples being perhaps the one arising
from the Helmhotz equation Au+k*(x,y)u = f, which occurs in different forms in various
models of wave propagation [7]. When discretizing this equation we obtain a symmetric
linear system that is often not positive definite. Another important example is that of
least squares problems with constraints [2]. Most important, is the fact that in practice,
many linear systems that arise in the course of a Newton type iteration may occasionally
be indefinite to some degree, during the process.

Among the iterative methods available, Krylov subspace methods offer probably the
best potential for developing general purpose iterative linear system solvers. These meth-
ods may be unacceptably slow if they are used without preconditioning and the question
that arises is how to adapt the standard preconditionings for indefinite linear systems.
The classical preconditionings will in general fail for strongly indefinite systems not only
because they might break down, such as when encountering a zero pivot, but also because
the quality of the approximation obtained from the incomplete factorization may be poor.
In fact it may be argued that any incomplete factorization for an indefinite problem may
face this difficulty. Considering an incomplete factorization of the form

A=LU+E (1)

where F is the error, then the matrices of the various forms of the preconditioned linear
system are similar to

L7'AU =T+ L7'EU. (2)



When the matrix A is diagonally dominant then L and U are well conditioned, and the
eigenvalues of L™'EFU™! remain confined within reasonable limits, typically with a nice
clustering around the origin. On the other hand, when the original matrix is not diagonally
dominant, L= or U~! may have very large norms, thus causing the error L='EU™! to
have arbitrarily large eigenvalues. This form of unstabilty has been studied by Elman [6]
who proposed a detailed analysis of ILU and MILU preconditioners. We also observed
experimentally that ILU preconditioners can be very poor when L™! or U~! are large,
and that this situation often occurs for indefinite problems, and for problems with large
nonsymmetric parts. As a result of this limitation we will not attempt, in this paper,
to present a general purpose preconditioner, but only to extend slightly the applicability
of the preconditioned conjugate gradient methods by proposing a few alternatives and
improvements to the standard ILU preconditioners.

The emphasis of this paper is on implementation and experimentation rather than on
theory. We will examine a few preconditioners, show how to implement them for general
sparse linear systems, and finally compare them on a few sample problems. The precondi-
tioners considered are an incomplete L) preconditioner, an incomplete LU factorization
with column pivoting, an SSOR preconditioner on the normal equations, and the standard
Incomplete Choleski Conjugate Gradient on the normal equations.

2 The Incomplete LQ (ILQ) factorization

2.1 Principle of the method

Consider a general sparse matrix A whose (nonzero) rows are a1, as, ..., ay. The standard
complete LQ factorization would consist of finding a lower triangular matrix L. and an
orthogonal matrix () such that A = L. This can be achieved in a number of different
ways. George and Heath for example propose to compute the Choleski factorization of
B = AAT. If B = LL" is the Choleski decomposition of B then the lower triangular
matrix L is identical with that of the L(Q) factorization of A. This requires forming the
matrix AAT which may be much denser than A but reordering techniques can be used to
reduce the amount of work in forming L. We will refer to this as symmetric squaring.
Another way of proceeding is to use a Gram-Schmidt process. This approach may
seem undesirable at first because of its poor numerical properties when it comes to or-
thogonalizing a large number of vectors. However, because of sparsity, any given row of
A will be typically orthogonal to most of the other rows and a result the Gram-Schmidt
process is much less prone to numerical difficulties. An advantage of the orthogonalization
approach over that of symmetric squaring is its simplicity and its strong similarity with
the the LU factorization process: at every step a given row is combined with previous
rows and then normalized. To define an incomplete factorization we must only include a
dropping strategy, which will allow to drop elements according to a certain rule, in order
to avoid excessive fill-in. In the standard ILU(0) factorization the rule is to drop all fill-in
elements immediately after they are introduced at a given elimination step. The resulting
ILU factorization has the attractive property that the structure of L + U is the same



as that of A. However, relying upon the structure of A only is not safe in cases where
the matrix is indefinite. For example, the incomplete LU factorization will break down
immediatly if a;; = 0. Similarly, for the incomplete LQ factorization we need to select a
different criterion, which will be based on the magnitude of the elements generated. The
simplest idea is to keep the py, largest elements of a row of L and the pg largest elements
in a row of (), where p;, and pg are two chosen parameters. The corresponding general
procedure would be as follows:

Incomplete LQ factorization
For :=2,3,..., N Do:

1. Compute all nonzero inner products l;; = gjal,j =1,2,...;1 — 1.
2. Determine the py largest elements in /; and assign a zero value to the others.
3. Compute ¢ = a; — 32521 1, 20 lij4

4. Determine the pg largest elements of ¢; and assign a zero value to the other elements.

ot

. Compute l;; = ||¢i||2 and ¢; = ¢;/lii

The first step of the above procedure needs particular attention. If we had to actually
compute all the inner products gial through ¢,_ja’, the total cost of the incomplete
factorization would be of the order of N? steps and the algorithm would be of little
practical value. Note, however, that most of these inner products are equal to zero
because of sparsity and the question arises whether or not it is possible to compute these
inner products with a much lower cost. The answer is yes. The key observation is that

it we call [ the column of the : — 1 inner products [;;, then [ is the product of the matrix
T

[=Qi_ra] (3)

Such a sparse matrix by vector product can be performed in two different ways. The
standard way, would be to calculate the inner products g;al for j = 1,....,7 — 1 which is

();_1 whose rows are ¢y, ..,q;_1 by the vector a; , i.e.,

unacceptable as was seen above. The alternative is to compute it as a linear combination
of the columns of ();_;. Let a;;,a;,,...,a;;, be all the nonzero elements of the ¢ — th
row of A. Then the desired column [ is given by

k;
[ = Zam'] Qi]/ (4)
7=1

where ¢;/ represents the j—th column of ¢);_;. This is far more economical than the
first approach because k; is usually small and the columns of ();_; are sparse. The total
number of multiplications used is equal to the sum of the number of nonzero elements in
the columns 2, ..., 2.



There is one difficulty with the above implementation of step 1, which is that it requires
both the row data structure of () and of its transpose. A standard way of handling this
problem is to build a linked list data structure for the transpose. This avoids the storage
of an additional real array for the matrix and simplifies the process of updating the matrix
(), as new rows are obtained. It is important to note that this linked data structure is
only used in the preprocessing phase and is discarded once the factors L and () have been
built. For these reasons the scheme is not too uneconomical, although it suffers from not
being easily amenable to parallel and vector processing.

After the i-th step is performed we have the following relation

1—1
G =lugi + fi = ai — Y _ lijq (5)
7=1

where f; is the row of elements that have been dropped from the row ¢; in step 4. The
above equation translates into

A=LQ+E (6)

where E is the matrix whose i-th row is f;, and the notation for L and () is as before.
Typically, the error matrix £ is small because of the strategy adopted in dropping ele-
ments. One major problem with the above decomposition is that the matrix ) is not
orthogonal in general. In fact nothing guarantees that it is even nonsingular unless we
make the dropping strategy severe enough as is shown in the next theorem, in which it is
assumed that the step 3 of ILQ) is replaced by an ideal orthogonalization process in which
¢i 1s made orthogonal to the previous g;’s.

Theorem 2.1 Let II; be the orthogonal projector onto the span of the rows ¢, qa, ...., q;,
and assume that at every step of IL(Q), the row §; ts orthogonal to all previous q;’s. Then
the matriz Q;y1 is of full rank if and only if ||IL; fiz1ll2 < liy1,i41-

Proof. . A necessary and sufficient condition for ¢y, ..., ¢;+1 to be linearly independent,
assuming that ¢q, .., ¢; satisfies this property, is that (1 — II;)¢;+1 # 0 or equivalently that
IITL;igis1]l2 < 1. This is because when ||({ — II;)gi+1||2 # 0 one can build an orthogonal
basis of span{Q;;1} from the (nonzero) row (I — 1I;)g;41 completed with an orthogonal
basis of span{Q;}. Conversely, if g1, ..., gi11 are linearly independent, then we must have
Iigiv1 # qiy, ice, (I — 1) giys # 0.

We observe from (5) that

1

lit1,i41

I;gi11 = 0 (Giv1 — fiv1) (7)

where [;41 ;41 denotes the norm of ¢;41 — fit1. By our assumption §;4; is orthogonal to
gi,...,q; and as a result we have

—1

lit1,i41

I;q;41 = IL; fita (8)

which yields the result. a



Corollary 2.1 Assume that at every step 3 < 1 of ILQ), the row §¢; is orthogonal to
q1,---,qj—1 and that the dropped oul row at step 7 is f;. Then a sufficient condition for
the matriz Q; 41 to be of full rank, is that || fiz1|l2 < liv1.i41-

Proof. . The result follows from the theorem by simply observing that |[IL; f]2 < || |2
for any f. a

These results provide conditions under which the constructed matrix (); remains of
full rank, and in fact orthogonal because of the assumptions, at every step. One of
the weaknesses of the above result is that it assumes that at every step the vector ¢; is
made orthogonal to the previous ¢’s which is not quite achieved by the algorithm. In the
form in which it is presented, the algorithm performs a Gram-Schmidt step, assuming
that the previous vectors ¢'s are orthogonal which is not the case, in general. Clearly,
orthogonalization can be achieved by a more expensive process which would, for example,
include as many reorthogonalization steps as necessary to achieve orthogonality. However,
this is not practical. In fact the above results are not likely to be useful in practice in
view of the following problem. Even if we were to obtain a reasonably simple criterion
for ensuring the nonsingularity of the matrix ), this criterion is likely to conflict with
the sparsity requirement: the criterion could be so severe that the only way in which it
could be achieved is by making f; very small, which means allowing more fill-in in the L
and () matrices. The simplest way to handle this difficulty is to use L™'A instead of Q
whenever possible, i.e., whenever the matrix () is not needed explicitly as in preconditioned
conjugate gradient methods.

2.2 Implementations in conjugate gradient techniques

There are several ways of exploiting the decomposition (6) as a preconditioner in a con-
jugate gradient like algorithm. The simplest idea that comes to mind is to form the
preconditioned system

L7'AQYy = L% (9)

whose solution y is related to the solution z of the original system by z = Q%y. The
drawback of the above approach is that, as was mentioned above, it is not easy to guar-
antee that the matrix Q7 is nonsingular. In fact our experiments reveal that this does
indeed happen for hard problems.

An alternative is to replace the matrix @ in (9) by its “approximation” L™'A, which
is known to be nonsingular by construction. This leads to a natural preconditioning of
the normal equations AATy = b, namely to

LYAATL Ty =0 (10)

The conjugate gradient technique can be applied to the equivalent system (10) and
the solution z of the original problem Az = b is then given by 2 = ATL™Ty. Clearly,
there are several other ways of using L to precondition the normal equations AATz = b.



For example, an implementation of the preconditioned conjugate gradient method with
left preconditioning, applied to the normal equations is as follows.

Algorithm: ILQCG/NE
1. Start: Compute rq = b — Azg, 20 = Q1o po = ATrg.
2. Iterate: For ¢ = 0,2,..., until convergence do

o y, = Ap;

o a; = (zi,7:)/ (i, yi)

® T,y =x; + ap;

® T =T — QiY;

o 2y = (LLY) 1riyy

o 5 = (zip1,7i41)/(2i,13)

o piy1 = ATzipr + Bips

Similarly, one can compute the ILQ factorization of AT and precondition the linear
system AT Az = ATb in a similar way. Ideally, i.e., when the incomplete factorization is
mathematically exact then the method will converge in zero step, since the matrix on the
left hand side would be the identity matrix.

2.3 Application to least squares problems

An important application of the incomplete L(Q) factorization is when solving least squares
problems of the form:

min [|b — Az||2 (11)
where A is an N x m matrix with m < N. When A is of full rank the solution to the
above problem is the unique solution of the system of normal equations

AT Az = ATb. (12)

When the matrix A is very large and sparse, it is natural to think of using the conjugate
gradient method for solving (12). Moreover, a good preconditioning technique can be
provided by the incomplete LQ factorization applied to the matrix A”. Let AT = LQ+ F
the incomplete LQ factorization of AT. This is nothing but ILQ applied to the columns
of A rather than its rows, and it can also be viewed as the incomplete QR factorization
of A. Then a preconditioned version of (12) is given by

LAY (AL Ty —b) = 0. (13)
from which the solution z to (11) can be computed using the relation

x=LTy. (14)



In fact there is no obligation to solve the system (13) by a conjugate gradient technique,
since we can write the preconditioned version of (11) to which (13) corresponds:

in ||b— AL, 15

Inin || yllz (15)

The above problem can be solved by any means to find the unknown y from which =

is computed by (14). Clearly, the preconditioned columns AL™! need not be computed

explicitly. The effect of post-multiplying A by L' is to make the columns of the coefficient
matrix of the preconditioned least squares problem (15) closer to an orthogonal matrix.

3 Incomplete LU factorization with pivoting

We now briefly discuss an alternative to the incomplete L.Q) factorization which is a natural
extension of the standard incomplete LU factorization. What makes the incomplete LU
factorization fail in many cases is the absence of any pivoting strategy. A simple pivoting
strategy can be introduced in order to prevent this and the implementation does not
require a heavy overhead.

A serious difficulty with any incomplete LU factorization that is based on the structure
of A is that at any step we may encounter not only a zero pivot but a whole row of zeros.
This can happen in the first step of ILU as is illustrated in the following example

z x z 0
z 0 0 0
0 0 =z O (16)
z 0 0 z

where x denotes a nonzero element. As is easily seen this matrix is always nonsingular,
provided each z is nonzero. If the pivot element in the first step of the is ay; then the
ILU(0) algorithm produces a second row that is zero because by definition of ILU(0) the
fill-in elements created in positions (1,2) and (1,3) are dropped. This break down may be
avoided however if more fill-in is allowed. Note that here neither (partial) row or column
pivoting helps in any way since both the row and column are zero.

A solution to this difficulty is to drop elements according to their magnitude rather
than position. For example a simple strategy is to keep a fixed number, say k,, of
the largest elements (in absolute value) generated in the U part of the row during the
elimination. The simplest way to incorporate pivoting in an incomplete factorization code
is to perform column (partial) pivoting. In order to keep cost minimal, typical incomplete
LU factorizations proceed by rows and don’t require the column data structure. As a
result interchange of the rows is impractical since it will not only require scanning the
column but also exchanging row, i.e., altering the row data structure. With column
pivoting this problem does not occur because we only need to keep track of the new
ordering of unknowns as they are permuted.

An outline of the main elimination step of our ILU with Pivoting (ILUP) follows. The
factorization proceeds row-wise in that one row of I and the same row of U are determined



at every step. We use two work vectors wy, and wy to store the elements of the row of L
and U respectively, and initialize them with the corresponding parts of the row a;. Both
wy, and wy are stored as dense vectors with pointers to determine the column positions
of their elements. Fill-ins are easily appended to these work vectors. We will call 2, the
number of nonzero elements of a; that are in the strict lower part of A and iy the number
of those elements located in the upper part. In other words, ¢; and iy represent the
initial lengths of wy, and wy respectively. Two input parameters g7 and ¢y determine the
number of fill-in elements allowed in every row of L and U respectively. The first part
of the elimination process is simply to go through the elements wy, ..., w;, , w;, 41, .. Wi, 44,
and perform the elimination corresponding to these elements. Thus the vectors wy and
wy will be updated at each elimination step with fill-ins appended to them. Then the
second phase is to select the iy + gy largest elements in the resulting vector wy and
drop the others. The element of largest magnitude is then exchanged with the diagonal
element. Note that the dropping strategy for the elements in L is different from that
adopted for U. By the nature of the algorithm adopted, it is the latest fill ins that are
dropped from L. This resembles the level of fill-in strategy often used to generalize the
ICCG(p) techniques to general matrices [12].

Unfortunately, even with this implementation, the occurrence of zero rows is not un-
common. However, it is our experience that with the above approach and with sufficient
fill-in, the zero rows will appear only at the very end of the process, after most of the
matrix has already been (incompletely) factored. Therefore, one way of minimizing the
difficulty is to quit and use only the available factors as preconditioners, i.e., to complete
L and U by identity matrices.

We should mention that the idea of incomplete factorization based on a dropping
strategy by magnitude rather than position is not new. For example Harwell’s MA28 [4]
includes an option to this effect and so does Zlatev’s Y12M [13]. These codes incorporate
a dropping tolerance strategy whereby elements whose magnitude fall below a certain
tolerance factor are dropped as soon as they are generated. The viewpoint taken in these
excellent codes however differs substantially from ours: these techniques are primarily
direct methods and the drop tolerance is usually so small that a few steps of iterative
refinement will suffice to provide a correct answer. Iterative refinement will converge
only when the perturbation to A is small and this might require substantially more work
than with a limited fill-in type technique such as those considered in iterative methods.
Another point is that it is never known beforehand how much storage will be required to
get an incomplete factorization with a given drop tolerance.

In summary, the main features of our implementations of our version of incomplete
LU factorization with column pivoting are the following.

e Use column pivoting only. A pointer is kept to keep track of the new ordering of
the unknowns.

e Drop elements when generating U according to their magnitude instead of the
nonzero structure or level of fill-in. Drop elements in L according to their level

of fill-in.



o If a zero row appears then complete the L. and U matrices by diagonals of unity and
quit.

4 CG/SSOR on the normal equations.

4.1 SSOR/NE for general sparse matrices

In this section we will briefly discuss simple implementations of relaxation methods applied
to the normal equations of the form

AT Az = ATh (17)

or

AATy = b. (18)

Bjork and Elfving [3] have shown that in order to use relaxation schemes on the normal
equations, one only needs to access one column A at a time for (17) and a row at a time
for (18). For completeness we now explain how this can be achieved for (18) for example.
Starting from an approximation to the solution of (18), a basic relaxation step consists
of moditying its components in a certain order by a succession of relaxation steps of the
simple form

Tpew = Told T 52'62' (19)

where ¢; is the ¢ — th column of the identity matrix. The scalar é; is chosen so that the
t — th component of the residual vector becomes zero. Thus we must have

(b — AAT(fCOld + (52'62'), 62') =0 (20)

which yields,
(b, e:) — (AT%M, AT@i)

0; = 21
(ATGZ', ATGZ') ( )

If we assume for simplicity that the rows of A have been normalized so that
1A es]ls = 1 (22)

and denote by f; the : —th component of f, then a basic relaxation step consists of taking
(52' = bZ — (ATJZold, ATGZ') (23)

Consider now the implementation of, for example, the Gauss-Seidel procedure based
on (19) and (23) for a general sparse matrix. To evaluate 6; from (23) we need the vector
ATz 14 and its inner product with the i-th row of A. This inner product is inexpensive to
compute because the row AT¢; is usually sparse. On the other hand the matrix by vector
product ATz,y must be computed carefully if we want to avoid performing a matrix
by vector multiplication at each relaxation step. This can be achieved by computing
the initial ATz, in the Gauss-Seidel sweep as a full vector z and then each time the

10



approximate solution x4 is updated by (19), to update z accordingly. The Gauss-Seidel
sweep would therefore be as follows, where a; is again the i-th row of A.

Algorithm: Gauss-Seidel Sweep for AATz = b

1. Given an initial z, compute z := ATz,
2. For:=1,2,..., N Do

(a) Compute 6; = b; — a;z
(b) Compute z; := x; + 6;
(c) Compute z := z + 5ia;fr

All that is needed to implement the above algorithm is the row data structure of A.
If we denote by nz; the number of nonzero elements in the ¢ — th row of A, then each
step of the above sweep costs 2nz; operations for (a) , one addition in (b) and another
2nz; operations in (c) bringing the total to 4nz; + 1. The total for a whole sweep becomes
4nz + N for Gauss-Seidel and twice as much for SSOR(w = 1) where nz represents the
total number of number of nonzero elements of A. Storage consists of the right hand side,
the vector  and the additional work vector z.

Note that the matrix AAT can be dense or in general much less sparse than A, yet the
cost of the above implementation depends only of the nonzero structure of A. This is not
a negligible advantage of relaxation type preconditioners over incomplete factorization
preconditioners in the context of Conjugate Gradient methods as is described in the next
section.

One question left aside so far concerns the usual acceleration of the above relaxation
scheme by under or over-relaxation. If we introduce the usual acceleration parameter w,
then we only have to replace (a) in the above algorithm by

(52' = w(bZ — (Z, al)) (24)

One serious difficulty here is to determine the optimal relaxation factor. If nothing in
particular is known about the matrix AA” all that can be said is that the method will
converge for any w lying strictly between 0 and 2 [11] because the matrix is positive
definite. Moreover, another question not addressed here is how can convergence be affected
by various reorderings of the rows. When the matrix is issued from an elliptic partial
differential equation, one can easily reorder the unknowns so that the matrix A is block
tridiagonal. This fact has been exploited by Kamath and Sameh [8] to devise a parallel
scheme by grouping rows such that several simultaneous relaxation steps can be performed
in parallel, see Section 4.3 for more details.

4.2 Implementations of SSOR/NE Preconditionings

There are several ways of exploiting the relaxation schemes as preconditioners to con-
jugate gradient methods applied to either (17) or (18). We only consider (18) but the

11



adaptation of the scheme to (17) is straightforward. We need a procedure that delivers an
approximation to (AT A)~v for any vector v. One such procedure consists of performing
one of several steps of SSOR to solve the system (AT A)w = v. If we denote this operator
by @', then the usual conjugate gradient method applied to (18), sometimes referred to
as Craig’s method, with left preconditioning ) can be recast in the form [5].

Algorithm ?: CGNE/SSOR/ Left preconditioning
1. Start: Compute rq = b — Axg, 20 = Q 1o, po = AT 2.
2. Iterate. For ¢ = 0, ..., until convergence do

(a

) yi = Ap;
(b)
)

i= (mzz)/llpz!b

e

C

(
(d) Tit1 = Ty — QY
(

e) ziy1 = Q7 i
(f) +1 — (Zz-l—h rl—l—l)/(zia ri)
(g) Pi+1 = A Zi41 —I' /sz

The equivalent version for the standard system (17) referred to as CGNR is as follows,
CGNR/SSOR Left Preconditioning

1. Start: Compute ro = b — Axg, 20 = Q rg, po = 70.
2. Iterate: For ¢ =0,..., until convergence do

(a) yi = Ap;

(b) ai = (ri,z)/llwill2
(¢) Tip1 = 2 + aip;
(d) rig1 =1 — oy
(

~ T
e) Tiy1 = A rip

—

(f) zis1 = Q@7 'ina
(8) Bivr = (zi41, Tiva) [ (2i,70)
(h) pit1 = zig1 + Bipi

The above procedure will not break down if A is nonsingular since then the matrix
AT A is symmetric positive definite, and so is the preconditioning matrix ). There are
many alternatives and variations to the above algorithm. The standard alternatives,

based on the same formulation (17) are either to use the preconditioner on the right,
solving the system ATAQ~'y = b, or to split the preconditioner into a forward SOR

12



sweep on the left and a backward SOR sweep on the right of the matrix ATA. The
other options are obviously to use the normal equations (18) with again three different
ways of preconditioning. Therefore, there are at least obvious six different algorithms.
Moreover, one can also implement more robust algorithms such the LSQR technique [9].
We expect to see little differences for problems that are reasonably well conditioned (after
preconditionings) between all these different options. For problems that are very poorly
conditioned, the LSQR option may perform better [9].

4.3 Parallel implementations

As was mentioned before, it is possible in some well-known cases to reorder the unknowns
such that the matrix B = AAT (resp. B = AT A ) has diagonal blocks that are diagonal
matrices. This simply amounts to identifying a partition of the set {1,2,..., N} into
subsets 51, ..., S such that the rows (resp. columns) whose indices belong to the same set
S; are orthogonal to each other. As a result of this, when implementing a block SSOR
scheme where the blocking is identical with the partition, there will be no linear systems
to solve. To be more specific, let us reorder the rows by scanning those in S; followed by
those in S, etc..., and let us denote by A; the matrix consisting of the rows belonging to
the :—th block. We also assume that all rows have been normalized so that their 2-norm
is unity. Then a block Gauss-Seidel analogous to Algorithm 1 of section 4.1, will be as
follows

Algorithm: Block Gauss-Seidel Sweep for AATz = b

1. Given an initial z, compute z := AT z.
2. Fori1=1,2,..,k Do

(a) Compute d; = b, — A;z
(b) Compute z; := z; + d;
(c) Compute z := z + A;,Fdi

Here x; and b; are subvectors corresponding to the blocking and d; is a vector of length
the size of the block, instead of being a scalar as in Section 4.1.

The question that arises is how to find the partition S;. In certain simple cases, such
as block-tridiagonal matrices this can be easily done [8]. For general sparse matrices, it is
important to think in terms of the symmetric squared matrix AAT and the problem is to
find a reordering of this matrix such that it has diagonal diagonal blocks. This question
is identical with that of reordering a general sparse matrix by levels such that during
the L-U solve phases in Preconditioned conjugate gradient methods, several unknowns
can be solved for simultaneously [1]. The same technique can be used but it relies on an
arbitrary choice of the first unknown. The problem of determining the best first element,
i.e., the one that yields the smallest number of blocks k is a hard problem. An interesting
observation again is that the reordering of the unknowns can be found without explicitly
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forming the symmetric squared matrix, or rather without having to store it. This is
because the level-scheduling procedure only requires one row of the matrix at a time.
This row can be generated, used and then discarded. More details and experiments with
the technique of blocking in SSOR schemes will appear in another paper.

5 Incomplete Choleski on the normal equations

The incomplete Choleski factorization can be used to precondition the normal equations
(17) or (18). This approach is attractive because of the success of incomplete factorization
preconditioners for symmetric positive definite problems. We should point out however
that the incomplete Choleski factorization is not guaranteed to exist for positive definite
matrices. All the results that ensure existence rely on some form of diagonal dominance.

Concerning implementation details, here are a few important points. First, once again
there is not nee to explicitly compute the matrix B = AAT, since all that is required is
to be able to access one row of B at a time. This row can be computed and used and
then discarded. Therefore, the ICC(0) process will have the following structure. Note
that initially the row wu; is defined as the first row of A.

ICC(0) for B = AAT
For 1i=2.3,...,N Do:

1. Compute all nonzero inner products B;; = ajal,j = 1,2,....,i — 1. Let NZ(j) =
{218:; # 0}

2. For every ¢ € NZ(j) Compute b; := b; — B;;u; and drop nonzero elements with
column numbers not in NZ(j).

3. Define [; to be the lower part of resulting ?)]-, (i.e., lij = Bij,t < j,0 € NZ(2) and
l;; = 0 otherwise.) Similarly, define u; to be the upper part of b;.

Here again the same technique as in 1L(Q) is used to compute the inner products in step
1. The factor L obtained from this algorithm can be used in exactly the same manner
as the matrix L of the IL(Q preconditioning of Section 2, to precondition the normal
equations and there are just as many possibilities.

Because the matrix L of the complete L factorization of A is identical with the
Choleski factor of B, one might wonder why the 1C(0) factorization of B does not always
exist while the ILQ factorization virtually always exists. The reason seems is simply that
ILQ is not based on the structure of A but on the size of the elements dropped out. It is
likely that a similar technique can be used to define a more robust 1C factorization of B.

6 Numerical Experiments

In this section we report a number of numerical experiments conducted on an Alliant
FX-8, using double precision arithmetic. We tested with two model problems which are
discussed in two separate subsections. We compared the following five methods:
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Method 1: CGNE/ILQ. Conjugate gradient method applied to the normal equations
with ILQ preconditioner. Here we only consider the variant (17) of the normal equations,
so all references to the normal equations mean the equation AT Az = AT f.

Method 2: CGNE/IC(0). Conjugate gradient method applied to the normal equations
with Incomplete Choleski preconditioner.

Method 3: GMRES/ILU(0). GMRES [10] applied to original system with ILU(0)
preconditioning from the right, i.e., GMRES applied to AM~'y = f. To test the pre-
conditioner rather that the iterative solver (GMRES) we took in all tests the number of
directions in GMRES to be 10.

Method 4: GMRES/ILUP. GMRES applied to the original system with ILU precon-
ditioning with column pivoting, from the right.( GMRES/ILUPIV.)

Method 5: CGNR/SSOR applied to the normal equations with SSOR(w = 1) precon-

ditioner.

6.1 Problem 1

We consider the following elliptic partial differential equation in the region € = (0,1) x
(0,1)

— Au + ’y(r@ + y@) +pu=yg, in Q (25)
Jdx dy

with Dirichlet boundary conditions. The above problem is discretized using centered
differences for both the second order and first order derivatives. The values of v and [
are varied to make the problem more or less difficult to solve. In our first test we took
v =10.0, 3 = —100.0. The grid size for the first test is h = 1/33, leading to a problem of
size 32 x 32 = 1024. The right hand side is chosen once the discrete equations are formed.
It is selected so that the solution x to the discrete system is one everywhere. This allows
an easy verifications of the result. All the methods start with the same pseudo-random
vector and the process is stopped as soon as the actual residual vector is less than e = 1077.
In this difficult problem, all the methods have some difficulties.

Figure 1 plots the residual norm versus the total number of arithmetic operations
(in millions) for each of the 5 methods. We have deliberately avoided to show the time
instead of the number of operations because our codes are not optimized for the Alliant
FX-8. In this first figure

In the following table we indicate the total number of iterations required for conver-
gence for each of the methods.

7 Conclusion

Indefinite and nonsymmetric linear systems can be very hard to solve by iterative methods.
We have compared a few techniques that can be effective in some circumstances but we
must emphasize that none of these techniques can be viewed yet as a general purpose
solver. The IL(Q technique is a promising alternative to the standard ILU or to direct
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solvers. Despite their poor reputation in handling most definite problems, the methods
that are based on the normal equations seem to be quite useful for indefinite problems.
As was already observed [5, 8], normal equation approaches can be more effective than
other approaches based on the direct equations. The best illustration of this fact is when
the original matrix is orthogonal. Then its spectrum is ...
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