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Abstract

This paper presents some convergence theory for nonlinear Krylov subspace methods. The
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to use variants of Newton’s iteration in conjunction with a Krylov subspace method for solving
the Jacobian linear systems. These methods are variants of inexact Newton methods where the
approximate Newton direction is taken from a subspace of small dimension. The main focus of
this paper is to analyze these methods when they are combined with global strategies such as
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1 Introduction

In a previous paper [5] we have proposed several basic methods based upon the idea of employing a
Newton iteration in which the Jacobian equations are solved approximately by a Krylov subspace
method. Several theoretical issues raised in [5] were left unanswered. The purpose of this paper is
to fill this gap by laying down the theoretical foundation of nonlinear Krylov subspace methods and
by providing convergence results for them. In fact we will not limit ourselves to Krylov subspace
methods. Rather, we discuss inexact Newton methods based on general projection techniques.

When defining algorithms for solving nonlinear systems of equations there are two possible
options. First, one can use one of the globally convergent modifications of Newton’s iteration [11].
The linear systems that arise in the course of the Newton iteration can be solved by either a direct
solver or they may be solved approximately by an iterative method. The class of methods based on
the latter approach is a particular case of inexact Newton methods and several such methods were
considered in [1, 3, 4, 5]. Newton’s method is essentially a linearization procedure. The mapping
F is locally approximated by a linear function and the resulting linear equations are solved to yield
the next point. The second approach to solving nonlinear equations does not rely on linearization.
Thus, fixed point iterations are inherently nonlinear as are descent methods with accurate line
searches. Another well-known example is that of the nonlinear conjugate gradient iteration.

We restrict our attention here to the first approach. In particular, we use linear Krylov methods
to solve approximately the Newton equations. The Krylov methods considered are Arnoldi’s Method
[24], and the Generalized Minimum Residual Method (GMRES) [25]. In general, these methods have
the virtue of requiring virtually no matrix storage, and as such have a distinct advantage over direct
methods.

To be more specific, consider finding a solution u, of the nonlinear system of equations

F(u) =0, (1.1)

where F is a nonlinear function from R" to R". Newton’s method applied to (1.1) results in the
iteration

1. Set ugp = an initial guess.

2. For n =0,1,2,- .. until convergence do:

Solve J(up)dn, = —F(uy), (1.2)
Set up+1 = up + On,

where J(u,) = F'(uy,) is the system Jacobian. For the problems under consideration, N is large,
and as a result the so-called inexact Newton methods [9] solve (1.2) only approximately.

One of the main advantages of the Krylov methods is that only the action of the Jacobian
matrix J times a vector v is required, not J explicitly. In the current setting, this action can be
well approximated by a difference quotient of the form

)y ~ F(u+ov) — F(u)’

g

where u is an approximation to a solution of (1.1), and o is a scalar. Here, we will address the
convergence behavior of the above algorithms when combined with a global linesearch backtracking



strategy or model trust region approach. We should emphasize that our convergence results are not
restricted to the use of Krylov subspace methods when solving (1.2). Our theory is formulated in
terms of projection techniques wherein the approximation to the linear system (1.2) is taken from
a small dimensional subspace.

Inexact Newton algorithms have been studied by several authors in recent years, see for example
the references in [1] and the recent report [6]. Several authors have considered using Krylov methods
inside a Newton iteration in the context of systems of ordinary differential equations [3, 4, 7, 14].
Steihaug [27] and O’Leary [20] have used the Conjugate Gradient (CG) method in the unconstrained
optimization of a real-valued function of several variables. Nash [18, 19] has also used a Newton-CG
algorithm in unconstrained optimization. Wigton et al. [29], and more recently Kerkhoven and
Saad [16] have accelerated nonlinear fixed point iterations of the form w,y; = M(u,) by applying
this approach to solving the nonlinear system of equations u— M (u) = 0. Note that as was observed
by Chan and Jackson [7], the new system of equations u — M (u) = 0 can be viewed as a nonlinearly
preconditioned version of the original system of equations.

In Section 2, we review inexact Newton algorithms, and present versions of the Newton-Arnoldi
and Newton-GMRES methods. In Section 3 we give a convergence theory for inexact Newton
methods when combined with a linesearch backtracking global strategy, and then in Section 4
we present a convergence theory for inexact Newton methods combined with model trust region
strategies. In Section 5, we discuss applications of the basic results in the previous two sections to
the Newton-Krylov methods, and then make some concluding remarks in Section 6.



2 Newton-Krylov methods

In this section we review some of the basic ideas of inexact Newton methods and Newton-Krylov
algorithms. We begin with a discussion of the relevant results from Dembo, Eisenstat and Steihaug
[9] on inexact Newton methods, and then present the two inexact Newton methods we considered
in [5], namely the Newton-Arnoldi and Newton-GMRES methods. Note that a Newton-Krylov
method is one example of an inexact Newton algorithm.

2.1 Inexact Newton methods
From [9], an inezact Newton method for (1.1) has the following general form:
1. Choose up an initial guess for wu..

2. For n =10,1, - until convergence, do:

e Choose n, € [0,1).

¢ Find (in some unspecified manner) a vector ¢, satisfying
J(un)on = —F(up) + ry, with ”T7n||| < (2.1)
U

e Set Upy1 = Up + Op-

The residual 7, represents the amount by which d,, fails to satisfy the Newton equation (1.2). It is
not generally known in advance, being the result of some inner algorithm which produces only an
approximate solution to (1.2) (e.g., an iterative method). The forcing sequence 7, € (0,1) is used
to control the level of accuracy. Also, || - || represents any norm on R”V.

We will make the following assumptions on F":

There exists a u, € R with F(u,) = 0.
F is C! in a neighborhood of u,. (2.2)
J(us) = F'(uy) is nonsingular.

The next theorem is shown in [9]:

Theorem 2.1 Assume that F' satisfies (2.2), and that 9, < fmax <t < 1. There ezxists € > 0 such
that if ||uo — u«|| < €, then the sequence of inexact newton iterates {u,} converges to u.. Moreover,
the convergence is linear in the sense that

ot =l < i — sl

where ||y« = ||J(u)y||. If in addition,
Mn — 0, (2.3)

then the sequence {u,} converges to u. superlinearly. Also, if F' is Lipschitz continuous near u.
and 1, = O(||F (uy)||), then the convergence is quadratic.



In the above theorem, || - || again represents any norm on R,

For the case when N is large, a 4, satisfying the residual condition (2.1) is often obtained
by using an iterative procedure for the linear system. In [5], we considered using the Arnoldi and
GMRES algorithms for nonsymmetric linear systems to obtain d,’s satisfying the residual condition
(2.1). For the convergence theory presented in this paper, the actual method which produces a é,
satisfying (2.1) will be left unspecified. All that will be required is the existence of such a §,. This
is easily guaranteed by assuming that J, is nonsingular for all n.

2.2 Newton-Arnoldi and Newton-GMRES

At each iteration of the inexact Newton algorithm, we must obtain an approximate solution of the

linear system (1.2) which we rewrite as
J§ = —F, (2.4)

where F and its Jacobian J are evaluated at the current iterate. If §(°) is an initial guess for the
true solution of (2.4), then letting § = 6(°) + 2, we have the equivalent system

Jz =10, (2.5)

where 7(0) = —F — J§(®) i the initial residual. For a general N x N matrix A and vector v, define
the Krylov subpsace K(A,v,m) by

K(A,v,m) = span{v, Av, - - -, A" 1y}
Let K™ denote
K™= K(J,r m).
Arnoldi’s method and GMRES both find an approximate solution

50m) — §0) 4 10m) igh o) € K™,

such that either
(—F — J§™) L K™ (equivalently (r(© — Jz(™) L k™) (2.6)

for Arnoldi’s method, or

m))|, = i — mi ) _
|E+ Jo\™ ||, 666%TKm||F+J5||2 ( ZIGIIII(I}n||T Jz||2) (2.7)

for GMRES. Note that this condition is equivalent to demanding that the residual (™) = —F —
J6™) be orthogonal to JK™. Here, | - ||2 denotes the Euclidean norm on RY and orthogonality is
meant in the usual Euclidean sense.

The following algorithm is a nonlinear version of the Arnoldi (GMRES) algorithm, which at
every outer iteration generates an orthonormal system of vectors v; (i = 1,2, --,m) of the subspace
K™ and then builds the vector §(™) that satisfies (2.6) (or (2.7) for GMRES). In both algorithms,
vy is obtained by normalizing (%),



Algorithm : Newton-Arnoldi (Newton-GMRES)

1. Start: Choose ug and compute F'(ug). Set n = 0. Choose a tolerance €.

2. Arnoldi process:

e For an initial guess 6, form r(© = —F — 760 where F = F(u,) and J = J(uy,).

e Compute 3 = ||r||y and v; = r(0/8.
[ ] Forj = 1’2’...’ dO:

(a) Form Jv; and orthogonalize it against the previous vy, ---,v; via
hiaj = (ijavi)a 1=1,2,---,7,
J
41 = Juj = D hijvi
i=1

hji1, = |9j41ll2, and

vjt1 = Bj41/Pjt,j-

(b) Compute the residual norm p; = ||F + J§) ||y, of the solution §) that would be

obtained if we stopped at this step.
(c) If pj < e, set m = j and go to (3).

3. Form the approzimate solution:

Arnoldi: Define Hy, to be the m x m (Hessenberg) matrix whose (possibly) nonzero entries

are the coefficients h;;, 1 <i <j, 1<j<m and define V,,, = [v1,v9," -+, vp,].

e Find the vector y,, which solves the linear system H,,y = Be1, where e; = [1,0,---,0]".

e Compute §tm) = §0) 4 z(m), where (™) = VimYm, and up41 = uy + §(m)

T

GMRES: Define H,, to be the (m + 1) x m (Hessenberg) matrix whose nonzero entries are

the coefficients h;j, 1 <i<j+1, 1<j<m and define V;;, = [v1,v2,- -+, Vp).

e Find the vector %, which minimizes ||Be; — Hy,yl|2, where e; = [1,0,...,0]T, over all

vectors y in R™.

e Compute §(m) = 5(0) 4 (M) where 2(M) = ViYm, and Upy1 = up + §im)

4. Stopping test: If u,11 is determined to be a good enough approximation to a root of (1.1),

then stop, else set uy, < upt+1 , n < n+ 1, choose a new tolerance €,, and go to (2).

Therefore, in both Arnoldi and GMRES the outer iteration is of the form u,+1 = u, + §(m)

where 6™ = §(0) 4 2(M) with

and y,, is either the solution of an m X m linear system, for Arnoldi, or the solution of an (m+1) xm

least squares problem for GMRES.



For simplicity, we have omitted several details of the practical implementation of the above
linear and nonlinear methods, which are discussed at length in [5], [24], [4] and [25]. For example,
the residual norm p; referred to in step 2 of the algorithms does not require the computation of
the approximate solution ¢ () at every step. Instead an inexpensive formula, which evaluates p;, is
updated at each step while the factorization of the Hessenberg matrix H,, or H,, is updated.

An important observation that has been very useful in practice is that there is no need to
explicitly compute the Jacobian matrix J(uy). This is due to the fact that the above algorithm
only requires the product of this Jacobian times a vector and this can be well approximated by the
difference formula:

F(u+ ov) — F(u)

J(u)v = 5

(2.9)

In [1], Brown has given an analysis of the resulting inexact Newton/finite-difference Krylov algo-
rithms when using (2.9) to approximate J(u)v. Sufficient conditions are given in [1] on the size
of the o's in the finite-difference versions of Arnoldi and GMRES which guarantee the local con-
vergence of the Newton-Krylov iteration. These results have been extended in [4] to include a
finite-difference version of the Conjugate Gradient iteration.

One final aspect worth noting is the ability to use restarting in the linear Krylov methods.
Typically, a maximum value of m is dictated by storage considerations. If we let mmpax be this
value, then it is possible that m = mmax in the Arnoldi process, and yet py, is still greater than .
In this case, one can set 69 equal to 6™ and restart the Arnoldi process, effectively restarting
the Krylov method. The convergence of such a procedure is not always guaranteed, but the idea
seems to work well in practice. We note that for lack of a better initial guess we use 6(%) =0 on the
first (and possibly only) pass through the Arnoldi process at each stage of the Newton iteration.
It is only when restarting that 6(°) will be nonzero. We will refer to the restarted algorithms as
Arnoldi(m) and GMRES(m), where m is the maximum subspace dimension. As will be seen below,
it will also be important to choose the tolerance €, at each step of the Newton iteration.



3 Global convergence results for linesearch methods

We will be concerned with the convergence properties of the inexact Newton algorithms outlined in
the previous section when combined with global strategies. In this section we will analyze the global
convergence of inexact Newton algorithms when combined with linesearch backtracking strategies.
The results given below are independent of the particular inexact Newton method used.

To begin, let f(u) = 3||F(u)||3. An easy calculation gives

Vf(u) = J(u)"F(u),

where J(u) = F'(u), the Jacobian matrix of F' evaluated at u. Typically, convergence of a sequence
of iterates {u,} is studied in terms of the scalar sequence

1)
n=VfI_2 3.10
=V G0 (3.10)

where

On = Upt1 — up and Vf, = Vf(uy).

When lim,,_, €, = 0, the sequence u,, will converge to a solution u, under fairly mild conditions.
First, let us assume that the acute angle between §,, and the gradient V f, is bounded away from
/2, i.e., that at every step we have

cos O(V fr,, 0n) > € > 0, (3.11)

(where we define cos 0(u,v) = %) Then from the definition of €, in (3.10), the gradient V f,
will converge to zero whenever €, converges to zero.

We now recall the following two important results from Ortega and Rheinboldt [21], pp. 475-476.

Theorem 3.1 Let f : RY — R be continuously differentiable on a compact subset Dy C RN
and suppose that {un} C Dy is any sequence which satisfies lim, oo V f(un) = 0. Then the set
Q= {u € Dy|Vf(u) =0} of critical points of f is not empty and,

lim [inf ||lu — up]] = 0 (3.12)

n—o0 yeN
In particular, if Q consists of a single point u, then limy, o0 Uy = Uy and V f(u,) = 0.

Theorem 3.2 Let f : R® — R be continuously differentiable on a compact subset Dy C RN and
suppose that the set Q = {u € Dy|V f(u) = 0} of critical points of f in Dy is finite. Let {un} C Dy
be any sequence for which lim, . Vf(u,) =0 and lim, o0 (41 — up) = 0. Then u, converges to
a certain uy in Q and V f(us) = 0.

Thus, we will often attempt to establish conditions under which €, as defined by (3.10) converges
to zero and for which (3.11) holds.

To guarantee that the current iterate will make progress towards the solution in one step of
the algorithm we must know that the inexact Newton step ¢ is a descent direction for f at the
current approximation u. A descent direction p at u is one for which there exists a Ag > 0 such



that f(u+ Ap) < f(u) for all A < A\g. As is well-known, when f is differentiable this is equivalent
to the condition that

Vi)p <0,
where Vf(u) = (aanl(u), e %(u))T. As noted above, V f(u) = J(u)T F(u), and so p is a descent
direction for f at u if

F(u)"J(u)p < 0.

If § is an approximate solution of the Newton equations

Jé =—F,
with F' = F(u) and J = J(u), then
FTjs=—F'F - FTF, (3.13)
where 7 = —F — J§ is the residual associated with §. Thus, § will be a descent direction for f at

u whenever |FT7| < FTF. In particular, if |7]|o < ||F||2, then § is a descent direction. This result
was also given in [5] and is restated in the following proposition.

Proposition 3.3 A sufficient condition for p € RN to be a descent direction for f at u is that
[1F(uw) + J(u)pllz < |1 F(u)]l2- (3.14)

As was seen earlier, it is also important to be able to guarantee that the angle between the
gradient of f and the step ¢, is bounded away from 7 /2. The next lemma gives a lower bound for
|en| under an additional assumption on the step direction p.

Lemma 3.4 Let F : RY — RY be continuously differentiable on R™. Let u € RN be given with
F(u) # 0 and J(u) = F'(u) nonsingular. Consider p € RY satisfying

1F(u) + J(wplla < 7l F(u)ll2,
with n € (0,1). Then

u T —
IV]Iclz(all)z o (11+17;7M||Vf(u)”2 >0, (3.15)

where M = condy(J(u)) and f(u) = $F(u)TF(u).

Proof: For notational convenience, let F = F(u), f = f(u), Vf = Vf(u), and J = J(u) =
F'(u). Note that F' # 0 implies Vf # 0. Let r be the residual associated with p so that r = F + Jp.
Then ||r|la < nl|F|lz and p = —=J~}(F —r). So,

Vf'p = (JTF)T(-J " (F-1))

= —F'F+4+FTy
Hence,
VfTpl _ |FTF—FTr|
lple TN F —1)ll2
FTF —|FTy|
= ITHE =)l



Next, ||7|lo < 7||F||2 implies |FTr| < 5||F||3, which then gives

FIF —|FTr| > (1 - )| F|l5.

Also,
[THE =)l < [T 2 [Fll2 + [Tl
< (@I o - [1Flo- (3.16)
Thus,
T 1—-n)F'F 1—n)|F
N P ) _ 1 -n)Fl 5.17)

Il = @+ T 2 [l (L +m)T7H2
and as a result, using the fact that ||V £z = [|[JTF|l2 < || J||2]|F||2, we get

Vil o (=m)

> ) (3.18)
IVfll2 - llplle — (L +n)M
where M = condy(J). O
Condition (3.15) can also be recast as
cos O(Vf,p) > ——1_ (3.19)
P = (1+n)M )
At every step of the inexact Newton method, we require that a condition of the form
1 (un) + J (un)pall2 < 1ol F(un)ll2 (3.20)
e <n<l (3.21)

holds, and if we assume that the condition numbers M,, = conda(J(uy)) are bounded from above
by M, then (3.15) shows that
11—
cos O(pn, V f(un)) > Mﬁ (3.22)

This implies that a sufficient condition to guarantee both p, being a descent direction and the
validity of relation (3.11) is that the residual condition (3.20)-(3.21) holds.

A simple consequence of the above lemma which will be useful in the section on trust region
techniques, is that the residual norm assumption (3.20)-(3.21) implies that the cosine of the angle
between the gradient and the Krylov subspace is bounded from below. More specifically,

Corollary 3.5 Let F : RY — RY be continuously differentiable on RY. Let u € RY be given with
F(u) # 0 and J(u) = F'(u) nonsingular. Consider the subspace K = span{V'} where the columns
of V form an orthonormal set of vectors, and assume that there exists one vector p in K satisfying

1 (w) + J(w)pllz < 0l F'(u)]l2; (3.23)
with n € (0,1). Then X
—-n
VIV f(u)l2 > mﬂvf(u)ﬂm (3.24)

where M = condy(J(u)) and f(u) = 1 F(u)TF(u).

10



Proof: Let py = Vyg be a vector of K that satisfies (3.23). We then have from the lemma

VI Vil 1=
Wl > T om

1V @le, (3-25)

where we have used the fact that ||poll2 = ||[Vyoll2 = l|yol|2- Using the Cauchy-Schwartz inequality,

Vi) Vol . 1—7

T
R P P (O

IVf(w)ll2, (3.26)

which proves the result. O

3.1 Convergence of inexact Newton sequences

In this subsection we consider the case of linearly converging inexact Newton sequences. That is,
the sequence {7,} in the inexact Newton method is only required to satisfy 7, < fmax < t < 1.
Superlinearly converging inexact Newton sequences will be examined in the following subsection.

An important condition to guarantee global convergence, is the so-called a-condition in the
Armijo and Goldstein principle [11, 21] wherein 6, must satisfy

Fun + 60) < fun) +aV f(un)" 6. (3.27)

We can show the following remarkably simple result if we require that the direction d,, solve the
linear system J(uy,)d = —F(uy,) with a certain accuracy.

Theorem 3.6 Let f = %||F||% be given, where F is differentiable, and a,n two scalars such that
O<ax< %, 0 <n< 1. Assume that the iterates u, are defined by uny1 = upn + 6, where §y, satisfies
(3.27) and

1 (un ) 4 J (un ) onll2 < 7l F'(un)|l2- (3.28)

Then
Jim f(up) = 0.

Proof: In this proof we let J, = J(u,), F, = F(uy). From the condition (3.27) and the
expression for the gradient of f we get

funt1) < flun) + an,T(Sn = f(un) + aFnTJn(Sn (3.29)
Writing J,0, = —F), + r, this gives

fluns1) < flun) + aFF (=Fp + 1)
(1 —2a)f(up) + aFlr,
(1 —2a)f (un) + al[Frll2lrall2-

<
From (3.28) we have ||rp||2 < n||Fy||2 which yields the following inequality,

funs1) < (1= 20)f(un) + 2anf (un) = [(1 — 2c) + 20m] f (un) (3-30)

11



Notice that the scalar in the brackets is a convex combination of 1 and 7 and is therefore always
less than one under the conditions on « and 7. The result follows immediately. O

Note that we have made virtually no assumption on the function F apart from differentiability,
and so the result is very general. However, we cannot guarantee in general that one can indeed
select a vector §,, that satisfies condition (3.27) and (3.28) at the same time, but we do know that
near a solution u, for which J(u,) is nonsingular, a sufficiently good approximation to the Newton
step will satisfy these two conditions simultaneously.

A more explicit result extending the above theorem is now shown. For this next theorem we
assume that a general backtracking strategy is used. This means that the next iterate is of the
form u, + Ap,, where p,, is any descent direction and ) is selected by the procedure described
below. In the procedure the two parameters @pin, Omax are such that 0 < Opin < Opax < 1, a typical
choice being Omin = Omax = 1/2. The procedure requires another parameter ¢* > 0 which is used to
essentially rescale the starting step in the process in order to prevent it from from being too small.

Algorithm 3.1: General Backtracking Procedure

1. Set A = max{1, ¢ [Vl

2. If f(un + Apn) < f(un) + aAV f(uy)? pp, then set A, = A, and exit. Else:
3. Choose \ € [Omin, OmaxAl; set A M. Go to (2).

As is shown next, the sequence is well defined in that under a mild condition on the gradient of
f the procedure will deliver a nonzero A, in a finite number of steps. Moreover, the resulting A,
can be bounded from below.

Lemma 3.7 Let f be differentiable and assume that its gradient is such that
IVf(z) = Vi)l <z —yle, for all z,y € RY. (3.31)

Let a < 1 and p, be any descent direction. Then Algorithm 3.1 will produce an iterate u,+1 =
Up + AnPr 1 a finite number of backtracking steps and N\, satisfies the inequality

V f(un) pp (1-a)
[Pnl2 v

Proof: The subscript n is dropped from this proof. Using the mean value theorem we have the

AnllPnll2 > — min{e* , Ormin }- (3.32)

equality:
flu+Xp) = f(u) + AV f(u+0xp)Tp, (3.33)

where 0 < 0 < 1. We rewrite the above equation as

flu+xp) = fu)+AVf(u)p+ AV I(u+0xp)Tp— Vf(u)p]
= fu)+ VW) p+ A1 —a)Vf(w) p+ (Viu+0xp) p—Vfu)p)
F(u) + AV () p+ A1 — )V F(u)p + Alpall2€], (3.34)

where for convenience we have set

Vf(u+0Ap)'p—Viu)p

(=
Allpll2

12



Note that from the assumptions we have
p
¢ = [ (Vf(u+0Xp) = Vf(u)” Wl <A0llpll2 < 7llpll2- (3.35)

If the test in step 2 is passed at the first step, then the first A is accepted and, in this situation,
the inequality (3.32) is trivially satisfied. If the test in step 2 fails for the first step, then A is
reduced according to the rule in step 3. Moreover, after a finite number of reductions, the term
in brackets in the right-hand-side of (3.34) will become negative and the corresponding A will be
accepted. This will occur as soon as My||p||3 < —(1 — a)Vf(u)Tp. The first A which is accepted

will be such that -
(1-a)Vf(u)'p

)‘HpHQ Z _gmin ||p||2

and the inequality (3.32) is again satisfied. O

We note that the usual # condition of Armijo and Goldstein also guarantees that a lower bound
on A similar to (3.32) is satisfied. Indeed, the relation (3.34) is still valid with « replaced by 3.
Moreover, the 8 condition:

flut2p) > f(u) + AV (u)'p
implies that
(1= B)Vf (un) " pn + Anllpn||2€ > 0.
With the inequality (3.35) this immediately yields

(1—B)V(un)"pn
VIpnll2 '

Anllpallz > — (3.36)
Both (3.32) and (3.36) imply that the step length from u,, is bounded from below with respect to
V f(un)"pn/|[pnll2-

We emphasize the importance of the initial A in the procedure. There is no reason why one
should always start the process with A =1 since ||p,||2 can be arbitrarily small. As was explained
before the choice of the initial A in step 1 is essentially equivalent to a rescaling of the vector p,.
If we always start with A = 1 and p,, happens to be very small at every step then the test in step
2 may be passed immediately and there is a danger that d, becomes too small for the iterates to
make any progress towards the solution.

Note, however, that if p, solves the linear system Jp = —F approximately, then we may have
additional information that will ensure that ||p,||2 is bounded from below. Indeed, the following
lemma shown by Walker, [28] is just one such result.

Lemma 3.8 Suppose that J(u)p = —F(u) +r and ||7||2 < n||F(u)||2, with 0 <n < 1. Then,

(1—n) Vf(u)p
1T)3  llpllz

lIplle > (3.37)

Proof: We have

V£ ()" pl = |F(w)" T(u)p| < [|F(u)ll2]l () 2]lp]l2- (3-38)
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Moreover, from ||F'(u)llz = [[r — J(w)pll2 < 0l F(u)ll2 + [ J(U)ll2]lpll2 we get

[RACDIIP
F(u)|2 <
Il <
The result follows from combining (3.38) and (3.39). O
A consequence of the above lemma, is that the backtracking procedure will always start with
A =1 in the first step if €* is small enough, or to be more accurate as long as

[pll2- (3.39)

(1—-mn)
HOL (3.40)

This may provide for a rational way of choosing €* since ||J(u)||2 may often be roughly estimated
in the course of the algorithm.
We can now prove the following theorem.

€ <

Theorem 3.9 Let f = ||F|3 satisfy the conditions of the previous Lemma and let py, be such that
| En + Jnpnlle < nl|Fall2 for all n, with n < 1. Further, let each iterate be chosen by Algorithm 3.1.
Then, either

Jim. flup) =0 (3.41)
or
Jim lpnl2 = oo. (3.42)

Proof: Letting as before r = F(uy,) + J(up)pn, and dropping the subscript n we have
ViTp=FT(=F +r) < —||F|3(1 —n) = —2(1 —n) [, (3.43)
and as a result, (with u,11 = up + Appn = u + Ap)
Funt1) < f(u) +AaVfTp < f(u) = 20a(l =) f(u) = f(u)[l - 2 (1 — 7). (3.44)

From the result of the Lemma we have

\V/ T
—Alpl2 <k /P (3.45)
[pll2
where we define )
k = min{e* , (1-a) Ormin}
and therefore, (3.44) becomes
\V4 T
F(tns1) < () |1+ 20m(1 — ) YL (3.46)

Ipl3 |

Denoting by ¢, the quantity V fIp,/||p,||3 and by c the constant 2a(1 — ) this relation can be
rewritten as

funt1) < fun)[1 + cty)- (3.47)
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Since f(uy,) is bounded from below and nonincreasing, it converges to a certain limit ¢. If this limit
is zero the result of the theorem holds. If it is different from zero then by dividing both members
of equation (3.47) by f(u,), we see that 1+ ct, which is bounded from above by 1 and from below
by a sequence converging to 1, has 1 as its limit. Equivalently, ¢,, converges to 0. Going back to
the relation (3.43) which we rewrite as 2f (u,)(1 —7) < |ta| - [[Pnl|3, We see immediately that in this
situation we must have [|py||2 = oo. O

We mention that Eisenstat and Walker [12] have recently established an extension to this
result. More precisely, they show that in addition to the conclusion of the above theorem, one of
the following holds:

(1) limp—e0 [lunll2 = 0o
(ii) The sequence u, has finite limit-points, and F’ is singular at each of them.

(iii) The sequence u, has a limit point u, such that F(u,) = 0.

We can show a result that is more explicit than that of Theorem 3.9 if we make a few additional
assumptions on J(uy).

Corollary 3.10 Let f = L||F||3 satisfy the conditions of the previous Lemma and let p, be such
that || Fn + J(un)pnll2 < nl||Fnll2 for each n, with n < 1. Further, let each iterate be chosen by
Algorithm 3.1, and assume that J(u,)™! ezists and its norm is bounded from above for all n. Then

nlggo flup) =0 (3.48)

Proof: From the relation (3.16), and the fact that J(u,) ! is bounded from above, the norm of
the vector p, = J(u,) "' (F(u,) —r) is bounded from above. Therefore, from the previous theorem,
we must have lim,, o f(u,) =0. O

The following additional results do not require the use of the backtracking procedure described
in Algorithm 3.1. They are based upon the ideas presented by Dennis and Schnabel [11]. Given the
current Newton iterate u = u, and a descent direction p, we want to take a step in the direction
of p that yields an acceptable u,11. We will define a step 6 = Ap to be acceptable if both of the
Goldstein-Armijo [11] conditions are met, namely

Flu+2p) < fu) + @AV f(u)p, (3.49)

and
Flut2p) > f(u) +BAVf(u) p, (3.50)

for given scalars «, [ satisfying 0 < a < 8 < 1. Again, we will refer to these two conditions as the
a- and (-conditions, respectively. For a given descent direction p, the next result shows that there
exist points u + Ap satisfying (3.49) and (3.50).

Theorem 3.11 Let f : RN — R be continuously differentiable on RN with f(z) > 0 for all
z € RN. Let u,p € RN be such that Vf(u)Tp < 0. Then given 0 < a < B < 1, there exist
Au > A¢ > 0 such that u + \p satisfies (3.49) and (3.50) for any X € (Ag, \y).

This is essentially Theorem 6.3.2, page 120, in Dennis and Schnabel [11], and so the proof is omitted.
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Theorem 3.12 Let f : RY — R be continuously differentiable on RN with f(z) > 0 for all
z € RN, and assume there ezists a constant v > 0 such that

IVf(z) = V(u)lla < 7llz — ull2 (3.51)

for every u,z € RN. Then given any ug € RV, there exists a sequence {u,} (n =0,1,--+) satisfying
conditions (3.49) and (3.50), and either

Vf(un)?6n < 0

or
Vf(un) =0 and 6, =0,

for each n > 0, where 6, = upy1 — un. Furthermore, for any such sequence, either

(a)  Vf(u,) =0 for somen >0, or
(b) lim Vf(un)T‘Sn

n=o0 |[dnll2

=0.

Proof: This is essentially Theorem 6.3.3 in [11] (p. 122), except that condition (3.50) is slightly
different and f is assumed to be bounded from below. For each n, if V f(u,) = 0, then (a) holds
and the sequence is constant from then on. If Vf(u,) # 0, then there exists a p, such that
Vf(un)T'p, < 0 (e.g., take p, = —Vf(u,)). By Theorem 3.11, there exists A, > 0 such that
Upt1 = Up + Anpyp satisfies (3.49) and (3.50). Let &, = \,p,. We must now show that if no term
of {6, } is zero, then (b) must hold.

First, define w,, = ||, |2 and
Vi (un)"0n

Wn

On

By (3.49) and w;o; < 0 for every i, we have for any j > 0,
j—1
f(uj) - f(UO) = Z f(un-}-l) - f(un)
n=0

-1
> aVif(u)'s;
=0

j—1
= « Zwiai < 0.
=0

IN

Hence, f > 0 on RY implies that the series

o
Z w;o; < 00.
i=0

Thus, w,o, — 0 as n — oo. To conclude that o, — 0 we must use condition (3.50) whose purpose
was to guarantee that the steps do not get too small.
By the Mean Value Theorem, there exists a A € (0, A,) such that

funt1) = fun) + Vf(up + ;\pn)T(UnH — Up) (3.52)
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which, using condition (3.50), yields,
f(un—{—l) - f(“n) = Vf(un + Xpn)T(un—f—l - un) > ﬂvf(un)T(sn (353)
This implies that
[V (tn + Apn) — Vf (@n)]” 60 > (8= 1)V (un) 8, > 0.

Therefore,
0<(B—Nwpon < wpl|VF(up+ 5‘pn) — V f(un)ll2
< YApallown < YWk

So,

-1

Wy, > p on, >0

and

-1,

wWnon < o, < 0.

Hence, w,o0, — 0 implies ,, - 0 as n — oco. O

Note that o, = Vf(uy)?6,/w, — 0 does not imply that Vf(u,) — 0 as n — oco. However,
it will as long as the angle between Vf(u,) and §, is bounded away from 90°. It is possible
to guarantee this is the case in the inexact Newton setting as was shown by Lemma 3.4. Note
also that Vf, — 0 does not imply F'(u,) — 0, without some additional assumptions, e.g., as in
Corollary 3.10.

If conclusion (b) holds in Theorem 3.12 with ||F(uy) + J(un)dn|l2 < 1|/ F(uy)||2 for all n, where
n € (0,1) and if we assume that the condition numbers M,, = condy(J(u,)) are uniformly bounded
from above, then (3.15) shows that o, — 0 as n — oo does imply V f(u,) — 0. However, the
conditions are too weak to imply that {u,} converges.

We should also point point out that the conclusions of the above theorem hold for a sequence
generated by Algorithm 3.1.

3.2 Superlinear convergence of inexact Newton sequences

In this subsection we will require that 7, — 0 as n — oo. As noted in Theorem 2.1, given that
the sequence of inexact Newton iterates converges, this additional assumption on the 7,’s implies
that the convergence is at least superlinear. The main result of this subsection is a modification
of a theorem obtained by Dennis and Moré [10], and shows that the global strategy based on the
above a— and S— conditions will permit full inexact Newton steps when close to a minimizer of f,
provided that a < % and g > %

Theorem 3.13 Let F : RY — RN be twice continuously differentiable in an open conver set
D C RY, and for f = FTF assume V2f € Lip, (D). Consider the sequence {un} generated by
Un+1 = Un + Anpn, where ||F(ug) + J(un)pnlle < mullF(un)||2 for all n with 0 < n, <n <1 for all
n, and A, chosen so that (3.49) and (8.50) hold with o < § and 8 > .

If up — uy € D with J(ux) nonsingular, then F(uy) = 0. If in addition, n, — 0 as n — oo,
then there exists an ng > 0 such that for all n > ngy, A, =1 is admissible (i.e., satisfies conditions
(3.49) and (3.50)). Furthermore, if Ay, = 1 for all n > ng, then u, — u. superlinearly. If also
M = O(||F(un)||2), then the convergence is quadratic.
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Proof: Since f(u) = $F(u)TF(u) > 0, and since |F,, + Jupn|l2 < n||F,]|2 (where F, = F(u,),
Jn = J(uy), etc.) implies VfI'p, < 0 for all n, with n € (0,1), we have by Theorem 3.12 that

Vf;{pn _

=00 ||pnll

(3.54)

If u, = us € D with J, = J(ux) nonsingular, then by continuity M,, = conds(J,) — M, =
conda(Jy), and so the sequence { M, } is uniformly bounded from above. Thus, the discussion after
the proof of Lemma 3.4 implies that V f(u,) — 0 as n — co. Hence, again by continuity

0=Vf(u)=JIF,

which gives F(u,) = 0.
Next, we show that ||p,|2 — 0 as n — co. Since

= _JEIFn + Jn_l(Fn + ann)a
we have

17 Hl2 - [1Fnll2 + 17 2 - | P + Jnpall2
@+ 2 - 1 Fall (3-55)

a2

IA N

Thus, ||Fy||2 — 0 implies ||py|l2 — 0 as n — oo. Also,
IV fallz2 = ||J5Fn||2 2 ||Jr:f||2_1 | Fnllz = ||Jn||2_1 || Fnll2-

Hence, by Lemma 3.4 we have

S Al WFull
where M,, = conda(J,,). Thus,
IFally < LED Y7, Ve
1 [V P
and so
Il lonlls € S5 - (-9 57 ) = ~0 £ (3.56)

letting a, = i—gMn “[[Jn|l2- In addition, it immediately follows from (3.55) that

1+7)?
Ionll < M2 1) = 8.5 £ (3.57)

letting by, = 5% M2,
Using (3.56) and (3.57), and the fact that ||p,|l2 — 0, we next show that A\, = 1 satisfies
conditions (3.49) and (3.50) for n large. First note that if F = (Fy,---,Fy)T, then

Vif(u) = +ZF YV2F;(u
= J(u)T J(u)—I—S(u).
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Also note that ||S(uy)|l2 = 0 as n — oo since u, — u, and F(u,) = 0. For each n, by the mean
value theorem there exists a %, on the line segment between u,, and wu,, + p, such that

1

Pt +pn) = F(un) = 5V () o = & (Vi + V2F (in)pn)

This then gives

T

£t p0) = flun) = 5 V@) 20 = 5| (ot VS n)p)

% (an + Vanpn)Tpn + %PZ <V2f('an) - Van)pn

< 5 (I (Fa + Jupa)ll2 - Ipallz + (1ISall2 + '7||pn||2)||pnl|g>

(nnHJnHQ : ||Fn||2 : ||pn||2 + (“SnHQ + 7||pn||2)||pn||g)

1
< =5 (@[l Jnllz + ba([|Snll2 +lipnll2)) Vfapn

<

N = N =

1
= —§6annTpm

where we have used (3.56) and (3.57), and defined €, = a0y ||Jnll2+0n(||Snll2+7||Pnl|2). Therefore,
1 1
S+ )V npn < flun+pn) = fo < 5(1 =€)V iy pa-
2 2

Next, note that since ay,, b, and ||J,||2 are all bounded from above, and since 7, ||Sy||2 and ||p,||2
all converge to 0 as n — oo, we have that €, — 0. So, choose ng > 0 so that for all n > ng we have

€n < min{l — 20,26 — 1}.
It then follows that for all n > ng

ﬁVf;;F n < f(un +pn) — fn < avf;{pn-

Thus, A\, = 1 is admissible for all n > ny.The superlinear (quadratic) convergence of the sequence
follows from Corollary 3.5 in [9] or Theorem 2.1 above. O

One can relax the condition that n,, — 0 in the above theorem somewhat, although the resulting
condition on 7 is not computationally feasible in general.

Corollary 3.14 Let F : RY = RN, and let f = %FTF be twice continuously differentiable in an
open convez set D C RN with V2f € Lip, (D). Assume that M = sup,¢ep{condz(J(u))} < oo and
that K = sup,cp{||J(u)|]2} < oco. Consider the sequence {u,} generated by uni1 = up + Appp,
where | F(ug) + J(un)pnll2 < 0||F (un)|l2 for all n with 0 < n < 1 for all n, and X\, chosen so that
(3.49) and (8.50) hold with o < 5 and 8 > 1.

If up, — uy € D with J(u,) nonsingular, then F(u,) = 0. If in addition, n satisfies

1
nl—i_fz - M - K < min{l — 2a,20 — 1}, (3.58)

then there exists an ng > 0 such that for all n > ng, A\, =1 is admissible (i.e., satisfies conditions
(8.49) and (3.50)). Furthermore, if A, = 1 for all n > ny, then u, — u, linearly.
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Proof: From the proof of Theorem 3.13, the corollary will be true if we have
an||Jnll2 < min{l — 2a,28 — 1},

for all n. But this follows immediately from the definitions of M and K, and condition (3.58). O

One may wonder whether or not the conditions required in the theorem are too strong if we
want to ensure that A\, = 1 is admissible. More precisely, does the weaker condition || F, + Jppn|l2 <
n||Fy|l2 for all n, where n € (0,1), allow the existence of sequences u,+1 = u, + A\pp, converging
to a u, for which A\, = 1 is admissible for all large n. The answer is no as is illustrated in the
following example.

Example: Consider the one-dimensional function F(u) = u € R. Choose n € (0,1) and
0<a<%<ﬂ<1sothat
max{1l — 2¢,20 — 1} <.

Choose 0 so that 0 < 8 < 1 and
max{l — 2,260 -1} <1—-60<n.

Consider a sequence {uy} generated by uny1 = uy, + A\ppp, where ug = 1, p, = —6uy,, and
An = (2—a—p)/0 for all n. Then f(u) = Lu? with Vf(u,)"p, = —6u2, and so p, is a

descent direction for all n. Also, ||F,, + Jppnll2 = [(1 — O)un| < || F(uy)|l2 = n|un| for all n.
We next show that A, is admissble for all n. We have

1 1 1
flug + Apn) = §(un + )\npn)2 = 5“’2’ — AHu?L + 5)\202%21.

Next,
1
f(un) + XV f(un) pn = iui + da(—0u2),

and

) + NGV ) pr = 5%+ AB(—612)

Thus, A is admissible if

1 1 1 1
Eui + AB(—0u2) < §u§ — Mu? + §A292uﬁ < gui + a(—0u?),

o 20-p) _, _201-0)
- —a
g AT
Clearly, the A\, defined above is admissble for all n. However, for the parameters given above
we have 1 < @, and so A = 1 can never satisfy conditions (3.49) and (3.50). Notice that
Unt1 = (@ + B — 1)uy, and so u, = (a + 8 — 1)"ug with | + 8 — 1| < 1. Hence, u, — 0 as
n — 0 linearly.

Note that the convergence results of this section are similar to others in the literature. However
the emphasis was put on the additional residual norm condition (3.28). As was seen, slightly
different, and somewhat stronger, results can be shown in the situation where §,, satisfies a residual
norm condition.
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For the purpose of illustration, we end this section by describing the particular backtracking
algorithm we have used in [5]. The selection procedure for A is modelled after that in [11].

Algorithm 3.2: Backtracking Procedure #2

1. Choose a € (0, 3) and 8 € (3,1).

2. Given uy, the current Newton iterate, find in some unspecified manner p with ||F,, + J,pll2 <
M| Fnll2-

3. Find an acceptable new iterate u, 1 = u, + Ap. First, set A = 1. Define u(A) = u, + Ap.

a. If u()\) satisfies (3.49) and (3.50), then exit. If not, then continue.
b. If u(\) satisfies (3.49), but not (3.50), and A > 1, set A < 2\ and go to (a).
c. If u(X) satisfies (3.49) only and A < 1, or u(\) does not satisfy (3.49) and A > 1, then

c.l If A < 1, define A\, = A and Ap; = last previously attempted value of . If A > 1,
define \;, = last previously attempted value of A and Ap; = A. In both cases, u()\;,)
satisfies (3.49) but not (3.50), u(Ag;) does not satisfy (3.49), and Ajp < Ap;.

c.2 Find X\ € (N, Ap;) such that u()) satisfies (3.49) and (3.50) using successive linear
interpolation.

d. Otherwise (u(A) does not satisfy (3.49) and A < 1), decrease A by a factor between 0.1
and 0.5 as follows:

d.1 Select the new A such that u(A) is the minimizer of the one dimensional quadratic
interpolant passing through f(un), f'(un) = Vf(un)'p and f(u, + Ap). Then take
the maximum of this new A and 0.1 as the actual value used. (One can show
theoretically that the new A value so chosen will be less than or equal to one-half
the previous value.)

d.2 Go to step (b).
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4 Global convergence results for model trust region techniques

In [5], we presented a trust region algorithm based on a Newton-GMRES iteration. We give here
a convergence theory for this algorithm and other methods based on projection principles. We
start by describing in Section 4.1 general trust region methods and give some background on their
theory. Our basic approach will be modelled after the work of Schultz, Schnabel and Byrd [26]. In
Section 4.2 we will adapt this theory to the particular case that is of interest to us, namely the case
in which a projection method onto a lower dimensional subspace is used.

4.1 General trust region techniques for nonlinear optimization

The model trust region algorithm generates a sequence of points u,, and at the nth stage of the
iteration a quadratic model of f : RV — R near the current iterate u,, is used which has the form

1
wn(w) = fn+ ggw + EwTana

where f, = f(un), gn = Vf(un), and B, ~ V2f(u,). (A projected analogue of the above function
based on approximations from the subspace K will be developed later.) At this stage an initial
value for the trust region size 7, is also available. An inner iteration is then performed which
consists of using the current trust region size 7, and the information contained in the quadratic
model to compute a step

Pn(n) = p(gn, Bn, Tn)-

Then a comparison of the actual reduction of the objective function

aredn(Tn) = fn - f('U/n +pn(7—n))

and the reduction predicted by the quadratic model

Predn(Tn) = fn — ¥n (pn(Tn))a

is performed. If there is a satisfactory reduction, then the step can be taken, or a possibly larger
trust region used. If not, then the trust region is reduced and the inner iteration is repeated.

For now we leave unspecified what algorithm is used to form the step computing function
p(g, B,7), and how the trust region size or radius 7, is changed. We also leave unspecified the
selection of B,, except to restrict it to be symmetric positive definite. Details on these options
will be given later. Shultz, Schnabel and Byrd [26] describe an abstract trust region algorithm as
follows:

Algorithm 4.1: General Trust Region Algorithm

1. Choose 71, a1, a0 € (0,1), u1 € RN, 71 > 0, and let n = 1.

2. Compute fr, = f(un), gn = g(un) = Vf(uy), and B, € RY*YN symmetric and positive
definite.

3. Find 7, and compute p, = p,(m,) satisfying: ||p,|l2 < 7, and
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ared, ()

(a) pred. (m) > a7 and
(b) either 7, > 7,,_1, or

e T, > ||B;,119n—1||25 or

ared,(7)
e for some 7 < 7, /71, pred. (1) < ag or

ared, (1)

prednf 1 (T) < a2 )

4. Let upy1 =up +ppand n=n+ 1.
5. Go to Step 2.

The conditions that the step selection function p(g, B, 7) must satisfy will now be considered.
Defining

1
pred(ga Ba T) = _ng(ga Ba T) - Ep(ga Ba T)TBp(ga Ba T)a
the conditions that we consider are:

Condition 1 There exist two scalars ¢, 07 > 0 such that for all g € RY, for all symmetric positive
definite B € RV*N and for all 7 > 0, pred(g, B, 7) > &|gl|2 min{7, o1||gl|2/||B||2}

Condition 2 If B is symmetric positive definite and ||B~1g||s < 7, then p(g, B,7) = —B~lg.

The first condition requires that the predicted decrease be at least as large as a given multiple
of the minimun decrease that would be provided by a quadratic search along the steepest descent
direction. The second condition forces the direction p to be equal to the Newton direction whenever
the next point u, + p lies in the trust region. The following result is given in [26].

Theorem 4.1 Let f : RN — R be twice continuously differentiable and bounded below, and let
V2f(u) satisfy |[V2f(u)|]2 < B1 for allu € RN . Suppose that an algorithm satisfying the conditions
of Algorithm 4.1 above is applied to f(u), starting from some u; € RN, generating a sequence {uy},
n=12,---. Then

(i) If p(g, B, T) satisfies Condition 1 with ||By||2 < B2 for all n, then g, — 0.

(ii) If p(g, B,T) satisfies Conditions 1 and 2, B, = V2f(uyn) for all n, V2f(u) is Lipschitz
continuous with constant L, and u. is a limit point of {up} with V2f(u.) positive definite,
then u, converges to u, q-quadratically.

The first result in the theorem gives the first order stationary point convergence of the sequence
of iterates while the first and second results taken together give second order stationary point
convergence.

We next discuss the procedures normally used to form the step computing function p(g, B, 7).
One way in which this can be done is to take p(g, B,7) to be the solution of the minimization
problem

1
min (w), where (w) = f + g* w + Zw” Bw.
[wll2<7 2

Assuming B is symmetric and positive definite, the solution to this problem is given by
5(7) = —(B+ul)"tg, with ||(B+ uI)"lg|l2 = 7 when ||Blg|l2 > 7, and
P = —Blg, when |B 1g||s < 7.
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We note that the y in the first part of the definition of p is unique. It is well-known that for
p(g, B,7) = p(7) the following inequality is true:

F @) > L gllsmingr, 1912
| Bll2
For a proof of this result see [17]. With this ideal choice of the direction p(g, B, T), Condition 1 is
trivially satisfied.

Since there is no finite method of determining p such that ||(B + pI)"!glls = 7 when 7 <
|B1g]|2, frequently a piecewise linear approximation to p(u) is used. The dogleg strategy of Powell
[22] is an example of such a procedure. (See [11] for a discussion of this and other dogleg strategies.)
If we denote Powell’s dogleg solution by p(7), then it is also well-known that for p(g, B, 1) = p(7)
the following lemma is true.

Lemma 4.2 Let p(1) be the dogleg solution to the minimization problem

min (w), (4.59)

llwll2<7

where p(w) = f +glw + %wTBw with B symmetric positive definite. Then

F=96(r)) 2 3lgllminr, 1912, (4.60)

For a proof of this lemma see Powell [23]. Again, a consequence of the above lemma is that
Condition 1 is trivially satisfied, and as a result of Theorem 4.1 global convergence will take place
under the mild condition that ||By||2 remains bounded.

4.2 Application to projection methods for nonlinear equations

In the context of nonlinear equations, one typically bases the global strategy on the related function
f(u) = 2 F(u)TF(u). Letting u be the current approximate solution, the local quadratic model now
has the form

1
Y(w) = f+g"w+ v Bw,

where f = f(u), g = Vf(u) = J(u)' F(u), and B approximates J(u)? J(u). Note that V2f(u) =
Jw)TJ(u) + XN, F(u)V?Fj(u), and so in general V?f(u) = J(u)"J(u) only when F(u) = 0.
When using projection methods to solve the nonlinear system, the full quadratic model 9 (w) is
replaced by a quadratic model on a lower dimensional subspace K. Letting the columns of the
N x m matrix V form an orthonormal basis for K (with mn the dimension of K'), we have

#(y) P(Vy)
= f+9"Vy+ %(Vy)TBVy

1
= f+ (V79 y+ 5y (VI BV)y.
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Thus, V¢(0) = VTg. Note that since V has orthonormal columns, the matrix V7 BV is symmetric
positive definite whenever B is. In the current setting, we will take B = J(u)?J(u). If §(7) is the
dogleg solution to the minimization problem

(y),

min
llyll2<T

then Lemma 4.2 implies

. - : [VTglla
- > 12 3
We then have -
. 1 . V
= 9(ar) = IV gl mingr, L8y (4.61)

using the fact that |[VTBV |y < ||Blf2.

In order to be able to apply the results of Shultz, Schnabel and Byrd [26], we must convert the
lower bound in the above inequality to one involving ||g||2, and not ||[VTg||2. As indicated above,
we have f = £FTF, and so 1(w) has the form

Y(w) = 1+ (TE) w4 " (I D,

which gives g = JTF and B = JTJ. Thus, we need a lower bound for ||[VTg|ls = |[VTJT F||5. Such
a lower bound was derived in Section 3. Indeed, Corollary 3.5 states that

VIVl = [V gl > ———|lg]l2, 4.62
VTVl = 1VTgll = Sl (462)

provided that there exists at least one vector p in K such that
1 (w) + J(w)pllz < 0l F'(u)]l2- (4.63)

Therefore, we immediately have the following lemma.

Lemma 4.3 Let J € RV*Y be nonsingular and F € RN be given. Let n € [0,1) be chosen and let
K be a subspace of dimension m in RN such that

in||F + Jplla < nl|F|l2-
min||F + Jpll2 < nl|F

Choose the N x m matriz V' so that its columns form an orthonormal basis for K. Let §(t) be the
dogleg solution to

min o(y) uhere 4(y) = £+ (Vo) -+ 5o (VI BV )y,

with f = %FTF, g=Vf=J'F and B=J"J. Then

IVTgll2 > ollglla, (4.64)
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and

. 1 - llgll2
f = 86(r) = jolglmingr. o ), (465)
where |
o= vl (4.66)

Given this lemma it is now possible to state a model trust region algorithm appropriate for
use with a general projection method. The algorithm is stated in terms of a sequence of general
subspaces K.

Algorithm 4.2: Inexact Newton Trust Region Algorithm

1. Choose an 7max € (0,1).

2. Choose v, a1,az € (0,1), ug € RN, 71 > 0, and let n = 1.

3. Compute F,,, J,, and choose 7, € [0, Jmax). Then choose a subspace K,, C RY satisfying
* minpek, [|[Fn + Jnpll2 < nall Fnll2-

Let m,, be the dimension of K,,, and build V,, € R¥*™» whose columns form an orthonormal
basis for K.

4. Compute f, = %F[{ F,,V>Ig, =VIJIF, and B, = VI'JI'J,V, with J, nonsingular.
5. Find 7,, and compute p, = Vy,qn = Vg (m) satisfying: ||pn|l2 < 7, and

ared, (1)
(a) pred. () > a1 and
(b) either 7,, > 7,1, or

o 70> B VI ign_ill2, or

ared,, (r)
pred, (r)

ared,, 1(r) < o

e for some 7 < 7, /71, pred, _,(r)
n—1

< a9 or
6. Let up41 =up +ppand n=n+ 1.
7. Go to Step 3.
In the above algorithm, the step selection function g, (V,! g,, Bn,7,) is given by
0 (Vi 9n> By Tn) = Gn(7a)

where Gy, (7,,) is the dogleg solution to the minimization problem

. . 1 _
min Gn(y) With dn(y) = Yn(Vay) = fn + (Vi 9n) "y + 54" Buy-

Then by Lemma 4.3 we have

1 . o
Fu = bulan) = Soullgalls min{r,, Znlnl2 (4.67)
2 1Bullz
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where
1- Tn

(1 + nn)Mn

with M, = conda(J,). We now state the main result of this section.

Op =

Theorem 4.4 Let F : RV — RN be twice continuously differentiable. Define f = %FTF and
assume |V2f(u)|l2 < B1 for all w € RN. Suppose that an algorithm satisfying the conditions of
Algorithm 4.2 above is applied to f(u), starting from some u; € RN, generating a sequence {uy},
and assume that | By||2 < B2 and conda(J,) < M for all n. Then

(i) gn — 0.

(ii) If V2 f(u) is Lipschitz continuous with constant L, and u, is a limit point of {u,} with J(u.)
nonsingular, then F(us) = 0. If in addition, the sequence n, — 0 as n — oo, then u,
converges to u, superlinearly. Also, if n, = O(||F(un)||2), then the convergence is quadratic.

This theorem is a direct adaptation of Theorem 4.1 above. The proof uses the previous lemma,
and due to its length is deferred to an appendix.

The actual dogleg algorithm we have used in [5] is modelled after that in [11], and is described
below. The condition for accepting w1 is the a-condition in §3, namely

flun +6) < flun) + an(un)T(f,

where 6 = V§ and the columns of V form an orthonormal basis for the Krylov subspace K. The
vector ¢ will be that point on the dogleg curve for ¢(y) such that ||| = 7, where 7 is the current
trust region radius. The algorithm is then as follows.

Algorithm: Dogleg

1. Choose a € (0, 3).

2. Given uy,, the current Newton iterate, calculate 6™ = Vygas. Here, ygur is calculated using
the GMRES method (without restarting) with initial guess 60 =0, and it is assumed m is
large enough so that ||Fy, + J,0%M|la < 1| )2

3. Given 7, the current trust region size, calculate ¢, the point on the dogleg curve for ¢(y) with
lgll2 = 7. Then calculate w11 = up + V§. If up41 is acceptable, then go to step(5).

4. If up4 is not acceptable, then do one of the following:

(a) If 7 has been doubled during this iteration, then set u, 11 equal to its last accepted value
and set 7 <— 7/2. Then continue to the next Newton iteration. If not:

(b) Determine a new 7 by using the minimizer of the one dimensional quadratic interpolating
f(un), f(unt1), and the directional derivative of f at u, in the direction 6 = V§. Letting
A be the value for which u, + Ad is this minimizer, set 7 < A||d]|2, but constraining it
to be between 0.1 and 0.5 of the old 7. Then go to Step 3.

5. For an acceptable u,1, calculate ared, (7) and pred, (7). Then do one of the following:
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(a) If ared,(7) and pred,(7) agree to within relative error 0.1, and 7 has not been decreased
during this iteration, set 7 <— 2 % 7, and go to step (3). If not:

(b) If ared,(7) < 0.1 * pred,,(7) set 7 = 7/2, or if ared,, (1) > 0.75 * pred,,(7), set 7 =2« 7.
Otherwise, do not change 7. Then continue to the next Newton iteration.

Note that the a-condition is equivalent to the condition in step 5(a) of Algorithm 4.2, and that
the conditions for decreasing the size of the trust region in 5(b) are met. For more details on
permissible trust region updating strategies, see §3 in [26].
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5 Applications to Newton-Krylov methods

In this section we show how the theory outlined in the previous sections applies to the Newton-
Krylov methods discussed in §2. The details of the implementation of the Newton-Krylov algorithms
when combined with either a linesearch backtracking strategy or model trust region are discussed
at length in our earlier paper [5], and so we will not go into them here. As was seen above, the
most important condition to guarantee convergence is that the residual norm be reduced by a
certain amount. This was crucial in both the linesearch methods and the trust region methods.
Unfortunately, as we indicate below, there is always the possibility of stagnation when using either
linear Arnoldi or GMRES, and as a result there remains the possibility of a breakdown in the
nonlinear iteration. In these situations the basic residual condition (2.1) may not be satisfied using
a single subspace. We begin this section by giving sufficient conditions under which stagnation of
the linear iteration never occurs.

The simplest condition is simply to ensure that the steepest descent direction —g = —JTF
belongs to the subspace K. Then the minimum of ||F + Jp|| for p € K, is reduced from its value
of ||F||2 when p =0 to an amount not less than that obtained by a steepest descent step, i.e.,

condy(J)? — 1

CondQ(J)Z + 1 ||F||2' (51)

min ||F + Jp|ls < min |[F + AJJTF||; <
pEK AER
As a result, if the steepest descent direction is known, or computable, it suffices to add it to the
subspace to guarantee the existence of an n € (0,1) for which the residual condition is always
satisfied. The resulting modification of the underlying algorithms is very simple.
A particular case of the above situation is when v; = £F/||F||2 and the Jacobian J is symmetric.

Then the Krylov subspace K™ will in fact contain the steepest descent direction for the function
f= %FTF for any m > 2. This is because

Vf=J'F =JF = +|F|sJv

which, apart from a scaling factor, is the second vector of the Krylov sequence. As a result,
stagnation can be avoided if J is symmetric and a Krylov subspace of dimension m > 2 is used.
Analogous arguments also guarantee that the steepest descent direction lies in K whenever J is
skew-symmetric or, whenever J = I + a5, with S skew-symmetric, and « real. More generally, if
there is a polynomial q of degree m such that J? = ¢(J) then again the steepest descent direction
lies in K™. However, this is equivalent to the property that J is normal, see [13] for details.

A third case for which there is no difficulty is when the Jacobian at every point is positive
real, i.e., J + J7 is symmetric positive definite. It has been shown by several authors that, in this
situation, linear Krylov subspace methods will converge. Thus, if one required the Jacobian matrix
J(u) to be positive definite for all w € R”, then the residual conditions in the main results of
the previous sections can be satisfied, and so convergence of the sequence of nonlinear iterates will
follow. This will be the case for some problems, but it is clear that requiring J(u) to be positive
definite everywhere is very restrictive.

For problems whose coefficient matrices are indefinite, the convergence theory for the linear
Arnoldi and GMRES algorithms is lacking in one very important area at the present time in that
it is impossible to predict how well either algorithm will perform on the problem

Ax = b.
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Some partial answers to this question have been given by several authors. For example, in [2],
several results are shown which basically show that either both algorithms will perform well on
a particular problem or both will perform poorly. Some numerical studies performed by Huang
and van der Vorst [15] suggest that the convex hull of the upper Hessenberg matrix H,, in the
Arnoldi process must well approximate that of the matrix A in order for the GMRES solution to
well approximate the true solution of the above linear system.

There also are generalizations of the above results for the linear Krylov methods when the
coefficient matrix is positive definite. We now show a result which gives necessary and sufficient
conditions for the first k£ steps of the linear GMRES algorithm to stagnate.

Theorem 5.1 Consider the solution of Ar = b using GMRES with initial guess o and residual
ro = b— Axy. Let x; be the i-th GMRES iterate for i =1,---, k. Assume A is nonsingular and let
1 be the minimal degree of A with respect to ro. Then for any k < p, we have Ty = Tp_1 = -+ = Iy
if and only if r§ Alrg =0 fori=1,--- k.

Proof: Let r; =b— Az; (j = 1,---,k) with & < . Because j < k < p, the N x j matrix
Zj = [rg, Arg, ..., AF"1rg] is of full rank. It follows directly from the remark after (2.7) that z; =
zo + Zjyj, where y; € RJ solves the j x j system

(AZ))  (ro — AZjy;) = 0.

Since Z; is of full rank and A is nonsingular, the above system has a unique solution. Observe that
z; = xo if and only if this unique solution is y; = 0. This is true if and only if the right hand side
(AZ;)Trg is zero, i.e., if and only if r§ Arg = 0 for 4 = 1,-- -, j. The result follows immediately. O

Using this result, it follows immediately that if A is either positive or negative real, then
GMRES(k') converges for any k' > k. Although interesting theoretically, this result is of limited
practical application. However, it and the ones referred to above indicate some of the subtleties
involved in analyzing the convergence behavior of the linear Krylov methods.

An important issue somewhat related to the question of stagnation is that of preconditioning.
We mentioned above that adding the steepest descent direction to each subspace K guarantees
convergence. In fact, using the normal equation approach, i.e., solving the linear systems by using
the conjugate gradient algorithm on the normal equations, also guarantees convergence. However,
the convergence can be very slow and this can be just as problematic as divergence. The usual way
to improve convergence of the linear solvers is to precondition the systems. The key solution to
avoiding stagnation is to use a good preconditioning technique. The importance of preconditioners
over the Krylov subspace methods themselves has been illustrated in the tests in our previous paper
[5]. There are a number of standard preconditioners that can be used when the Jacobian is explicitly
available, the simplest and often the most inexpensive being the incomplete ILU factorization.
Unfortunately when the Jacobian matrix is not available, i.e., in matrix-free methods, this is not
feasible. Preconditionings that do not require the Jacobian explicitly but only its action on a given
vector could be extremely useful. We should mention that any nonlinear fixed-point iteration can
be considered as a matrix-free preconditioner [7]. We believe that much research remains to be
done in this direction. For now, we can say that the best successes of nonlinear Krylov subspace
methods have been in cases where the particular knowledge of the physics of the problem allows
one to derive suitable preconditioners [29].
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6 Conclusion

We have provided some theory for nonlinear projection methods with emphasis on those methods
based on Krylov subspaces. The main results are similar to others in the literature, from which
they have been adapted.

One of the main restrictions of most of the schemes used is that the subspace onto which a
given Newton step is projected must solve the Newton equations with a certan accuracy which is
dictated by the residual condition (2.1). This, as we have shown, is enough to essentially guarantee
convergence of the standard linesearch and trust region algorithms. On the practical side, the
main difficulty is that one does not know in advance if the subspace chosen for projection will be
good enough to guarantee this residual condition. Techniques which use restarting of the linear
iteration can be very useful in this context. Moreover, preconditioning is essential in the successful
application of these methods.

Finally, there are generalizations of the Newton-Krylov methods considered in this paper which
may be more effective on certain problems. For example, once a subspace K has been constructed
along with an orthonormal basis V', one could consider solving the nonlinear least squares problem

i 1%
nin, flu+Vy),

where f(u) = $F(u)TF(u) and u is the current approximate solution. This would be in lieu of
the quadratic models considered in the trust region algorithms. Preliminary testing of such an
algorithm has been encouraging. We will consider this and other generalizations in future work.

Acknowledgements. The authors are indebted to Homer Walker for the very valuable help he
provided them by carefully reading the manuscript and pointing out a few errors. In particular the
modification of the first step in Algorithm 3.1 was spurred by his remarks. Also, as was mentioned
earlier, the result in Lemma 3.8 is due to Walker.
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Appendix

The proof below follows closely that of Theorem 4.1 given in [26]. The major differences arise
from the fact that a lower dimensional quadratic model is used, rather than the full N-dimensional
model assumed in [26].

Proof of Theorem 4.4: By Taylor’s theorem, for any n and any 7 > 0,

aredn(r) = predy (7)) = |fo = F 4 2n(r)) = (fo = Jo = 9T (1) = 300(1) " Bun(r) )|

320 Bupa(r) - | pu(™)2 Fatn + €pu(r))pa(r) - (1 — 6)ds

2
1
< pa(IB [ 1Bn = V2F(un + Epal(m)lall — €)de.
So, )
areda(r) [ _ Ipa(m)I3 Jo 1B = V1 (an + Epa(r)) a0 = )¢
) S e, (7] ' A

Also, note that for any sequence {u,} generated by an algorithm satisfying the conditions of
Algorithm 4.2, the related sequence {f,} is monotonically decreasing and bounded from below.
Hence, f, converges to an f, as n goes to infinity. This fact will be used in the remainder of the
proof.

Proof of (i): Since 1, < Nmax < 1 for all n, we have

1 — Nmax _
op > —————— =g >0 for all n.
(1 + Nmax) M
(From (4.67) it follows that
. L lnly g A
fTL ¢n(Qn(T)) Z 2U||gn||2mln{T7a||B ||2} or all n. ( 2)

Next, consider any k with ||gk||2 # 0. For any u, ||g(u) —gkll2 < Bil|lu —ugll2- So, if ||u —uk|2 <

llgkll2/(261), then
||gk||2.

lg(u)llz = llgllz = llg(w) = gllz > =
Let R = ||gk|l2/2 and D = {u : ||u — ugll2 < R}.
At this point there are two possibilities: either u,, € Dg for all n > k or eventually {u,} leaves
the ball. We show the latter is true by contradiction. Suppose u,, € Dg for all n > k. Then for all
n >k, |lgnll2 > ||gkll2/2(= €). Thus, by what was shown above,

1
pred,(r) > Lolgulls mingr,o19n12y
2 1Buls

> gemin{r, 6i},

Pa
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for all n > k, since ||B,l|l2 < B2 and ||gn||2 > € implies ||gn||2/||Bnll2 > €/82. To simplify notation
let 6 = €. Then, using the above inequality we have

() | < LB Jg 1B = 92t + Epn(r) 1o (1 — €)de
pred,,(7) - dmin{7,8/52}
T 2(51 + B2)
d min{r,d/52}
7(B1 + (o)
- 0
for all n > k and 7 < §/fF. This gives for 7 sufficiently small and n > k that
ared,,(7) N
pred, (1) ~ 7
In addition, we have
IV gnll2 llgnl2

>
= VT BuVall = 711 Ball2 =

so that for 7,, sufficiently small none of the conditions allowing decrease of Tp in 5(b) of Algorithm 4.2
above can hold. It follows that 7, is bounded away from 0. But, since

(Ve BaVa) ™' Vi gll2 >

]
E}’ (A.3)

and since f is bounded from below, we must have 7,, — 0, which is a contradiction. Therefore,
{un,} must eventually be outside Dp for some n > k.
Let [ + 1 be the first index after &k with u; 1 not in Dg. Then

fn — fn+1 = aredyp (1) > aipred,, (7,) > @16 min{7,,

l
flug) = flugn) = Y flun) = f(unt)

l
Z agpred,, ()

n=~k

’ §
d min{7,, —}.
7;0 a1 min{, ﬂ2}

Y

Y

Now, if 7, < /02 for k <n <, we have that

l
flug) — flugr1) > a1d Z Tp > @10R.
n==k
Otherwise, we have that f(ug) — f(ui1) > a162/B2. (That is, there exists at least one n with
Tp > 6/F2.) In either case,

. 1)
flug) — f(ui+1) > aidmin{R, E}
ekl . allgkllz allgkll
= 10 2 mln{ 2/81 ) 2182 }
1
> ||9k||2a102—m1n{ }

B1’ B2
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By assumption, f is bounded below, and by construction f, is monotonically decreasing. These
imply that f,, — fi«. Then by the preceding inequality

lgul§ < [} ming 7} = £

4
Therefore, g, — 0 as n — oo.

Proof of (i): By assumption, u, is a limit point of {u,}. Let {uy;} be a subsequence converging
to u.. We show first that u, converges to u.. By (i), g(us) = 0. Since J(u,) is nonsingular and
0 = g(us) = J(us)T F(us), it follows that F(u,) = 0. We then have V2 f(u,) = J(us)T J(uy), and
hence is positive definite. Since V2f is continuous, there exists a d; > 0 such that if ||u —u||2 < 61,
then V2f(u) is positive definite, and if u # u, then g(u,) # 0. Let D1 = {u : ||u — u.|j2 < §1}-

Since g(us) = 0, we can find d; > 0 with 6 < 6;/4 and |[|[V2f(u) "2 - |g(u)|2 < 61/2 for all
u € Doy = {u: ||u—u2 < 2}

Find jo such that f(un; ) < inf{f(u) : v € D1 — Dy} and uy; € D,. Consider any v with
[ > nj,, up € Dy. We claim that w1 € Do, which implies that the entire sequence beyond Un;, is
in Dy. Suppose that w4 is not in Dy. Since fi11 < fp; , ur41 18 not in Dy either. So,

dp 3
n 2 s —willz 2 s = wdllz =l = wllz > 6~ 7 = 761
01 _
5 2 1B) ™ 2 - llg(u)ll2

(V" BV) " Vi g

Y

But, since the inexact-Newton step is within the trust region, we have
pu(n) = —=(V;" BV) "V g(w).

Since |[pi(m)||2 < d1, it follows that w41 € Dq, which is a contradiction. Hence, for all n > nj,
un € Doy, and so since f(u,) is a strictly decreasing sequence and u, is the unique minimizer of f
in Dy, we have that u, converges to u,.

Next, we show that the convergence rate is superlinear. This is done by showing that eventually
(VI B, Vy) V. g,|l2 will always be less than 7, and hence inexact-Newton step will always be
taken. Since J(u,) is nonsingular, it follows from the results in [9] that the convergence rate of u,
to u, is superlinear.

To show that eventually the inexact-Newton step is always shorter than the trust radius, we
need a particular lower bound on pred, (7). By the assumptions of (ii), for all n large enough,
B, = V2f(uy,) is positive definite. Hence, either the inexact-Newton step is longer than the trust
radius, or py(7) is the inexact-Newton step. In either case,

lpn (T)ll2 < (Ve BuVa) ™ Vit gnllz < (Vi BuVa) IV, gnll2,

and so it follows that |[V,L'gnll2 > ||pn(7)l2/|(V,l BnVa)~t|2- By what was shown in the proof of
(i), for all n large enough we have

Lllpa()l e ol

pred, (1) > =0 ~ T, O
" 2" ||Bat2 | Bull2
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1 . ___lpa(D)ll2
> 50llgnllo min{|lpn (7)o, 07 )
2" | Balla Bz
5 Lo llpa(™l3
T 2M2 By

So, by the continuity of V2f, for all n large enough,

5 lpa()l3
predu(T) 2 L1927 ()1

Finally, by the argument leading up to (A.1) and Lipschitz continuity,

Jaredn(r) — pred,(r)] < lpa(r)I -
Thus, for any 7 > 0 and n large enough,
3L
i1 < Bl
_ IV ey,
< 2T,

Thus, by step 5(b) of Algorithm 4.2, there is a 7 such that if 7,1 < 7, then 7, will be less
than 7,_1 only if 7, > [[(V.LB,_1Vi_1) 'Vl 1gn_1ll2. Tt follows from the superlinear con-
vergence of the inexact-Newton method that for w, 1 close enough to u, and n large enough,
N(V.EB,Vn) "WVl gulla < |(V,EBn-1Vi—1)"tV,I gn_1]l2. Now, if 7,, is bounded away from 0 for all
large n, then we are done. Otherwise, if for an arbitrarily large n 7, is reduced, i.e., 7, < Tp_1,

then we have
Tn 2> II(Vanan—an—1)71VnT719n—1||2 > ||(VnTBnVn)71V7?9n”27

and so the full inexact-Newton step is taken. Inductively, this occurs for all subsequence iterates
and superlinear convergence follows. O

35



References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. N. Brown, A local convergence theory for combined inezact-Newton/finite-difference projec-
tion methods, STAM J. Numer. Anal., 24(1987),pp. 407-434.

P. N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, to appear in
SIAM J. Sci. and Stat. Comp.

P. N. Brown and A. C. Hindmarsh, Matriz-free methods for stiff systems of ODEs, SIAM J.
Numer. Anal.,24(1987),pp. 610-638.

, Reduced storage methods in stiff ODE systems, Lawrence Livermore National Lab-
oratory UCRIL-95088 report, Rev. 1, June 1987, to appear in Journal of Applied Math. and
Computation.

P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, STAM
J. Stat. Scient. Comput., to appear.

R. G. Carter, Numerical Optimization in Hilbert Spaces Using Inexact Function and Gradient
Evaluations, Technical Report, ICASE, Hampton VA, 1989.

T. F. Chan and K. R. Jackson, The use of iterative linear equation solvers in codes for large
systems of stiff IVPs for ODEs, STAM J. Sci. Stat. Comp.,7(1986),pp. 378-417.

I. L. Chern and W. L. Miranker, Dichotomy and conjugate gradients in the stiff initial value
problem, Technical Report 8032-34917, IBM, 1980.

R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inezact Newton methods, STAM J. on Numer.
Anal., 19 (1982), pp. 400-408.

J. E. Dennis and J. J. Moré, A characterization of superlinear convergence and its application
to quasi-Newton methods, Math. Comp. 28, pp. 549-560.

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJ, 1983.

S. C. Eisenstat and H. F. Walker, Private communication, 1989.

V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existence of a conjugate
gradient method, STAM J. Numer. Anal. 21 (1984), pp. 352-361.

W. C. Gear and Y. Saad, Iterative solution of linear equations in ODE codes, STAM J. Sci.
Stat. Comp., 4(1983), pp. 583-601.

Y. Huang and H. van der Vorst, Some observations on the convergence behavior of GMRES,
preprint.

T. Kerkhoven and Y. Saad, Acceleration techniques for decoupling algorithms in semiconductor
simulation, CSRD report number 684, University of Illinois at Urbana Champaign, 1987.

36



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

H. Mukai and E. Polak, A second order methods for unconstrained optimization J. Opt. Theory
Appl., 26 (1978), pp.1-20.

S. G. Nash, Newton-like minimization via the Lanczos method, STAM J. Num. Anal., 21 (1984),
pp. 770-788.

, Preconditioning of truncated-Newton methods, SIAM J. Sci. Stat. Comp., 6 (1985),
pp. 599-616.

D. P. O’'Leary, A discrete Newton algorithm for minimizing a function of many variables,
Math. Programming, 23 (1982), pp. 20-33.

J.M. Ortega and W.C. Rheinboldt, Ilterative solution of nonlinear equations in several vari-
ables, Academic Press, New-York, 1970.

M. J. D. Powell, A hybrid method for nonlinear equations, P. Rabinowitz ed., Numerical
Methods for Nonlinear Equations, Gordon-Breach, 1970.

, Convergence properties of a class of minimization algorithms, in Nonlinear Program-
ming 2, O. Mangasarian, R. Meyer, and S. Robinson, eds. Academic Press, New York, pp.
1-27, 1975.

Y. Saad, Krylov subspace methods for solving unsymmetric linear systems, Mathematics of
Computation, 37(1981), pp. 105-126

Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7(1986), pp. 856-869.

G. A. Shultz, R. B. Schnabel and R. H. Byrd, A family of trust-region-based algorithms for
unconstrained minimization with strong global convergence properties, SIAM J. Numer. Anal.,

22 (1985), pp. 47-67.

T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, STAM
J. on Numer. Anal., 20 (1983), pp. 626-637.

H. F. Walker, Lecture notes, CS 745, Yale University, Computer Science Dept, 1989.

L. B. Wigton, D. P. Yu and N. J. Young, GMRES acceleration of computational fluid dynamics
codes, Proceedings of the 1985 AIAA conference, Denver 1985, ATAA, Denver, 1985.

37



