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SUMMARY
The forthcoming generation of many-core architectures compels a paradigm shift in algorithmic design to
effectively unlock its full potential for maximum performance. In this paper, we discuss a novel approach
for solving large sparse linear systems arising in realistic black oil and compositional flow simulations. A
flexible variant of GMRES (FGMRES) is implemented using the CUDA programming model on the GPU
platform using the Single Instruction Multiple Threads (SIMT) paradigm by taking advantage of thousands
of threads simultaneously executing instructions. The implementation on the GPU is optimized to reduce
memory overhead per floating point operations, given the sparsity of the linear system. FGMRES relies on
a suite of different preconditioners such as BILU, BILUT and multicoloring SSOR. Additionally, the
solver strategy relies on reordering/partitioning strategies algorithms to exploit further performance.
Computational experiments on a wide range of realistic reservoir cases show a competitive edge when
compared to conventional CPU implementations. The encouraging results demonstrate the potential that
many-core solvers have to offer in improving the performance of near future reservoir simulations.
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Abstract 
 
With the advent of the processor technology revolution, many-core computing with Graphics 
Processing Units (GPUs) provides enormous processing capability suitable for large scale engineering 
and scientific applications. The forthcoming generation of many-core architectures compels a 
paradigm shift in algorithmic design to effectively unlock its full potential for maximum performance. 
In this paper, we discuss a novel approach for solving large sparse linear systems arising in realistic 
black oil and compositional flow simulations. A flexible variant of GMRES (FGMRES) is 
implemented using the CUDA programming model on the GPU platform using the Single Instruction 
Multiple Threads (SIMT) paradigm by taking advantage of thousands of threads simultaneously 
executing instructions. The implementation on the GPU is optimized to reduce memory overhead per 
floating point operations, given the sparsity of the linear system. FGMRES relies on a suite of 
different preconditioners such as BILU, BILUT and multicoloring SSOR. Additionally, the solver 
strategy relies on reordering/partitioning strategies algorithms to exploit further performance. 
Computational experiments on a wide range of realistic reservoir cases show a competitive edge when 
compared to conventional CPU implementations. The encouraging results demonstrate the potential 
that many-core solvers have to offer in improving the performance of near future reservoir 
simulations. 
 
1. Introduction  
 
Due to transistor physical limitations, the performance of single core is levelling off and progressively 
being replaced by many-core solutions. This implies a radical paradigm shift in the design of software 
for engineering and scientific applications. There is no doubt that this paradigm shift will have 
important computational implications in the oil industry and in particular, reservoir simulation.  
 
GPU technology has already provided many success stories in the Oil and Gas Industry, more 
specifically in geophysical applications (B. Deschizeaux et al., 2008; Micikevicius, 2009). This is 
primarily due to the high level of parallelism implied by the processing of large sets of independent 
seismic data using the SIMD (Single Instruction Multiple Data) paradigm.  
 
In the case of reservoir simulation, the success of efficient GPU implementations is limited to spatial 
and temporal dependencies established by the discretized equations governing flow phenomena. 
Traditionally, each simulation component may require a different approach to parallelization based on 
the physics of the problem (e.g., black-oil, compositional, thermal), the numerical formulation (e.g. 
degree of implicitness, type of spatial discretization and meshing), the input data (e.g., reservoir 
geometry, heterogeneity) and user supplied options (e.g., timestep control, flash calculations). 
Challenges associated with the parallelization of reservoir simulation applications have been 
extensively discussed in several papers, among recent ones (DeBaun et al., 2005, Al-Shaalan et al., 
2009; Dogru et al., 2009). Authors of the present paper (Wang et al., 2009) have already performed 
some preliminary investigations to analyze GPU scalability of isolated linear systems arising in black-
oil and compositional simulations. The present work represents updated numerical results and 
algorithm extensions to a currently submitted paper (Li et al., 2010).    
 
In this paper, we propose a many-core GPU implementation for solving large sparse linear systems 
arising in realistic black-oil and compositional flow simulations. The present paper is structured as 
follows. In the following section, we provide a brief description of the GPU architecture to facilitate 
the understanding of the solver implementation.  We then provide a discussion of the solver 
implementation that relies on an efficient implementation of matrix-vector products and construction 
and application of the preconditioner. The discussion is followed by benchmarks illustrating the 
performance of the parallel solver and its impact on accelerating simulations on the well known 
SPE10 and three field cases. These benchmarks are established using state-of-the-art CPU and GPU 
technology. We conclude the present work with some highlighting remarks and future lines of effort.  
Henceforth, we will be referring to multicore architecture of CPU as just “CPU” and the many-core 
GPU as “GPU” unless stated otherwise. 
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2. The GPU/CUDA Many-core Paradigm 
 
The GPU architecture is based on a highly multithreaded SIMD paradigm. More specifically, the 
same program called kernel, is running on GPU cores that is executed by each GPU thread with 
different data. The CPU launches the sequence of kernels to allow the computationally intensive 
operations to be executed in the GPU.  
 

SM
EM

SM
EM

SM
EM

SM
EM

Global MemoryGlobal Memory

CPUCPU

GPU

PCIe

SM
EM

SM
EM

SM
EM

SM
EM

SM
EM

SM
EM

SM
EM

Global MemoryGlobal Memory

CPUCPU

GPU

PCIe

 

Figure 1. GPU hardware overview. 

 
Figure 1 illustrates the basic GPU architecture and its connection with the CPU. The CUDA 
programming model provides the level of abstraction required to be able to handle hierarchy of 
threads, memory and synchronization instructions.  
 
The Tesla 20-series GPU, also commercially codenamed Fermi (Tesla C2050) that was used in our 
numerical experiments, contains 14 streaming multiprocessors, each with 32 scalar processors (for a 
total of 448 computing cores), 32K 32-bit registers, and 48 KB of shared memory and global memory 
up to 6GB.  Global memory accesses for the 20-seriers family of Tesla GPUs are cached. There is an 
L1 cache for each multiprocessor and an L2 cache shared by all multiprocessors. This allows 
accelerating algorithms such as the sparse matrix-vector-products that are characterized by indirect 
and irregular data accesses. Each multiprocessor is capable of handling 1536 threads, so the total 
number of threads that can handle the GPU is 14x1536=21,504 threads. To manage this large 
population of threads efficiently, the threads are organized in thread blocks in groups of 32 called 
warps. Consequently, threads within a thread block can communicate via shared memory, or use 
shared memory as a user-managed cache since shared memory latency is two orders of magnitude 
lower than that of the global memory. A barrier primitive is provided so that all threads in a thread 
block can synchronize their execution. 
 
The stream processors are fully capable of executing integer and double precision floating point 
arithmetic. These processors have access to global device memory. Memory latency is hidden by 
executing thousands of threads concurrently. Register and shared memory resources are partitioned 
among the currently executing threads. There are two major differences between CPU and GPU 
threads. First, the GPU threads are lightweight and non-persistent compared to CPU threads. Second, 
while CPUs execute efficiently when the number of threads per core is small (often one or two), 
GPUs achieve high performance when thousands of threads execute concurrently.  
 
The connection between CPU memory and GPU memory is established through a fast PCI express-
16X point-to-point link. In general this memory transfer is marginal when the GPU computing time 
governs most of the overall computing time (Wang et al. 2009). Further technical information on both 
GPU architecture and CUDA are available in (Lindholm et al., 2008; Nickolls et al., 2008). 
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3. General Description of the Many-core GPU Solver  
 
Our GPU solver implementation relies on a flexible variant of GMRES, namely FGMRES (Saad 
2003). The FGMRES solver allows for using variable preconditioning in each of the iterations and 
can handle nested type of solutions in a more stable fashion. The implementation relies on CUBLAS 
library (Deschizeaux et al., 2008) kernel calls, a specific adaptation of a set of array operations to 
carry out Krylov basis orthogonalization, sparse matrix-vector products (Spmv) operations and the 
preconditioner construction and application. CUBLAS is a highly optimized BLAS library for GPUs 
specially written in CUDA.  
 
In terms of the implementation, the Spmv and preconditioner are the tasks responsible for dictating 
the overall complexity in each of the solver iterations and its computational efficiency is critical for 
achieving high overall solver performance on the GPU. Additionally, sparsity of the matrix generally 
induces irregular memory access patterns.  Hence mapping the number of threads to optimally reduce 
memory overhead is essential in our CUDA implementation.  
 
3.1 GPU Sparse Matrix-Vector Product Kernel 
 
We use the compress storage row (CSR) to represent the matrix system (Saad, 2003). That is, a 
floating point array is used to store all the non-zeros; one integer array contains the column index of 
each non-zero and another integer array contains pointers of the starting position of each row. 
 
A straightforward parallel implementation can be achieved by partitioning the matrix by rows and 
distribute them among different thread blocks. However, this type of partitioning may induce poorly 
coalesced transactions since each thread will be fetching data in shared memory. On the other hand, if 
locations being accessed are sufficiently close to each other, more thread operations can be coalesced 
by hardware to achieve greater memory efficiency.  
 
A better implementation is to assign half-warp (16 consecutive threads) per row.  That is, the first half 
warp works on row one, second half warp works on row two and so forth. Since all threads within a 
half warp access nonzero elements of a given row the chance of coalescing should be much higher. 
Higher performance can be actually achieved if, in addition, these nonzero elements are accessed 
consecutively in memory.  Since each row is multiplied by a vector to get an entry in the output 
vector, the operation reduces to perform a parallel dot product. Since the input vector is read-only, the 
best strategy is to place this vector in the texture memory and access it by texture fetching. Upon 
completion of the set of parallel dot products, partial results in shared memory can be summed via a 
fan-in scheme (Bell and Garland, 2009; Baskaran and Bordawekar, 2009; Buatois et al., 2009).  
 
Based on our experiments, the performance of the second implementation is much higher than the 
first one for matrices in which the number of non-zeros per row is large. However, for matrices which 
have a small number of non-zeros per row, the performance of the first implementation is close to the 
second one. For some cases, it can even outperform the second implementation.  
 
A more robust implementation of Spmv kernels is to use the JAD (JAgged Diagonal) format. The 
Spmv kernel in this format is observed to provide high performance for matrices with high or low 
number of nonzeros per row. The only overhead incurred in using this format is to permute matrix 
rows according to the number of non-zeros of each row. The JAD format and the implementation of 
matrix-vector product in this format are discussed in detail in (Saad, 2003). 
 
3.2 GPU Preconditioner Implementation 
  
We consider a suite of different block preconditioners on the GPU. Our primary intention is to 
evaluate their suitability to exploit maximum performance on the GPU and eventually decide smart 
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strategies to select them according to the simulation problem. This last aspect will be discussed in 
near future works.  
 
The use of block strategies such as block Jacobi allows for assigning each set of block coefficients to 
a thread block. We consider the following preconditioning approaches: (a) BILU(k). i.e., BILU with a 
level of fill-in according to k, (b) BILUT, i.e., BILU with threshold that basically stands for a BILU 
with both a fill-in and drop tolerance strategy and, (c) multicoloring SSOR (MC-SSOR), that is based 
on a greedy reordering strategy to compute the minimum number of colours possible from the matrix 
connectivity graph. The latter approach is nothing else than a generalization of the red-black colouring 
used to generate inexpensive Schur complement formulations associated to the problem. As in the 
case of the Smpv algorithm, the number of threads per coefficient block is approximately given by the 
size of the problem divided by the number of colours times the number of thread blocks. Additionally, 
a sparsification strategy is applied to discard small entries during the graph colouring process. In the 
application phase of the preconditioner, a few block SSOR sweeps is performed to reduce residuals at 
each FGMRES iteration.  Further technical details about the implementation of these preconditioners 
are available elsewhere (Li and Saad, 2010; Li et al., 2010). 
 
Given the SIMD paradigm in the GPU, both the setup and application phases of each of the 
aforementioned preconditioners lead to local solutions without any (BILU variants) or marginal (in 
the case of multicolour SSOR) data dependency. The global solution is obtained by adding 
contributions from each local linear system. Despite the high parallelism, the quality of the 
preconditioner deteriorates as the number of blocks increases. This deterioration reflects to an 
increasing number of iterations.  For a wide range of problems it is challenging to determine the 
optimal number of GPU threads required to achieve maximum parallelism while maintaining the 
effectiveness of the preconditioner. We found that by running a few short inspectional runs with 
different number of threads were useful to estimate an optimal number to deliver the best possible 
performance. For reservoir cases consisting of around 500,000 gridblocks, a value of 512 thread 
blocks was close to the optimal number.  
 
In order to achieve maximum parallel efficiency in the suite of BILU preconditioners, it is 
fundamental to reduce irregular memory accesses and balance the load of computational work among 
processors. In the context of graphs, the goal is to simultaneously minimize the distance between 
nodes (matrix entries) and the number of edge cuts upon assigning nodes to different processors. 
Seeking optimal partitioning and reordering of variables to achieve maximum parallel performance 
has been actually subject of intensive research (Saad, 2003; Shuttleworth et al., 2009).   
 
Among several reliable graph partitioning software, we use METIS to generate a balance partitioning 
of tasks among processors (Karypis and Kumar, 1998). To minimize matrix bandwidth and, therefore, 
the degree of fill-in in BILU type of implementations, we rely on the Reverse Cuthill-McKee (RCM) 
algorithm (George and Liu, 1981). For large problems, the cost of using both algorithms may be 
considerable high relative to the solution process. However, since linear systems are generally solved 
hundreds of thousand of times during the span of the simulation, this cost can be effectively 
amortized. Generally, both METIS and RCM are required to be used a small fractional number of 
times with respect to the total number of timesteps in the whole simulation. We have implemented 
simple indicators to automatically perform a fresh METIS or RCM reordering after long intervals of 
simulation.  In order to be able to perform partitioning or reordering of a given linear system at any 
timestep, we only require storing an index permutation vector.   
 
METIS partitioning generates denser diagonal blocks of similar size with respect to the original 
matrix. If additionally RCM reordering is applied before METIS, then a more compact banded local 
system will be obtained in each block. Note that the use of both partitioning and reordering operations 
increases the chances to move more entries inside each diagonal block but, on the other hand, this 
may negatively affect the original degree of diagonal dominance and thereby negatively impact the 
solver scalability. We have developed a set of automatic criteria to select the use of RCM when 
impacts positively in the linear solver convergence.  
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4. Numerical Experiments 
 
We consider 4 different simulation cases in our performance study. These cases include an oil-water 
case given by the SPE10 synthetic case (Christie and Blunt, 2001) and 3 field cases: a black-oil case 
(Case A) and 2 compositional cases (Cases B and C) involving 5 and 8 components, respectively. All 
cases are run using the IMPES option with implicit well treatment, so the benchmarks are based on 
the solution of the pressure system.  Succinct description of these cases is summarized in Table 1.  
The four cases yield linear systems that vary significantly in size, sparsity and conditioning. As the 
number of mass balance equations increases, we observe that the fraction of the solver responsible for 
the total CPU time decreases. In the case of compositional simulation (cases B and C) a fraction of 
about 20% is spent in the thermodynamics of the phase behaviour calculation.   
 
 Table 1. Benchmark cases. 

Case Size Model 
type 

% 
Solver

N. 
wells 

N. 
Timesteps 

Most relevant 
characteristics 

SPE10 60x220x85 Oil-water 90% 5 1423 
(50 days) Highly heterogeneous 

A 140x230x44 Black-Oil 81% 83 2524 
(34 years) 

Waterflooding, highly 
heterogeneous 

B 128x155x19 5 comp. 75% 445 19429 
(35 years) 

Highly faulted, water 
injection 

C 257x228x21 8 comp. 72% 124 1641 
(5 years) 

Highly 
compartmentalized 

 
We first focus our attention on comparing the performance of the FGMRES iterative solver using 
BILU(0), BILUT and MC-SSOR on  a single core CPU  and on the GPU. The fill-in and drop 
threshold for BILUT were set 30 and 1.D-4, respectively. The number of SSOR iterations was set to 
2. These preconditioners can be considered the main work-horse options in any reservoir simulator 
solver available today. In all cases to be shown, the FGMRES solver was assumed to converge when a 
relative residual less or equal to 10-4 was achieved. 
 
We hardware specifications are the following:  
 

• Dual Intel Nehalem (Intel Xeon X5570, 2.93 Ghz, 8MB L3 Cache), 16GB RAM 
• NVIDIA Tesla C2050 (installed with Intel Intel Nehalem X5570),  448 cores, 3.22 GB RAM 
 

The Intel Nehalem family architecture is considered the fastest multicore CPU available nowadays. 
All runs are carried out on Linux. Our in-house simulator was compiled using the –O2 option and 
linked with the GPU Solver already compiled as a form of a library. The resulting object code was run 
it on the two hardware platforms mentioned above. Since we are mainly concerned with maintaining 
accuracy in real field simulations, we restrict our analysis to a double precision version of the GPU 
solver library. Hence, the compiler option for the C interface to CUDA was set to –arch sm_20 in 
order to enable the double precision option and global memory cache. 

        
Tables 2, 3 and 4 shows the solver performance using the BILU(0), BILUT and MC-SSOR 
preconditioners on the GPU for isolated systems obtained from the 4 cases considered.  The BILU set 
of preconditioners rely on METIS partitioning. We are omitting the RCM reordering since it did not 
show a major influence in the  CPU timings for the cases considered. We can note that the BILUT 
becomes more effective than BILU(0) as the problems sizes increases. The MC-SSOR strategy 
outperforms these two BILU strategies in all cases. Most the gain here is due to the inexpensive 
construction of the preconditioner for the MC-SSOR. In each case, we can observe that the CPU 
Spmv operation is practically negligible compared to the application of the preconditioner.   
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The left side of Figure 2 compares the performance of the GPU-based solver using the BILU(0) 
preconditioner relative to the CPU-based solver using the ILU preconditioner upon completion of the 
simulation.  The right side of Figure 2 shows the relative simulation performance using these two 
solvers. Note that the solver time represents a fraction of the whole simulation (see column 4 on Table 
1). The GPU BILU(0) solver shows a gain factor of approximately 3x with respect to Intel Nehalem. 
It is worth to mention that the GPU BILU solver is weaker than the ILU sequential implementation as 
the iterative solver generally takes more iterations. Nevertheless, GPU solver is still able to 
outperform, since thousands of GPU threads are exploited in each of the FGMRES iterations.  
 
 
Table 2. Comparative performance assessment using the GPU BILU(0) solver. 

Cases Prec Prec. 
Setup (s) 

Prec.  
Appl. (s) 

Matvec 
(s) 

Remainder 
(s) 

Total 
(s) 

METIS 
(s) 

N. 
Iterations 

SPE10 BILU(0) 1.06 3.54 0.35 0.58 5.53 1.32 168 
A BILU(0) 0.25 0.58 0.06 0.30 1.19 1.03 58 
B BILU(0) 0.08 0.23 0.03 0.09 0.43 0.20 55 
C BILU(0) 0.08 0.08 0.01 0.02 0.19 0.14 22 

      

Table 3. Comparative performance assessment using the GPU BILUT solver. 

Cases Prec Prec. 
Setup (s) 

Prec.  
Appl. (s) 

Matvec 
(s) 

Remainder 
(s) 

Total 
(s) 

METIS 
(s) 

N. 
Iterations 

SPE10 BILUT 1.06 2.88 0.27 0.56 4.77 1.32 120 
A BILUT 0.82 0.75 0.06 0.33 1.96 1.03 58 
B BILUT 0.28 0.50 0.03 0.10 0.91 0.20 51 
C BILUT 0.27 0.11 0.01 0.03 0.42 0.14 19 

 

Table 4. Comparative performance assessment using the GPU CS-SSOR(2) solver. 

Cases Prec Prec. 
Setup (s) 

Prec.  
Appl. (s) 

Matvec 
(s) 

Remainder 
(s) 

Total 
(s) 

N. 
Iterations 

SPE10 MC-SSOR 0.02 1.88 0.16 0.77 2.83 91 
A MC-SSOR 0.02 0.81 0.06 0.26 1.15 59 
B MC-SSOR 0.01 0.22 0.03 0.09 0.35 50 
C MC-SSOR 0.01 0.13 0.02 0.05 0.21 34 

 
 
The results shown at the right side of Figure 2 are a immediate consequence of Amdahl’s Law when a 
fraction of the original code is only parallelized, namely, the performance improvement PI is given by 
PI=1/(s + p), where s represents the sequential fraction and p represents the parallel fraction of the 
simulation code. For instance,  the solver component of Case C represents 72% of the total time and 
the GPU solver is about 2.8 times faster than the CPU Intel Nehalem, thus the expected performance 
improvement in the simulation is approximately given by PI = 1/(.28 + .72/2.8) ~ 1.8x. This can be 
seen clearly reflected in the right side of Figure 2.  

5. Conclusions and Future Work 

We have evaluated the current capabilities that many-core GPU on a set of realistic black-oil and 
compositional reservoir scenarios.  Despite that the study focused only on the solver component of the 
simulator and that there is still room for further improvements in the proposed implementation, the 
results provide clear indication of the enormous potential that many-core GPU can offer in near future 
simulation studies.   
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We observed that with a moderate effort in the solver kernel, the GPU can outperform by almost ~3x 
the serial implementation on the Intel Nehalem. This improvement resulted in a noticeable 
improvement in the simulation of field cases, in the order of 1.8x-2.4x.  This gain seems to be more 
significant as the problem size increases and more regular computations are fitted into the SIMD 
paradigm entailed by GPUs.  Potential for achieving higher simulation performance seems to be more 
promising using MC-SSOR rather than block ILU type of approaches. Further attention will be 
devoted to analyze the interplay of the MC-SSOR preconditioner upon sparsification and other 
reordering strategies. Additional performance can be particularly exploited in cell-wise type of 
computations such as those involved in physical properties, phase behavior and other vector 
computations related to the solution process.   
 

     
Figure 2. Relative performance for the solver (left) and full simulation (right) on the CPU and GPU. 

 
Despite that the results on GPU look comparatively impressive with respect to the serial 
implementation on a state-of-the-art multicore CPU platform, the current factor of 3x may not be 
enough to outperform highly scalable parallel algorithms on multicore CPU. However, from our 
perspective, the advance in many-core hardware technology has the potential to surpass the current 
capabilities of the multicore CPU technology for SIMT type of tasks. We have observed tremendous 
benefit exploiting dense and particular sparse BLAS operations (such as our current Spmv 
implementation) in our performance studies.  
 
Having the GPU as a specialized accelerator device attached to the multicore CPU, there are clear 
opportunities to develop hybrid algorithms that can exploit different levels of parallel granularity in 
both of the architectures to effectively handle multiple simultaneous tasks (e.g., multistage 
preconditioning, upscaling, well allocation factor computations, reduced order model generation). We 
believe that as the parallelism implied by many-core technology becomes more widely accepted, large 
and complex scale simulations will be part of day-to-day desktop computations.  
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