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Abstract—This paper proposes to learn a discriminative dictio-
nary for saliency detection. In addition to the conventional sparse
coding mechanism that learns a representational dictionary of
natural images for saliency prediction, this work uses supervised
information from eye tracking experiments in training to enhance
the discriminative power of the learned dictionary. Furthermore,
we explicitly model saliency at multi-scale by formulating it as a
multi-class problem, and a label consistency term is incorporated
into the framework to encourage class (salient vs. non-salient) and
scale consistency in the learned sparse codes. K-SVD is employed
as the central computational module to efficiently obtain the opti-
mal solution. Experiments demonstrate the superior performance
of the proposed algorithm compared with the state-of-the-art in
saliency prediction.

Keywords—Saliency, Visual Attention, Supervised Sparse Cod-
ing, Dictionary Learning, K-SVD

I. INTRODUCTION

Humans and other primates shift their gaze to allocate
resources to the most relevant part of the visual world. This
ability allows them to process the input data and react in real-
time, and has evolutionary significance. In the computational
domain, the same problem of information overload exists, and
becomes the bottleneck of many artificial systems. Computa-
tional saliency models that predict important locations of a
visual input have straightforward applications to a variety of
real-world tasks such as target detection, video compression,
and so on.

Over the years, a large body of computational saliency
models have been proposed [1–11], most of which base
themselves on low-level image features like color, intensity
and orientation. A common limitation of these models is that
they ignore higher-level semantic information of objects that
also plays an important role - many times more important than
low-level information - in directing gazes. The importance of
high-level information in attention has been shown by several
recent physiological [12, 13] and psychophysical [14, 15]
experiments. The failure to encode high-level information in
many existing models makes them perform less satisfactorily
than the biological counterparts, especially in complex and

semantically meaningful scenes. This has been referred to as
the “semantic gap”, a long-lasting problem in the saliency
literature.

In this paper, we aim to encode object-level semantics
with supervised sparse coding, and reconstruct the sparse
representations of an image into a saliency map. By collecting
and utilizing positive and negative samples, it leverages human
eye tracking data and constructs a dictionary with higher
discriminative power. Furthermore, to encourage the class
(salient vs. non-salient) and scale consistency of the learned
codes, a label consistency term is explicitly incorporated in the
proposed framework.

The contribution of the paper can be summarized as
follows:

• First, we propose a novel algorithm of supervised
dictionary learning with sparsity constraint to leverage
eye tracking data for saliency prediction. As humans
attend to semantic objects more than other regions,
the algorithm automatically learns codes that repre-
sent semantically rich objects therefore bridging the
“semantic gap”.

• Second, we explicitly model saliency prediction as
a multi-class classification problem with two classes
(salient and non-salient) and multiple scales. A label
consistency term is used in the framework to enforce
the consistency of the learned codes in the same class
or scale in a principled manner.

• Third, besides the conventional center-surround based
low-level features that have been proven to be effective
in saliency prediction, we also use the Histograms
of Oriented Gradients (HOG) that is widely used
for object detection. By measuring patch statistics,
it works complementarily with the center-surround
features. More importantly, the effectiveness of HOG
in object detection indicates its capability in encoding
object-based saliency.

The proposed model has been compared with the state-
of-the-art methods, especially those incorporating object de-
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Fig. 1. An overview of the proposed saliency model. In the training phase, center-surround and HOG features are first extracted from a Gaussian pyramid
of each training image. Then, from the ground-truth saliency map generated with human fixations, salient and non-salient image patches are sampled, whose
features are later fed into a sparse coding algorithm to jointly learn a discriminative dictionary with basis functions as well as the classification weights. In the
testing phase, the dictionary and weights are used to generate multi-scale saliency maps of a test image. These maps are finally normalized and super-linearly
combined into the final saliency map.

tectors, over three public available eye tracking datasets. Our
model achieves promising results without introducing any
specific object detectors.

II. RELATED WORKS

A. Visual Saliency

Among the large body of saliency models, some of them
are neutrally plausible, e.g., follow a structure rooted in the
Feature Integration Theory (FIT) [16]. Back to the 1980s,
Koch and Ullman [17] first proposed a computational saliency
framework based on FIT, which Itti et al. [1] later implement-
ed. Briefly, the model computes the center-surround feature
maps in each of several low-level channels including color,
intensity and orientation. These feature maps are then summed
across multiple scales and normalized to yield a “conspicuity
map” for each channel. Finally all the conspicuity maps are
combined into a master saliency map by a linear or nonlinear
integration to represent the probability that attention would be
attracted by each image pixel. Along this line, a number of
computational models [2–7] have been proposed.

Based mostly on low-level features, various computational
algorithms were developed to infer saliency of different feature
channels. Following a Bayesian framework, Zhang et al. [8]
proposed the Saliency Using Natural statistics (SUN) model,
which considered not only the features in a local neighborhood,
but also the rarity of a feature compared to the global statis-
tics of the current image. Harel et al. [9] proposed another
probabilistic model called the Graph-Based Visual Saliency
(GBVS). By constructing a grid graph over the image, the low-
level feature maps are combined using a Markov chain based
approach. The Attention based on Information Maximization
(AIM) model was proposed by Bruce and Tsotsos [10], which
was based on the information maximization theory. It samples
RGB colors from image patches, and estimates a probability
density function by maximizing the information that a region
conveys relative to its surroundings. Recently, Hou et al.
[11] proposed an image signature approach to detect spatially
sparse foreground regions from complex background, using
the inverse Discrete Cosine Transform (DCT) transform of the
signs in the cosine spectrum.

To fill the “semantic gap” between computational saliency
models and human performance, specifically-trained object
detectors have been incorporated into saliency models. For
example, faces have been shown to attract attention indepen-
dent of tasks, and several recent models [18–20] combined
face detection as a separate visual cue with traditional low-
level features to improve saliency detection. Furthermore, Judd
et al. [21] proposed a support vector machine (SVM) based
learning approach to linearly combine face, pedestrian and car
detectors with low- and mid-level features. To some extent, the
integration of multiple object detectors increases the prediction
performance, yet it is barely possible to scale such algorithms
to the large number of object categories in real life. To
approach this challenge, this paper leverages human data with
supervised sparse coding and a set of features to effectively
represent low-level as well as object-level information. The
saliency maps learned directly from the human data are there-
fore capable of encoding semantic objects that are not limited
to any specific categories.

B. Sparse Coding

Sparse coding has been effectively used in a variety of
tasks in computer vision, such as face recognition [22], object
detection [23], and has recently been applied to saliency
prediction. Hou and Zhang [24] proposed the Incremental
Coding Length (ICL) to measure the respective entropy gain of
sparse features. By selecting features with large coding length
increments, it achieves attention selectivity in both dynamic
and static scenes. Borji and Itti [25] proposed a saliency
framework that projects image patches to the feature space
of a dictionary learned with sparse coding and measures local
and global patch rarities in the feature space to detect salient
image regions. In Guo and Chen’s work [26], two dictionaries
- one from low-level image features and another from eye
fixations - are jointly learned. They use dense SIFT as local
features combined with global color and orientation probability
to represent image patches sampled around fixation locations.
The sparse coefficients of an image are applied to the fixation
dictionary to reconstruct a saliency map. These efforts focus
either on measuring the low-level statistics of natural images(as
background) thus differentiating foreground from the modelled



background, or trying to represent common features shared by
the salient image regions. In this paper, we aim to integrate
these two approaches by learning sparse object representations
from both salient and non-salient regions, which allows us to
build a discriminative model for saliency prediction.

III. LEARNING A DISCRIMINATIVE DICTIONARY FOR

SALIENCY PREDICTION

This work provides a general framework for saliency
prediction. In particular, we aim to learn out semantic object
information to fill the “semantic gap”. Two distinctions from
conventional object detection methods are that: a) salient
objects detected by the proposed method are not restricted to a
certain number of interested categories, and b) instead of using
pre-defined image sets with object labels, the training data
are sampled from images viewed by human subjects. Figure 1
shows an overview of the proposed saliency framework.

A. Feature Extraction and Sampling

Center-Surround Features. Following the conventional
saliency model by Itti et al.[1], an input image is first sub-
sampled into a Gaussian pyramid of S scales from 1/1 (scale
0) to 1/256 (scale 8). At each scale, the image is decom-
posed into seven feature channels, including the Red/Green
(CRG) and Blue/Yellow (CBY ) color contrast channels, the
Intensity (I) channel, and four local Orientation (Oθ, θ ∈
{0◦, 45◦, 90◦, 135◦}) channels computed using Gabor filters.
For each of these channels, center-surround feature maps are
computed by subtracting every center pixel at a fine scale
c ∈ {3, 4, 5, 6} by the corresponding surround pixel at a
coarse scale s = c + δ with δ ∈ {2, 3}, yielding 8 center-
surround maps in total. Finally the computed center-surround
maps are normalized with operator N (·). The local center-
surround contrast between the center scale c and the surround
scale s can be computed as:

Ll(c, s) = N (|Fl(c)�Fl(s)|) (1)

where Fl(t) represents the raw feature map of channel l ∈
{CRG, CBY , I, O0◦ , O45◦ , O90◦ , O135◦} at scale t, and the
operator � denotes the pixel-by-pixel subtraction between the
center and surround maps.

HOG Features. HOG features have been widely used in
object detection [27], for its ability to capture object tex-
ture and contour information against noises or environmental
changes. To encode image statistics as a complementary cue
to the pixel-level center-surround features, locally normalized
HOG representation with both contrast-sensitive and contrast-
insensitive orientation bins is incorporated. We follow the
construction in [28] to define a 31-dimensional dense repre-
sentation of an image at each particular scale. For example,
generating HOG features at scale c+3 can be done by dividing
the image at scale c into 8×8 non-overlapping cells. For each
cell, a histogram of 9 gradient orientations over the pixels is
constructed and then normalized with respect to the gradient
energy in a 2× 2 neighborhood around it.

In our approach, a dictionary of image features is learned
from both salient and non-salient image patches. First, a
ground-truth saliency map of an image is derived from human
eye tracking data. Particularly, to construct a fixation map

from eye tracking data, each fixation location is represented
as a white pixel (and non-fixated locations as black ones),
and the fixation map is then blurred with a Gaussian kernel
to generate the ground-truth saliency map. The intensities of
the blurred saliency map indicate the fixation density at each
particular image pixel. Second, to sample the salient patches
for dictionary learning, we randomly extract p pixels from the
top 30% salient regions and q pixels from the bottom 30%
salient regions in the ground-truth saliency map. For every
selected image pixel, we extract its r×r neighborhood in each
scale and combine the center-surround and HOG features into
a feature vector. Therefore, p positive samples and q negative
samples are extracted at each scale.

B. Dictionary Learning with Class and Scale Consistency

Sparse coding has found support in the biological domain
– sparsity is not only the response property of neurons in
area V1, but also that of areas deeper in the cortical hierarchy
[29]. To encode higher-level information of salient and non-
salient image patches, we propose a sparse coding approach
that uses a sparse linear combination of low-level features
for an efficient representation of image features in relation
to saliency. Basically, the learned dictionary contains repre-
sentative features as basis functions to linearly reconstruct the
training image patches with minimum error. Mathematically,
let Z = [z1, · · · , zi, · · · , zM ] ∈ RN×M be a set of N -
dimensional image features extracted from labelled salient or
non-salient image patches, and we aim to obtain discriminative
sparse codes X = [x1, · · · , xi, · · · , xM ] ∈ RK×M with a
dictionary D = [d1, · · · , dk, · · · , dK ] ∈ RN×K . The objective
of this dictionary learning problem can be formulated as:

< D,X > = argmin
D,X

‖Z −DX‖2F s.t.∀i, ‖xi‖0 ≤ T (2)

where the ‖ · ‖F denotes the Frobenius norm and the term
‖Z−DX‖2F represents the reconstruction error. T is a sparsity
constraint factor that stands for the maximum number of non-
zero entries in each sparse code xi. Saliency prediction is
casted as a multi-class classification problem, where each class
corresponds to a class label (i.e., salient or non-salient) and
a scale, and we in this work follow the label consistent K-
SVD (LC-KSVD) approach proposed by Jiang et al. [31],
to learn a set of discriminative sparse codes and a linear
classifier simultaneously for saliency prediction. Specifically,
this is done by adding two regularization terms to Equation 2.
One term enforces the discrimination capabilities for salient
versus non-salient image patches at different scales, which
encourages the input data sampled from the same class (salient
or non-salient) and the same scale to have very similar sparse
representations. The other is a classification error term, which
allows the learned sparse codes to be predictive with a linear
classifier. Accordingly, the objective of the saliency prediction
problem can be formulated as follows:

< D,A,X,w > = arg min
D,A,X,w

‖Z −DX‖2F
+α‖U −AX‖2F + β‖vT − wTX‖22 s.t.∀i, ‖xi‖0 ≤ T

(3)

The three terms ‖Z−DX‖2F , ‖U−AX‖2F , and ‖vT −wTX‖22
represent the reconstruction error, the discriminative sparse-
code error, and the linear classification error respectively. The
coefficients α and β control the relative contributions of the
corresponding terms.



Here the matrix U = [u1, · · · , ui, · · · , uM ] ∈ {0, 1}K×M

are the discriminative sparse codes of input Z for classification.
Each column ui is a ‘discriminative’ sparse code correspond-
ing to an input sample zi. A ∈ RK×K is a linear transforma-
tion matrix that transforms the original sparse codes in X to
be most discriminative. To explain this in the saliency context,
assume the input data Z = (Z1

0 , · · · , ZS
0 , Z

1
1 , · · · , ZS

1 ) is a
set of image features sampled at s scales, where Zs

0 and
Zs
1 , s = 1 . . . S respectively represent non-salient and salient

sub-matrices of Z at scale s. The matrix U can be defined as:

U ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U1
0 0 0 0 0 0

0
. . . 0 0 0 0

0 0 US
0 0 0 0

0 0 0 U1
1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 US
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where Us
l , l ∈ {0, 1}, s = 1 . . . S are all matrices of ones.

Thus, the term ‖U − AX‖2F enforces that the sparse codes
X can approximate the discriminative sparse codes U with a
linear transformation A.

In the classification error term ‖vT − wTX‖22, w =
[w1, · · · , wk, · · · , wK ]T ∈ RK is the classification weight-
s to reconstruct the ground-truth saliency labels v =
[v1, · · · , vi, · · · , vM ]T ∈ [0 · · · 1]M with the sparse repre-
sentations X . Note that instead of using binary labels for
classification, vi represents the ground-truth saliency value of
the i-th input sample, which is the central intensity of the
image patch in the ground-truth saliency map.

To find the optimal solution for all parameters simultane-

ously, Equation 3 can be rewritten as:

< D,A,X,w >= arg min
D,A,X,w

‖
⎛
⎝

Z√
αU√
βvT

⎞
⎠−

⎛
⎝

D√
αA√
βwT

⎞
⎠X‖2F s.t.∀i, ‖xi‖0 ≤ T

(5)

By letting Z ′ = (ZT ,
√
αUT ,

√
βv)T and D′ =

(DT ,
√
αAT ,

√
βw)T ), Equation 5 can be formulated as

< D′, X >= arg min
D′,X

‖Z ′ −D′X‖2F s.t.∀i, ‖xi‖0 ≤ T

(6)

As a generalization of data clustering, the above dictionary
learning problem can be efficiently solved by the K-SVD
algorithm [32].

Figure 2 shows a visualization of HOG features in the
dictionary learned from the FIFA dataset [18] that contains
images of faces. The dictionary is divided into 8 blocks, each
with 100 bases representing salient or non-salient patches at
one of the four scales. The patch size is 7×7. As illustrated, our
algorithm is able to extract salient object-level image features
like eyes and noses (scale 3), faces and heads (scale 4, 5) and
upper-body postures (scale 6). It is worth noting that quite a
few learned non-salient features are long contours, junctions,
corners and textures, where regions corresponding to them are
easily misclassified as salient regions using conventional low-
level feature based saliency models.

C. Saliency Prediction

The obtained dictionary D = {d1, · · · dk, · · · dK}, trans-
form parameters A = {a1, · · · ak, · · · aK} and classification

Fig. 2. The example of HOG features (inverted into image patches using the iHOG toolbox [30]) in the learned basis functions from the FIFA dataset [18].



weights w = {w1, · · ·wk, · · ·wK}T in the above supervised
training phase can be used to predict the saliency map of a
new image. Note that D, A and w cannot be directly used
for testing since they are jointly normalized in D′ in the
LC-KSVD algorithm, i.e. ∀k, ‖dTk ,

√
αaTk ,

√
βwk)

T ‖2 = 1.
Instead, given a test feature vector z, the sparse codes x and
the predicted saliency value v can be computed as follows:

x = argmin
x

‖z − D̂x‖22 s.t.‖x‖0 ≤ T (7)

v = exp ŵTx (8)

where D̂ and ŵ are denoted as:

D̂ = { d1
‖d1‖2 , · · ·

dk
‖dk‖2 , · · ·

dK
‖dK‖2 }

ŵ = { w1

‖d1‖2 , · · ·
wk

‖dk‖2 , · · ·
wK

‖dK‖2 }
(9)

For each scale of the features, we use a sliding window
approach to compute the saliency value of every pixel to
generate a saliency map. The saliency maps at all scales are
then normalized and combined to generate the master saliency
map. Empirically, we find that using a super linear combination
instead of linearly summing up across all scales leads to better
prediction performance and visualization results.

Algorithm 1 summarizes the proposed algorithm.

Algorithm 1 Learning a Discriminative Dictionary to Predict
Saliency

// Training stage:
Input: A set of training images and corresponding eye
fixations collected from human subjects viewing the images;
Output: Dictionary D, classification weights w;
1) Convolve a Gaussian kernel with the fixation map to
generate a ground-truth saliency map for each image
(Sec. III-A);
2) Compute multi-scale center-surround and HOG features
(Sec. III-A);
3) Extract sample features from salient and non-salient
image patches (Sec. III-A);
4) Learn the dictionary D and weights w by optimizing
Equation 3 with K-SVD (Sec. III-B).

// Test stage:
Input: The dictionary D, classification weights w, a test
image;
Output: Saliency map of the input test image;
1) Compute multi-scale center-surround and HOG features
for the test image (Sec. III-A);
2) At each scale, find a r × r window around each pixel
and extract features for the particular pixel (Sec. III-C);
3) Compute the saliency value at each pixel using the
learned parameters (Sec. III-C);
4) Normalize the multi-scale saliency maps and combine
them into a final saliency map (Sec. III-C).

IV. EXPERIMENTS

This section reports experimental results to validate the
proposed algorithm. Sec. IV-A introduces three datasets used
in this work for comparative experiments. Sec. IV-B discusses
metrics to evaluate the algorithms, and Sec. IV-C presents
quantitative comparison results of the proposed work and state-
of-the-art counterparts.

A. Datasets

The following three eye tracking datasets are used in this
work, all of which contain a large number of objects:

The MIT dataset [21] contains 1003 landscape and por-
trait images collected from Flickr and LabelMe [33]. Image
contents include indoor and outdoor environments and a wide
variety of object categories like humans, animals, cars, text,
etc. This dataset contains eye fixation data from 15 subjects
free-viewing each of the images for 3 seconds..

The FIFA dataset [18] contains 181 colored natural images.
The images contain faces in various poses, sizes, and positions,
as well as text, cellphones, cars, fruits and toys, etc. Eye-
tracking data were collected from 8 subjects with a 2 second
free-viewing task.

The NUSEF dataset [34] contains scenes and objects with
strong emotions. It contains 758 natural images, and each
image was viewed by 25 subjects for 5 seconds.

All images in each dataset were randomly divided into a
training set with 80% images and a test set with 20% images,
for training and evaluation purposes respectively.

B. Evaluation Metrics

In the saliency literature, there are several widely used
criteria to quantitatively evaluate the performance of saliency
models by comparing the saliency prediction with eye move-
ment data. One of the most common evaluation metrics is the
area under the receiver operator characteristic (ROC) curve (i.e.
AUC) [35]. A problem with this metric is that it is significantly
affected by the center bias effect [36], so the shuffled AUC
was then introduced [8] to address this problem. Particularly,
to calculate the shuffled AUC, negative samples are selected
from human fixational locations from all images in a dataset
(except the test image), instead of uniformly sampling from
all image locations.

In addition, the Normalized Scanpath Saliency (NSS) [37]
and the Correlation Coefficient (CC) [38] are also used to mea-
sure the statistical relationship between the saliency prediction
and the ground truth. NSS is defined as the average saliency
value at the fixation locations in the normalized predicted
saliency map which has zero mean and unit standard deviation,
while the CC measures the linear correlation between the
saliency map and the ground-truth map. The three measures
are complementary and provide a more objective evaluation of
the various models.

C. Performance Evaluation

We evaluate the performance of the proposed model, as
well as six state-of-the-art saliency models that are public
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Fig. 3. Quantitative comparison of models. The prediction accuracy is
measured with the shuffled AUC, NSS and CC scores. The bar values indicate
the mean performance on 10 randomly chosen training and test sets. Error bars
indicate the standard error of the mean.

available. Two of them are bottom-up models combined with
object detectors (i.e. MIT [21] and GBVS+VJ [18], while
the others are purely bottom-up models, including Itti et al.’s
model implemented by Harel [39], the AIM [10], the SUN [8]
and the Image Signature [11]. Both the MIT saliency model
and ours are learning based, so the same training and test image
sets are used in these two models. For all the three datasets, the
dictionary size of the proposed model is 800. Two important
parameters in the proposed saliency model are the coefficients
α and β that determine the contributions of the label consistent
regularization term and the classification error term in the
K-SVD optimization. We noticed that the impacts of the
parameters more or less depend on the dataset, largely due to
the different semantic natures of these datasets. For example,
the MIT dataset contains a wider variety of object categories
as well as larger regions of low-level contrasts, while the FIFA
dataset contains only a few semantically categorized objects,
among which most are visually similar. In our experiments,
we exhaustively tested the model performance with different
α and β, and empirically set the parameters with the best
performance for each dataset. Finally, it has been suggested
that smoothing the final saliency map could increase the
prediction performance [11]. Hence, for a fair comparison,
all the saliency maps of each model are smoothed with the
Gaussian kernel which leads to its best performance.

Figure 3 illustrates the comparative results. The proposed
model generally outperforms other models over the three
datasets. Although an unfair comparison, our model, without

an explicit incorporation of any specifically-trained object
detectors, performs better than those with object detectors.
In fact, it learns out object related codes automatically and
the learned object (parts) are not restricted to any pre-defined
categories and scale well to the large number of categories in
real life. It is worth noting that, the more object categories, the
more data are needed to train an effective model. As shown
in Figure 3 , our model performs significantly better on the
FIFA dataset in which eye gazes are consistently drawn by
only a few categories of object (mostly the faces), while in
the MIT and NUSEF datasets that have a larger variety of
object categories, performance would be further boosted with
a larger amount of training data.

Figure 4 shows a qualitative comparison between our
model and the state-of-the-art. As illustrated, by learning
object-level codes from eye fixation data, the advantages of
our model are twofold. First, positive samples from where
most eye fixations occur are effectively used to detect the most
salient objects. Learning to detect salient objects directly from
eye tracking data makes our model more scalable than those
explicitly adding object detectors. As seen in Figure 4, for
example, not only human faces (rows 1, 2, 3, 5), but other
objects like animal faces (rows 4, 9), text (rows 5, 8), or
even salient objects in low-contrast image regions (row 10)
can also be detected. Second, the negative samples from the
background include considerable amount of regions with long
edges, junctions, corners and textures, thus the proposed model
effectively removes edge effects that lead to false saliency
detection (rows 4, 6, 7, 10). We believe these advantages are
mainly contributed by the incorporation of higher-level sparse
representations, as well as the class and scale consistency of
the proposed learning algorithm.

V. CONCLUSION

This paper presents a saliency model that uses supervised s-
parse coding to learn saliency maps from eye fixations. Object-
level statistics are represented by combining HOG feature
with local center-surround maps, and object-level semantics are
automatically learned to effectively fill the “semantic gap” in
saliency prediction. Experimental results on different datasets
with various metrics consistently demonstrate that the proposed
model outperforms the leading saliency algorithms, some of
which explicitly incorporate object detectors.
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