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a b s t r a c t

Humans and other primates shift their gaze to allocate processing resources to a subset

of the visual input. Understanding and emulating the way that human observers free-

view a natural scene has both scientific and economic impact. It has therefore attracted

the attention from researchers in a wide range of science and engineering disciplines.

With the ever increasing computational power, machine learning has become a popular

tool to mine human data in the exploration of how people direct their gaze when

inspecting a visual scene. This paper reviews recent advances in learning saliency-based

visual attention and discusses several key issues in this topic.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Besides understanding the mechanism that drives this
selection of interesting parts in the image, predicting
interesting locations as well as locations where people
are likely to look has many real-world applications.
Computational models can be applied to various compu-
ter vision tasks such as navigational assistance, robot
control, surveillance systems, object detection and recog-
nition, and scene understanding. Such predictions also
find applications in other areas including advertising
design, image and video compression, pictorial database
querying, and gaze animation.

In the past decade, a large body of computational
models [33,57,54,81,18,13,49,10,47] have been proposed
to predict gaze allocation, some of which were inspired by
neural mechanisms.

Broadly, a saliency detection approach includes the
following components:
ll rights reserved.
(1) Extract visual features: Commonly used features
include contrast [62], edge content [2], intensity bispectra
[40], color [35], and symmetry [60], as well as higher-
level ones such as faces and text [9]. Image processing
techniques (e.g., [69,68]) could be applied to enhance or
transform low-level image features, while higher-level
ones are generally more invariant.

(2) Compute individual feature maps to quantify saliency
in that particular feature dimension: This step uses biologi-
cally plausible filters such as Gabor or Difference of Gaussian
filters, or more sophisticated methods. For example, Itti and
Baldi [31] hypothesize that the information-theoretical con-
cept of spatio-temporal surprise is central to saliency, and
compute saliency using Bayesian statistics. Gao et al. [23] and
Mahadevan and Vasconcelos [47] quantify saliency based on
a discriminant center-surround hypothesis. Raj et al. [61]
derive an entropy minimization algorithm to select fixations.
Seo and Milanfar [66] compute saliency using a ‘‘self-resem-
blance’’ measure, where each pixel of the saliency map
indicates the statistical likelihood of saliency of a feature
matrix given its surrounding feature matrices. Bruce and
Tsotsos [4] present a model based on ‘‘self-information’’ after
independent component analysis (ICA) decomposition [28]
that is in line with the sparseness of the response of cortical
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cells to visual input [17]. Wang et al. [82] calculate the site
entropy rate to quantify saliency also based on ICA decom-
position. Avraham and Lindenbaum [1] use a stochastic
model to estimate the probability that an image part is of
interest. In Harel et al. [25], an activation map within each
feature channel is generated based on graph computations. In
Carbone and Pirri [6], a Bernouli mixture model is proposed
to capture context dependency.

(3) Integrate these maps to generate a final map of a
scalar variable termed saliency: In the saliency literature,
there have been preliminary physiological and psycho-
physical studies in support of ‘‘linear summation’’ (i.e.,
linear integration with equal weights) [75,52,55,14],
‘‘max’’ [44,39], or ‘‘MAP’’ [78] type of integration, where
the former one has been commonly employed in compu-
tational modeling [33,9]. Later, under the linear assump-
tion, Itti and Koch [32] suggest various ways to normalize
the feature maps based on map distributions. Hu et al.
[27] compute feature contributions to saliency using
‘‘composite saliency indicator’’, a measure based on spa-
tial compactness and saliency density.

Unfortunately, this conventional structure requires many
design parameters such as the number and type of features,
the shape and size of the filters, the choice of feature weights
and normalization schemes, and so on. Various assumptions
are often included for modeling. For many years, the choices
of these parameters or assumptions are either ad hoc or are
chosen to mimic biological visual system. In many cases,
however, the biological plausibility is ambiguous. While there
is more to be explored in the understanding of biological
visual system as well as effectively designing biologically
plausible artificial systems, a readily useful computational
solution is to mine human data and ‘‘learn’’ from them in
deciding where people look at in a scene.

By characterizing the underlying distributions, recogniz-
ing complex patterns, and making intelligent decisions,
machine learning provides one of the most powerful sources
of insight into machine intelligence. The understanding of
saliency and visual attention draws inspirations from learn-
ing outcomes from the biological data. Using such an
approach, Zhao and Koch [88] show that observers weight
different early visual features differently when deciding
where to look. Further, feature integration is nonlinear
[89,90]. This raises the question of the extent to which the
primate brain takes advantages of such nonlinear integration
strategies. Future psychophysical and neurophysiological
research are needed to untangle this question. Another
advantage of learning is that it provides a unified framework
for analyzing data and making comparisons under different
conditions (e.g., with different populations, or with different
tasks). For example, in the same framework [88], data
from all participating subjects are used to infer group proper-
ties, while individual data are used to derive individual
characteristics.

There are several challenges particular to learning
saliency-based visual attention using supervised machine
learning techniques:

(a) Obtaining ground truth is labor intensive: as for
many supervised learning applications, obtaining ground
truth data is essential yet usually requires a very large
effort. Examples of such image databases are LableMe
[63], ImageNet [12], and Amazon Mechanic Turk. Learning
where people look at, however, is less straightforward—

eye tracking devices are required to record eye positions
when subjects view the visual input, which greatly limits
the data collection process. There have been recent
advances in gaze and eye modeling and detection (e.g.,
[24,70]), yet large-scale accurate eye tracking experi-
ments are still difficult without customized eye tracking
hardwares. As will be introduced in Section 4, the sizes of
the current datasets are at the order of hundreds images
and tens subjects, much smaller than those for object
detection, categorization, or scene understanding.

(b) Laboratory experimental setup is constrained: under
standard experimental conditions, a strong central bias is
seen, that is, photorgaphers and subjects tend to look at the
center of the image. This is largely due to the experimental
setup [72,87,86,36] and the feature distributions of the image
sets [62,57,73,13,36], as will be detailed in Section 3. In order
to effectively use the data collected in laboratory settings,
compensations for the spatial bias need to be incorporated.
An alternative is to conduct unrestrained eye tracking
experiments with full-field-of-view (e.g., while subjects are
walking) and collect data where limitations of laboratory
settings are avoided [65,11,74].

(c) The problem is loosely defined: unlike typical
computer vision tasks such as image segmentation or
object detection where the goal is clearly specified, for
predicting where people look at, the paradigm is more
ambiguous. Some studies [33,57,59,35,25,83,84] focus on
stimulus-dependent factors while others [51,36,10] argue
that task and subject-dependent influences are no less
important. Further, although it is widely accepted that
saliency depends on context, the unit of information that
is selected by attention – be regular shaped regions
[33,38,88–90], or proto-objects [50], or objects [13] – is
still a controversial topic in the neuroscience community.
Open questions relating to this problem tend to lead to a
mixture of findings in this literature [74]. Thus, it depends
upon the readers to identify relevant design assumptions
and paradigms. For example, if a model is to be built for
predicting gazes in free-viewing, then data collected for
different tasks may not be applicable.

In the following sections, we will be describing recent
advances in learning saliency-based visual attention: Section
2 reviews related methods in saliency detection; Section 3
discusses methods to compensate the spatial bias induced in
laboratory settings; Section 4 introduces public eye tracking
datasets; and Section 5 concludes the paper.

2. Learning saliency-based visual attention

The problem of saliency learning is formulated as a
classification problem [38,36,88–90]. Formally, a mapping
function Gðf Þ : Rd-R (d is the dimension of the feature
vector) is trained using learning algorithms to map a high
dimensional feature vector to a scalar saliency value. To
train the mapping functions, positive and negative sam-
ples are extracted from training images. Particularly, a
positive sample comprises a feature vector at fixated
locations and a label of ‘‘1’’, while a negative sample is a
feature vector at nonfixated (or background) regions
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Fig. 1. Illustration of learning saliency-based attention. (a) Training stage: a saliency predictor (classifier) is trained using samples from training images

in which observers fixated within the scene. The dimension of the feature vector of each sample is usually much higher than 2. We use 2 here for

pedagogical purposes. (b) Testing stage: for a new image, the feature vectors of image locations are calculated and provided to the trained classifier to

obtain saliency scores. The rightmost map is the output of the classifier, where brighter regions denote more salient areas.
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together with a label of ‘‘�1’’. A typical saliency learning
algorithm including a training stage and a testing stage as
illustrated in Fig. 1.

2.1. Feature representation in learning saliency-based

attention

To represent positive and negative samples, Kienzle
et al. [38] directly cut out a square image patch at each
fixated location and concatenate the raw pixel values
inside the patch to form a feature vector. Determining
the size and resolution of the patches is not straightfor-
ward and compromises have to be made between
computational tractability and generality: in their imple-
mentation, the resolution is fixed to 13�13 pixels, lead-
ing to a 169 dimensional feature. The high dimensional
feature vector of an image patch requires a large number
of training samples. Experimental results [38] show a
comparable performance with the conventional saliency
model of Itti et al. [33], although no prior is used in
Kienzle et al. [38].

Given the very large input vectors if using raw image
data, an alternative is to perform a feature extraction step
before learning. Now, positive samples correspond to the
extracted features at a fixated location and negative
samples to extracted features at nonfixated locations.
For example, Judd et al. [36] use ‘‘low-, middle- and
high-level’’ image features, where ‘‘low-level’’ features
include a mixed of hand-crafted or biologically inspired
image features such as local energy of the steerable
pyramid filters [67], RGB values, and so on; ‘‘mid-level’’
feature aims to capture scene context, which is a horizon
line detector from mid-level gist features [53]; and ‘‘high-
level’’ features are semantic ones including a face detector
[79] and a pedestrian detector [16]. In Zhao and Koch
[88–90], simple and biologically plausible features
[33,57,9] are extracted for learning. Although different
from early visual features such as color, intensity, and
orientation, objects such as faces attract gaze in an
automatic and task-independent manner [9], and includ-
ing them fills some of the gaps between the predictive
powers of the current saliency models. The research and
engineering efforts in the computer vision community
concerned with successful face detection algorithms [79]
have made this incorporation feasible in computational
saliency models. Generally, progress in identifying and
incorporating such features for saliency requires efforts
from both the human vision and computer vision com-
munities. Further neurophysiological or psychophysical
experiments are needed to justify features that are in the
stimulus-dependent pathway while building saliency
models including an automatic detection of such features
requires consistent efforts from computational experts.

With extracted features as priors, feature dimensions
are substantially reduced [36,88–90] compared with
training on raw image data, and better performance is
achieved by learning in the lower-dimensional feature
spaces. The tradeoff is design efforts from experts, and
weak features tend to lead to unsuccessful saliency
models. To approach this dilemma, Zhao and Koch
[89,90] propose an AdaBoost based framework for sal-
iency learning which automatically selects from a feature
pool the most informative features that nevertheless have
significant variety. The framework allows an easy incor-
poration of any candidate features and a natural selection
of the best ones in a principled manner. Given the
abundant studies on low-level image-based features,
future explorations on good higher-level features to fill
the semantic gaps of model predictions and human
behaviors would be important.

2.2. Learning saliency-based attention

With training samples (i.e., feature vectors and labels),
the saliency predictor G(f) can be learned using machine
learning techniques.

Ideally any design parameters relating to features,
inferences, and integrations (as described in Section 1)
can be learned from human data, yet the availability of
reliable ground truth data and the computational power
of existing learning algorithms impose practical limits on
the learning process. Kienzle et al. [38] aim to learn a
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completely parameter-free model directly from raw data
using support vector machine (SVM) [5] with Gaussian
radial basis functions (RBF). Unfortunately, the high
dimensional vector concatenated from raw image patch
raises a high demand on the sample numbers. Further,
even if future efforts make the data collection procedure
easier and more samples accessible, the scaling issues and
computational bottlenecks may still prohibit the learning
of all parameters.

Different priors are thus used to make saliency learn-
ing computationally tractable. Besides feature extraction
for dimension reduction [36,88–90], Zhao and Koch [88]
use the linear integration assumption as a prior and learn
saliency using constrained linear regression. The simple
structure makes the learned outcomes applicable to
numerous studies in psychophysics and physiology and
leads to an extremely easy implementation for real-world
applications. Similarly, using a set of pre-defined features,
Judd et al. [36] learn the saliency model with liblinear
SVM [15] which is used to achieve performance no worse
than models with RBF kernels as proposed by Kienzle
et al. [38]. Zhao and Koch [89,90] propose an AdaBoost
[19,64,20,77] based model to approach feature selection,
thresholding, weight assignment, and integration in a
principled, nonlinear learning framework. The AdaBoost
based method combines a series of base classifiers to
model the complex input data. With an ensemble of
sequentially learned models, each base model covers a
different aspect of the dataset [34]. In some of the
methods [36,88–90], parameters of the spatial prior (as
will be discussed in detail in the next section) are also
directly learned from data and integrated into the models
to compensate the bias shown in human data.

Alternative approaches employ learning based saliency
models based on objects rather than image features
[37,45]. To make the object detection step robust and
consistent, pixel neighborhood information is included.
Thus, Khuwuthyakorn et al. [37] extend generic image
descriptors of Itti et al. [33] and Liu et al. [45] to a
neighborhood-based descriptor setting by considering
the interaction of image pixels with neighboring pixels.
In other efforts, conditional random field (CRF) [41] that
encodes interaction of neighboring pixels effectively
detects salient objects in images [45] and videos [46],
although CRF learning and inference are quite slow.

3. Central fixation bias

Under standard testing conditions, a strong central
bias is seen, that is, subjects tend to look at the center
of the image.

Several explanations for this phenomenon have been
suggested. Some attribute the center bias to the drop in
visual system sensitivity in the periphery [57,59] and to a
motor bias in the saccadic system that favors small
amplitude saccades over large amplitude ones [3,58,22].
These two factors, combined with the fact that scene
viewing experiments typically start in the center, result in
a central fixation bias. The experimental setup (users are
placed centrally in front of the screen; [72,87,86,36]) and
the bias toward centering the eyeball within its orbit
reinforce the tendency to look toward the center
[85,21,56,72]. However, Vitu et al. [80] demonstrate that
it is the screen center rather than the straight-head
position – the orbital center – that produces the central
fixation tendency. Many [62,57,73,13,36] assume that the
bias arises from a central bias of image feature distribu-
tions. As human photographers place objects of interest in
the center, it is not surprising that subjects will look at
such centrally placed objects. Lastly, Le Meur et al. [43]
and Tatler [72] suggest that the center of the scene offers
strategic advantages—it is an optimal location for extract-
ing information from the scene and a convenient location
for the efficient exploration of the scene.

One way to better account for the center bias is not to
use nonfixated locations as negative samples but to use
the location of fixated location from randomly shuffled
image locations [73,7,87]. This ensures that both cate-
gories have identical spatial distributions and therefore
the same spatial bias. Hence, the saliency difference
cannot arise from any spatial difference (i.e., the positive
samples are closer to the center [73]). Of course, as
pointed out by Tatler et al. [73] and later by Carmi and
Itti [7], in cases when central image feature distributions
is one cause for central fixation bias, which is true for
most static images, using the above method would under-
estimate the magnitude of saliency effects.

Another popular remedy [57,59,36] to compensate this
bias is to use a single Gaussian or exponential spatial
filter. The Gaussian/exponential type prior is ad hoc but
effective. Recently, Zhao and Koch [88] present a compu-
tational model that takes into account different causes of
center bias including both time-varying and constant
factors, and for the first time models the center bias as a
dynamic process—the model considers the possibility
that the center bias may be stronger early on and then
diminish over time (or vice versa). It has been shown that
the saccade sequence follows a Gaussian process and that
the distribution of fixations is a mixture of Gaussians.
Furthermore, by proving the convergence of the Gaussian
covariance matrix, approximating this time-varying pro-
cess via a single kernel is justified. The Gaussian para-
meters are learned from human data.

4. Public eye tracking datasets

With the growing interests in the neuroscience as well
as computer science communities to understand how
humans and other animals interact with visual scenes
and to build artificial visual models, in recent years,
several eye tracking datasets have been constructed and
made publicly available to facilitate vision research.

An eye tracking dataset includes natural images (or
videos) as the visual stimuli and eye movement data
recorded using eye tracking devices when human subjects
view the stimuli. A typical image set is at the order of
hundreds or a thousand of images. Different from the
conventional laboratory psychophysics/eye tracking
experiments based on synthetic stimuli, natural stimuli
reflect realistic visual input and offer a better platform for
the study of vision and cognition. On the other hand, the
natural stimuli are less controlled thus requiring more
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sophisticated computational techniques for analysis.
Usually tens of subjects are asked to view the stimuli
while locations of their eyes in the image coordinates are
recorded. In some datasets, Matlab codes are also avail-
able for basic operations such as calculating fixations,
visualizing eye traces, and so on.

In learning saliency-based attention, a dataset is
divided into training sets and testing sets, where the
former is used to train the classifier while the latter for
performance assessment. In the following we briefly list
several examples of public datasets—five sets with static
scenes (images) and one with dynamic scenes (videos):

In the FIFA dataset [9], fixation data are collected from
eight subjects performing a 2-s-long free-viewing task on
180 color natural images (281�211). They are asked to
rate, on a scale of 1–10, how interesting each image is.
Scenes are indoor and outdoor still images in color. Most
of the images include faces in various skin colors, age
groups, gender, positions, and sizes.

The second dataset from [4] (referred here as the
Toronto database) contains data from 11 subjects viewing
120 color images of outdoor and indoor scenes. Partici-
pants are given no particular instructions except to
observe the images (321�241), 4 s each. One distinction
between this dataset and that of the FIFA [9] is that a large
portion of images here do not contain particular regions of
interest, while in the FIFA dataset most contain very
salient regions (e.g., faces or salient nonface objects).

The eye tracking dataset from Judd et al. [36] (referred
to as MIT database) includes 1003 images collected from
Flickr and LabelMe. The image set is considered general
due to its relatively large size and the generality of the
image source. Eye movement data are recorded from 15
users who free-view these images (361� 271) for 3 s. A
memory test motivates subjects to pay attention to the
images: they look at 100 images and need to indicate
which ones they have seen before.

The NUS database is recently published by Subramanian
et al. [71]. A big feature of this dataset compared with others
is that the 758 images in the dataset contains a large number
of semantically affective objects/scenes such as expressive
faces, nudes, unpleasant concepts, and interactive actions,
thus providing a good source to study social and emotion
related topics. Images are from Flickr, Photo.net, Google, and
emotion-evoking IAPS [42]. In total, 75 subjects free-view
(261�191) part of the image set for 5 s each (each image is
viewed by an average of 25 subjects).

The last image dataset listed here is the DOVES dataset
[76]. It includes 101 natural grayscale images that are
selected from the Natural Stimuli Collection created by
Hans van Hateren, and cropped at 1024�768 pixels. Eye
movements from 29 human observers as they free-view
the images (171�131) are collected. To discourage obser-
vers from fixating at only one location, and to ensure a
somewhat similar cognitive state across observers, a
simple memory task is also used: following the display
of each image, observers are shown a small image patch
(about 11�11) and asked to indicate whether the image
patch is from the image they just viewed.

Compared with eye tracking datasets with static scenes,
there are much fewer resources on dynamic scenes: the Itti
dataset consists of a body of 520 human eye tracking data
traces obtained while normal, young adult human volunteers
freely watch complex video stimuli (TV programs, outdoors
videos, video games). It comprises eye movement recordings
from eight distinct subjects watching 50 different video clips
(� 25 min of total playtime; [29,30]), and from another eight
subjects watching the same set of video clips after scrambling
them into randomly re-ordered sets of 1–3 s clippets [7,8].

Besides being valuable recourses for saliency research,
the public datasets allow a fair comparison of different
computational models. For example the Toronto dataset
has been used as a benchmark for several recent saliency
algorithms (e.g., [23,87,26]), and we expect that more
comparative works would come out using other datasets
as well. With the different nature and size of the datasets,
researchers can either select specific ones to study parti-
cular problems (e.g., using the FIFA dataset to study face
and the NUS dataset for emotion related topics), or make a
comprehensive comparisons on all the datasets for gen-
eral issues that should not vary across datasets. For
example, Zhao and Koch [88–90] have tested their learn-
ing algorithms on the datasets with color images—the
FIFA, Toronto, MIT, and NUS datasets, and show consistent
conclusions: for the four feature channels of interest, face
is the most important, followed by orientation, color, and
intensity.

The current public datasets all record ‘‘free-viewing’’
eye movements. Thus, they may not generalize to other
tasks, such as search tasks. However, temporal changes in
viewing strategies can be exploited using the data which
typically record eye locations for several seconds. For
example, Zhao and Koch [88] show that saliency
decreases with time, consistent with the findings [48]
that initial fixations are purely driven by stimulus-depen-
dent saliency (such as feature contrast) compared to later
ones. Further, by making comparisons over time [88], it is
found that face attracts attention faster than other visual
features.
5. Summary

This paper reviews several issues relating to learning
saliency-based attention. Unlike the conventional struc-
ture of computational saliency modeling that relies heav-
ily on assumptions and parameters to build the models,
learning based methods apply modern machine learning
techniques to analyze eye movement data and derive
conclusions. Saliency predictors (classifiers) are directly
trained from human data and free domain experts from
efforts in designing the model structure and parameters
that are often ad hoc to some extent. As an important
component in these data-driven approaches, a steady
progress is being made on data collection and sharing in
the community. Access to large datasets and use of
standard similarity measures allow an objective evalua-
tion and comparison of saliency models. Lastly we expect
a tighter coupling of machine learning and saliency
detection, where domain-specific learning techniques
are developed to better utilize the limited, and sometimes
noisy human data to predict where people look at.
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