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Abstract—Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated.
Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism
evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings
to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints.
First, we construct a benchmark dataset of 2520 images with comprehensive human annotated attributes. From statistical modeling
on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical
modeling of human data) and CNN-learned features to predict visual realism of images. Our framework has the following advantages: (1)
it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational
features to latent factors of human image perception.

Index Terms—Visual realism, human psychophysics, statistical modeling, convolutional neural network.
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1 I N T R O D U C T I O N

V I S U A L realism is important for computer graphics (CG)
rendering, image forensics, and photo retouching. Predicting

human perception of visual realism has many applications, such
as CG quality evaluation and immersion level control in virtual
reality entertainment. Currently, researchers assess visual realism
in two ways: automated computational prediction [1], [2], [3], and
subjective human judgment [4], [5], [6], [7], [8].

For automated prediction, reference-based image quality met-
rics (IQMs) such as mean squared error (MSE) [9] and structural
similarity index [10] are used to quantitatively calculate the
distortions induced by global illumination and artifacts given
an ideal reference image [1], [2], [3], [11]. Algorithms built on
IQMs are objective and usually efficient in predicting CG quality,
but they are tuned for certain types of artifacts and thus are not
easily generalizable to new data. Also, in many circumstances,
ideal reference images are unavailable. Furthermore, IQMs are
infrequently evaluated relative to human perception [12].

For subjective human judgment, some researchers have conduct-
ed psychophysics experiments to measure how visually realistic
their rendered images/scenes are judged to be as compared to the
original counterparts [4], [5], [6], [7], [8]. Such evaluation is often
labor-intensive as it requires sufficient numbers of both participants
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and stimuli to substantiate the findings. Furthermore, care is needed
with regards to factors that can introduce subjective biases, such
as experiment environment, image presentation, and participant
characteristics [13].

Thus, for methodologies that utilize human judgment for visual
realism, the key bottleneck is labor cost, whereas automated compu-
tational prediction is typically limited in terms of its dependence on
reference images. Our goal is to understand how humans perceive
visual realism and to employ such understanding in computational
models. To achieve this goal, we create a comprehensive dataset,
i.e., the Visual Realism Dataset, for which each image has an
empirical realism score as well as extensive attributes labels (see
Fig. 1 and Table 1). Based on the dataset, we develop computational
models for realism assessment grounded by image realism ratings,
rather than a model that works by detecting image artifacts. Fig.
2 illustrates the details of our framework. First, we construct our
benchmark dataset with intensive human annotations. We then
analyze the human data with psychometrics and signal detection
theory [14]. The statistical analyses indicate five latent factors
in the human data, which we label “realism”, “naturalness”,
“attraction”, “oddness” and “face”. Based on the correlational
structure for these factors, we compute the relation of realism
perception to other visual perceptual dimensions. We develop
both empirically-based (guided by our empirical modeling of
human data) and unsupervisedly learned features, and then compare
their performance to established state-of-the-art alternatives. The
generalizability of our features and data are further evaluated using
the Washington 3D Scene Dataset [8].

We summarize the main contributions of the work as follows:
1) We establish a new benchmark dataset—the Visual Real-

ism Dataset—for the study of visual realism. The dataset
is composed of diverse CG and photo images, and each image
has both human-labeled visual realism scores and human-
annotated attributes. The benchmark dataset and code are
available to the public for research purposes [15]. Fig. 1
shows example images from our dataset sampled across the
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Fig. 1. Images of different realism levels from the Visual Realism Dataset.
In each row, the two images on the left are computer generated, whereas
the two on the right are photos. The number in parentheses represents
the realism score (the proportion of participants who rated each image
as a photo rather than as CG).

range of realism scores.
2) We develop practical, reference-free computational mod-

els that predict visual realism. We propose empirically-based
features motivated by characteristics of human perception
as it relates to visual realism. We also generate CNN-
learned features by fine-tuning a CNN model on the Visual
Realism Dataset. our experiments demonstrate that both our
empirically-based and CNN-learned features outperform other
state-of-the-art methods. Experiments on another dataset
demonstrate the generalizability of our empirically-based
features and dataset.

3) We introduce a strategy that identifies image attributes
that relate to human perception of visual realism. We use
exploratory factor analysis followed by confirmatory factor
analysis on the human annotated data, resulting in a latent
structure of multi-dimensional human perception of digital
images.

4) We discover that realism perception is affected by observ-
er characteristics. Based on psychophysics analyses using

signal detection theory [14], we find that the “expertise effect”
[16], [17] extends to the realism perception of general scenes.
We report that viewer gender also affects realism perception.

The current research extends our previous work [18] with
fundamental improvements and new contributions. Among the four
contributions summarized above, (4) is entirely new in the current
work. For (1), previously only part of the benchmark dataset was
annotated, but currently the entire dataset has attribute annotations.
For (2), we extend the work beyond our original development
of empirically-based features, and investigate new CNN-learned
features with a CNN-based model. We additionally extend our
experiments to a new dataset to test the generalizability of our
features and data. For (3), our new strategy represents a significant
improvement over our previous method. Whereas the previous
method of greedy feature selection was driven by maximizing
the regression objective function, we now apply exploratory and
confirmatory factor analysis on the entire set of human attributes,
allowing for a broader set of performance tasks, such as regression
and binary classification.

The remainder of the paper is organized as follows. Sec.
2 describes related work. Sec. 3 introduces how we build our
dataset and conduct psychophysics data analyses and empirical
modeling. In Sec. 4 we describe our computational models and
evaluate their performance on the Visual Realism Dataset and
their generalizability on a new dataset, the Washington 3D Scene
Dataset. In Sec. 5 we conclude by highlighting our main findings,
limitations and potential future directions.

2 R E L AT E D W O R K S

Our interdisciplinary research employs methods and findings from
computer vision, computer graphics, and psychology.

2.1 Predicting high-level image attributes
Computer vision researchers often link lower-level image features
with higher-level attributes, such as aesthetics [19], [20], [21], [22],
interestingness [23], memorability [24], visual sentiment [25], [26],
and visual realism [27], [7], [18]. Recently, the resurgence of deep
neural networks has substantially improved the prediction of high-
level image attributes [28], [29], [30], [31], [32]. Although the
resulting computer models perform considerably well in predicting
such attributes, few insights are provided to explain why they
actually work.

Computer graphics researchers have used subjective CG quality
assessment since the early 1980s. One common approach has
been to setup experiments in which participants judge between a
real scene and its CG replica generated with various parameter
settings [33], [7], [8]. Since such tests in effect strive to cause
human observers to believe a CG image they see is real, they
are sometimes referred to as Visual Turing Tests. The main
shortcomings of such tests are that they are labor intensive and
influenced by various factors related to participant cognitive
characteristics, such as expertise and own-race sensitivity [13],
[17]. Findings from our realism judgment study (Sec. 3.2.1) include
insights into the impact of human bias, in particular in the form of
expertise and gender effects, on realism perception.

2.2 Definition and preliminary considerations for im-
age visual realism
Visual realism defined: The concept of visual realism is similar
to CG fidelity, or photo-realism [4], [5], [6] in that it is defined
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Fig. 2. An overview of our framework. First, we created a dataset of both real photos and computer graphics (a). Second, we performed psychophysics
experiments and signal-detection-theory analysis to understand human perception of realism (b). We then performed factor analysis to empirically
model human perception (c). Finally, we designed computer algorithms to predict visual realism (d).

as the degree to which a viewed image “produces the same visual
response as the scene” (page 2, [34]). However, visual realism is
more general than photo-realism in that it covers a larger span
of types of images (photos, computer graphics, matte paintings)
and does not rely on a reference photo/scene on which to compare
renderings.

Image attributes that influence visual realism: Many charac-
teristics influence CG fidelity and image realism [5]. Lighting
and illumination strongly affect CG fidelity [4], [6], and they
are recognized as vital element in CG rendering [35], [36]. The
most important attributes for realism of composite images are
illumination, color, and saturation [27], [7]. Resolution is also
important for realism perception [37]. Several perceptual metrics
have been proposed for evaluating photo retouching [38]. These
findings on CG fidelity and realism provide foundational blocks
for automated realism assessment. The current research focuses
on images that are general in content (e.g. natural scenes, objects)
and source (i.e. camera, physics-based rendering, and image-based
rendering). Thus, our current research explores a wide range of
image attributes on a large and diverse data set.

Human characteristics that influence visual realism: Human
observers are more discerning regarding the realism of same-
race faces [17]. In addition, experts (e.g., CG designers), rela-
tive to laypersons, better utilize shading information than color
information when judging realism of face images [17]. These
findings indicate that image-observer ethnicity similarity and
expertise are important factors for human face realism perception.
Analogous findings have been found in the psychology of human
face perception, referred to as the own-race effect [39], [40], [41],
[42] and the expertise effect [43], [44], [45], [16]. The current
research evaluates how much these effects extend to perception of
visual realism for general images (see Sec.3.2.1).

2.3 Related datasets
A related dataset that we employ for model validation purposes
(see Sec. 4.6) is the Washington 3D Scene Dataset, which consists
of 100 photos and their image-based rendered replicas. The data
consists of, for each photo-and-replica pair, average participant
judgments as to which image appears more realistic [8].

In the context of visual realism research, the CG community
is interested in the visual perception of computer graphics, while
the computer vision community tends to examine classification
accuracy for photos versus their “impostors”, such as CG and

composite images. Such classification is based on image charac-
teristics related to image realism [46], [47], [27], [48]. Several
computer vision benchmark datasets have been created, notably
the Columbia CG and Photo Dataset [49] and the Columbia Image
Splicing Dataset [50]. These datasets are useful for classification
but not realism assessment. This is because they provide only
image-class labels such as CG or photo, intact or spliced, and the
image classes cannot be translated into visual realism. For example,
a CG image may appear very realistic (see Fig. 1).

Lalonde and colleagues provide a composite image dataset
annotated with human judgments of realism, which is composed
only of photos (i.e., no CG renderings) [27]. In contrast, we utilize
a comprehensive dataset that consists of CG images developed with
diverse rendering styles and of photos with various retouching
levels. These images also have human-judged realism scores
associated with them, allowing for quantitative realism assessment
(see Sec. 3).

3 T H E V I S UA L R E A L I S M DATA S E T—
C O N S T R U C T I O N , P S Y C H O P H Y S I C S S T U D I E S
A N D D ATA A N A LY S I S

We created a benchmark dataset (the “Visual Realism Dataset”) for
which we measured the visual realism of each image. This dataset
is an important prerequisite for both empirical and computational
modeling. In this section, we elaborate the methods used in
selecting images, collecting human ground truth, and analyzing
the data to gain deeper insights into human perception of visual
realism.

3.1 Dataset overview

We assembled a set of 2520 diverse images. Images were selected
in pairs of a CG image and a photo that depicted similar scenes.
We considered matte painting images to be CG images in our
database. A matte painting image is composed of a base plate,
which can be a photograph or moving footage, with CG images
or animations superimposed on top of it [51]. We did not include
obvious CG images like cartoons. Furthermore, we excluded images
with apparent artifacts. We also excluded images with unrealistic
scenes, like spaceships flying in a city. All images were scaled
and cropped about their centers to 256 × 256 pixels. Fig. 1 shows
example images. Dataset content is illustrated in Fig. 3. Further
description of image collection can be found in supplementary
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Fig. 3. An overview of statistics regarding (a) realism, (b) lighting, and (c) scene category for the Visual Realism Dataset. In (a), high realism, medium
realism, and low realism indicate realism scores between the ranges of (.67, 1], (.33, .67], [0, .33], respectively.

material. The dataset with all annotations can be downloaded from
our project website [15].

3.2 Psychophysics Study I: realism judgment
The biggest difference between our benchmark dataset and previous
datasets like [49] is that ours contains human perception data. The
data were collected on Amazon Mechanical Turk (MTurk) as a
large-scale psychophysics experiment. Psychophysics Study I is
inspired by computer graphics research in which humans judged
between real scenes and their CG renderings [4], [5], [6].

3.2.1 Experiment procedure
Participants from MTurk reported their subjective perceptions
through a Visual Turing Test. They viewed a web-page which
presented the title, “Real or fake? Distinguish between computer
graphics and real photos”. Participants viewed a sequence of
images. Their task was to judge each image as “CG” or “photo”
then click the corresponding button. In order to explore the
impact of cognitive factors on human perception of visual realism,
they were encouraged to provide some background information,
including their gender and experience related to computer graphics
or image processing (selecting from four options: “layperson”,
“graphic designer or having extensive experience on graphic design”,
“photographer or photographer enthusiast”, or “game player”).

Stringent criteria were used to ensure data validity. We
required our participants to have >95% approval rate and <15%
abandonment rate in MTurk system. Similar to [37], we excluded
participants who responded randomly or without good-faith effort
(e.g., continuously if they pressed the same key on every trial). In
total, the data for 21 participants were excluded, leaving the data
for 1292 participants for inclusion in the analyses. On average,
each image was scored by 31 participants.
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Fig. 4. (a) Distribution of human sensitivity on realism judgment (d′)
across all participants. Higher values of d′ represent higher sensitivity.
d′ values near zero indicate chance performance. (b) Participants with
CG experience (gamers, photographers, graphic designers) have higher
sensitivity than laypersons on realism judgment.

3.2.2 Data analysis
Ground truth realism scores: We define the realism score as
the proportion of participants who judged the image to be a photo
rather than CG. Unsurprisingly, realism scores are higher for photos
(M = .83, SD = .17) than CG images (M = .45, SD = .72),
t(2518) = 42.41, p < .0011. The average image realism score is
.64. Both types of images span the the range of possible realism
scores (see Fig. 1 and 3).

Human sensitivity: To better understand human perception of
visual realism, we analyze participant performance using signal
detection theory [14], a common analysis tool in psychophysics
and biology. It offers a method of modeling the decision making
process for someone who decides whether items are members
of different classes. In signal detection theory, a key metric is
the sensitivity index (d′), which indicates how much separation
there is between the signal and noise distributions, relative to their
variability. That is, the difference between the signal and noise
distribution means is divided by the square root of their average
variance. More formally, under the assumption of normality for
both distributions, with the signal mean and standard deviation
labeled as µS and σS , and the noise mean and standard deviation
as µN and σN , d′ is defined as:

d′ =
µS − µN√
1
2
(σ2

S + σ2
N )

(1)

In our study, we define photo as the signal (class member) and
CG as noise (not class member). We compute an estimate of d′ for
each participant from measurements of the participants’ hit rate
(proportion of photos correctly classified as such) and false-alarm
rate (proportion of CG images incorrectly classified as photos),
calculated as follows:

d′ = Z(hit rate)− Z(false alarm rate) (2)

where function Z(p), p ∈ [0, 1], is the inverse of the cumulative
distribution function for the Gaussian distribution. Thus higher
values of d′ represent higher sensitivity. d′ values near zero indicate
chance performance. Fig. 4 (a) shows the distribution of d′ across
participants. The distribution indicates that participants generally
have a positive d′ (M = 1.20, SD = .63), suggesting that they
discriminate photos from CG images at a higher rate than that
expected by chance. In total, 96.82% of the participants obtain
above-chance performance.

Expertise & gender effects: Our four self-reported participant
expertise categories are: laypersons (432 participants), graphic

1. The result of a t-test is presented as, “t(df) = t-value, p = p-value”. If a p
value is smaller than the conventional significance level threshold of .05, we
reject the null hypothesis of no difference between the means.
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TABLE 1
Image attributes (Attr), related survey items, attribute categories, and their Spearman’s rank correlations (ρ) with ground truth image realism

scores (from Psychophysics Study I). Meaningful and statistically significant correlations (|ρ| > .15, p < .001) are highlighted in bold. Numbers
in parentheses are participants’ mean ratings for each attribute standardized to a scale of 0 to 1.

Attr Survey item Category ρ Attr Survey item Category ρ

a1 Appears to be a photograph? ( .73) Realism .78* a21 Clean scene and objects? ( .83) Layout .07
a2 Familiar with the scene? ( .65) Familiarity .29* a22 Makes you happy? ( .63) Emotions .16*

a3 Familiar with the objects? ( .77) Familiarity .17* a23 Makes you sad? ( .10) Emotions -.04
a4 Unusual or strange? ( .30) Familiarity -.28* a24 Exciting? ( .60) Emotions -.03
a5 Mysterious? ( .34) Familiarity -.26* a25 Lighting effect natural? ( .75) Illumination .47*

a6 Objects appearance natural? ( .76) Familiarity .34* a26 Shadows in the image? ( .58) Illumination -.21*

a7 Object combinations natural? ( .76) Familiarity .22* a27 How sharp are the shadows? ( .43) Illumination -.05
a8 Contain fine details? ( .58) Texture -.02 a28 Contain living objects? ( .38) Semantics .09
a9 Color appearance natural? ( .82) Color .45* a29 Dynamic scene? ( .37) Semantics -.03
a10 Colors go well together? ( .88) Color .20* a30 Is there a storyline? ( .45) Semantics -.17*

a11 Colorful? ( .56) Color .11 a31 Number of unique objects ( .61) Semantics -.05
a12 Image quality ( .70) Quality .08 a32 Total number of objects ( .70) Semantics -.07
a13 Image sharpness ( .72) Quality .13 a33 Number of people ( .48) Human semantics .01
a14 Expert photography? ( .59) Aesthetics .33* a34 Face visible? ( .21) Human semantics .20*

a15 Attractive to you? ( .71) Aesthetics .06 a35 Is the person attractive? ( .15) Human semantics -.13
a16 Close-range or distant-view? ( .64) Layout .01 a36 Making eye contact with viewer? ( .15) Human semantics .14
a17 Have objects of focus? ( .71) Layout .05 a37 Posing for the image? ( .23) Human semantics -.12
a18 Neat space? ( .71) Layout .12 a38 Human activities ( .49) Human semantics .01
a19 Empty space? ( .49) Layout .04 a39 Human expressions ( .41) Human semantics .03
a20 Perspective natural? ( .75) Layout .36* a40 Expression genuine? ( .44) Human semantics .35*

* p < .001 (p-value is corrected based on Bonferroni correction.)

designers (119 participants), photographers / photography enthu-
siasts (216 participants), and game players (525 participants). To
equate the category sizes for comparison purposes, we randomly
select 119 participants from each category (allowing for the largest
common number of participants from each group). We compared
d′ across these expertise categories by applying standard statistical
techniques. We first conducted an omnibus analysis of variance
(ANOVA) and then follow up with Tukey HSD post hoc tests on
d′ to identify significant effects[52].

Participant groups differ on d′, F (3, 472 = 6.61 , p < .0012.
Tukey post hoc tests indicate that gamers and photographers have
significantly higher sensitivity (larger values of d′) than laypersons,
ps < .05. Graphic designers, photographers, and gamers do not
significantly differ on d′ (see Fig. 4 (b)).

Male participants have a higher mean d′ than female partici-
pants, t(373) = 3.76, p < .001, suggesting a gender effect. More
men than women are gamers (367 vs. 156), so to test whether the
gender effect is a byproduct of the gaming effect, we compare the
performance between female game players and male game players,
as well as female laypersons and male laypersons. We randomly
select the same number of participants from each gender (n = 156
from each for the game players, and n = 205 from each for the
laypersons). Male game players have a significantly higher d′ than
female game players, t(309) = 3.53, p < .001. Male laypersons
also have a higher d′ than female laypersons, t(430) = 4.18,
p < .001. These findings suggest that the greater sensitivity on
realism judgments of men compared to women is not a byproduct
of the gaming effect.

These findings indicate that observer characteristics such as
expertise and gender influence visual realism perception on images
of general scenes. This extends previous findings of expertise
effects for face image realism judgments [13], [17].

2. ANOVA results are presented as, “F (dfcondition, dferror) = Fvalue, p = p
value”. If a p value is smaller than the conventional significance level threshold
of .05, we reject the null hypothesis of no difference between the means.

3.3 Psychophysics Study II: attribute annotation

To identify factors related to the human perception of visual realism,
we obtained participant judgments on a wide set of image attributes
in Psychophysics Study II. The design builds on psychology and
neuroscience research on human emotion [53], [54] and human
memory [55], [56].

3.3.1 Experiment procedure

We recruited a separate group of MTurk workers to annotate
the images (see Table 1; the complete questionnaire is in the
supplementary material). We selected the annotation list based
on previous research [4], [6], [57], [13], [24]. Each participant
annotated up to 5 images. As for Study I, we excluded participants
who gave a random response pattern (n = 39), leaving 5762
participants for inclusion in the analyses. We also had images
labeled via LabelMe [58], an online annotation tool (a31−32 in
Table 1).

3.3.2 Data analysis

We investigate the relationship between image attributes and visual
realism. We use Spearman’s rank-order correlations (ρ) and one-
way ANOVAs [52] to assess such relations. The results are shown
in Table. 1 and discussed below.

Realism ratings: Whereas in Psychophysics Study I (see
Sec. 3.2.1) we have participants make a binary decision of whether
each image is a photo or CG, for Psychophysics Study II we
have participants rate the extent to which images appear to be
a photograph versus computer generated (a1, Table. 1) on a
five-point scale (1 = computer generated, 5 = photograph). The
ratings strongly correlate with the human realism scores from
Psychophysics Study I (ρ = .78, p < .001). Since different
participants are in each study, ρ = .78 demonstrates substantial
consistency of human perception of visual realism over both types
of measures. However, it is not a perfect positive correlation,
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indicating perhaps subjectivity of realism perception or method-
related differences. For the following analyses of the relationships
between image attributes and realism, we use the realism score
from the Psychophysics Study II, as the attributes and realism
scores are from the same group of participants.

Familiarity/Naturalness: Various aspects of familiarity for the
images are rated by our participants (a2-a7). We observe small
correlations between the degrees of aspect familiarity and realism
(ρs ≥ .17). This is consistent with previous findings that images in-
volving common objects correspond with memory representations,
causing them to appear more realistic [27], [59].

Color and illumination: Color naturalness (a9) and color combi-
nation (a10) correlate moderately with realism (ρ = .45, and ρ =
.20, respectively), which is consistent with previous findings on
image composites [27], [7]. Naturalness of lighting (a25) has a
moderate correlation with realism (ρ = .47), indicating illumination
is important for realism. This accords with previous research [4],
[6], [13].

Attraction: The extent to which an image appears to be the work
of an expert photographer (a14), an aesthetics attribute which can
be labeled as image attraction, moderately correlate with realism
(ρ = .33). The correlation is negative (ρ = −.21) for images with
realism scores greater than .7. This means that highly realistic
images do not appear to originate from expert photography, which
is consistent with prior research on human skin rendering [60] that
found maximal attractiveness and extreme realism were opposing
perceptions. Despite the somewhat non-linear relationship between
aesthetics and realism, subsequent analyses use linear regression
for simplicity and consistency with the analyses used for the other
attributes.

Objects: Object count and unique object count (a31−32) are
uncorrelated with realism (|ρ|s ≤ .07). We further perform one-
way ANOVAs to test the effect of scene category and object
type (for detailed scene categories see Fig. 3). There are effects
of both scene category and object type, Fs(12, 2507) > 4.81 ,
ps < .05. Interestingly, face visibility and expression genuineness
both positively correlate with realism (ρs ≥ .20).

3.4 Empirical modeling
To investigate what major perceptual factors are related to visual
realism, we conducted an exploratory factor analysis (EFA) on
the variables listed in Table 1, followed by a confirmatory factor
analysis (CFA) [61]. With EFA, the aim is to identify latent
constructs in terms of linear combinations of the measured variables.
A CFA conducted following an EFA tests the fit of the attributes
identified by the EFA [61]. Attributes with poor fits, or loadings,
are eliminated. The resulting latent factors contributing to visual
realism, along with their correlations, are shown in Fig. 5.

We apply two common indices to measure the fit of the model
to the data. The first is the Comparative Fit Index (CFI), which
compares a chi-square for the fit of a target model to the chi-square
for the fit of an independence model, i.e., one in which the variables
are uncorrelated. Higher CFIs indicate better model fit. Values
that approach .90 indicate acceptable fit [61]. Another model fit
metric is Root Mean Square Error of Approximation (RMSEA),
which estimates the amount of error of approximation per model
degree of freedom and takes sample size into account. Smaller
RMSEA values suggest better model fit. A value of .10 or less

is indicative of acceptable model fit [61]. Our CFA model has
acceptable fit, CFI = .93, RMSEA = .095.

As shown in Fig. 5, the statistical analyses indicate five
latent factors in the human data, which we label “visual realism”,
“naturalness”, “attraction”, “oddness” and “face”. Note that in Fig.
5, “visual realism” refers to a latent factor and “realism annotation”
refers to the human annotation of realism, which in turn loads on
the visual realism factor.

We note that the positive correlation of the face factor with
the visual realism factor is unsurprising. The Visual Realism
Dataset includes only realistic face images and excludes obviously
CG images like cartoons (see Sec. 3.1). Note, however, that a
similar percentage of photos and CG images (7.46% and 7.86%,
respectively) include visible faces, so the correlation does not
reflect a confound wherein faces occur more often in photos
than CG images. Indeed, another dataset with less realistic faces
(e.g., cartoon) might produce a negative correlation between face
visibility and realism.

The correlational structure of latent factors identified four
visual-perceptual dimensions that correlated with the visual realism
factor. This inspired us to identify computational measures analo-
gous to those four latent factors (i.e., “naturalness”, “attraction”,
“oddness” and “face”) to use as predictors in the empirically-based
modeling (see Sec. 4).

Naturalness

Visual

Realism_annotation

realism

Fig. 5. Results of exploratory and confirmatory factor analysis on Visual
Realism Dataset. The correlation coefficients between four latent factors
(“naturalness”, “attraction”, “oddness” and “face”) and “visual realism” are
highlighted in bold.

4 C O M P U TAT I O N A L M O D E L I N G

In this section, we first describe our empirically-based models: we
construct empirically-based features that encode human perceptual
factors relating to visual realism; we then use these features to
train two types of classifiers for realism assessment: Support Vector
Machine (SVM) [62] and Multi-layer Perceptron (MLP) [63], [64].
We additionally train and develop convolutional neural network
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(CNN) models. We compare their performance with other state-
of-the-art methods on the Visual Realism Dataset. We also test
the generalizability of our features on a new dataset—Washington
3D Scene Dataset. The implementations for feature computation
as well as the MLP and CNN models for both classification and
regression are available on our project website [15].

4.1 Empirically-based model

In this subsection, we introduce our empirically-based model,
which is motivated from our human studies. We first introduce the
design of image features that encode human perception. We then
test the features on two different types of classifiers: SVM and
MLP.

4.1.1 Empirically-based features
Here we propose features that computationally capture the key
factors that related to realism perception: naturalness, attraction,
oddness and face. Two steps are performed: (i) exploration of
various feature measurement strategies to capture each factor for
visual realism, and (ii) combining these features in an optimal
way. The results of these two steps are a combined computational
feature set that automatically capture the perceptual factors related
to visual realism of images. The details on feature computation can
be found in the supplementary material.

Naturalness: We measure naturalness in four ways. First, we
measure image similarity through content-based image retrieval. We
use 10, 000 images from the SIMPLIcity dataset as a predetermined
anchor database of images with common scenes and objects [65].
We then compute the image similarity by using color, illumination
and texture information [66], and perform a robust content-based
matching with the anchor database. The familiarity measure is
denoted by the distances of the top 50 matches. Second, as
suggested by [27] and [59], an image may look more realistic
if its coloring coheres with memory representations. Therefore,
we include color compatibility as a measure for color naturalness.
We further compute color name features learned from real-world
images [67] to better represent daily color compositions. Finally,
we model naturalness by computing image statistics derived from
the local patch (3×3) structures and image power spectrum [68].

Attraction: Attraction is closely related to an image’s aesthetics.
We apply Ke’s method for extracting aesthetics features, which
incorporates image properties such as values in HSV space, edges
distributions, blur, and contrast [19]. We also use local self-
similarity geometric patterns (SSIM) to represent content symmetry,
which is often utilized as a measure of aesthetics [69]. We densely
sample the SSIM descriptors with a grid spacing of 4 and learned
a dictionary of size 100. We use 2-level spatial pyramid pooling on
the descriptors.

Oddness: We model oddness by applying the Local Outlier Factor
(LOF) algorithm (see [70]) to global image descriptors, a method
described in [23]. In anomaly detection, the LOF is an algorithm for
finding anomalous data points in a feature space by measuring, for
a given data point, the local deviation with respect to its neighbors.
We employ a 10-distance neighborhood and three types of features
for anomaly detection: the raw RGB pixel values, GIST descriptors
[71], and Spatial Pyramids on SIFT histograms [72]. Intuitively,
GIST summarizes the rough description of the spatial layout [71]
while SIFT is a powerful local feature descriptor [72]. By applying

LOF, we are able to identify images with unusual descriptor values,
which usually correspond to images with unusual spatial layout or
texture patterns [73], [23].

Face: Our empirical modeling demonstrates that the presence of
human faces is an important factor for visual realism. Therefore
we also include a face detector [74], [75]. We extract two types of
face features: number of faces in an image, and the relative average
size of the faces in the image.

4.1.2 Experimental settings
We test our empirically-based features on two different classifiers.
First, we input the features above into a Support Vector Machine
(SVM) [62] (referred to as “EF-SVM”, EF represents Empirically-
based Features). Kernel summation is used to fuse the features for
a balance of performance and efficiency [76]. We use grid search
to select cost, RBF kernel parameter γ, and ε hyperparameters.

To test if the performance is affected by the type of classifiers,
we further use our features to train a Multi-layer Perceptron
(MLP) (referred to as “EF-MLP”). Similar to CNN, MLP is a
feedforward neural network with one or more layers between
input and output layer, trained with the backpropagation learning
algorithm [63], [64]. Our MLP model is developed using Keras
with a Tensorflow backend. We concatenate our features to form
a 15256-dimensional vector as input. The MLP structure contains
two fully connected layers, which include 2048 and 256 neurons,
respectively. The MLP’s hidden layers are ReLU activated. The
dropout rate is 0.5 and a softmax classifier is present in the output
layer. Binary cross entropy is used as the loss function. The whole
training includes 300 epochs with stochastic gradient descent. We
use a batch size of 256 for each epoch. The learning rate is set
to 0.001. A momentum of 0.9 and a weight decay of 10−7 are
used. In each epoch, the network is validated against the validation
set of about 500 images to monitor convergence and overfitting.
We stop learning when the objective function does not improve on
the validation set. We train the network in a single NVIDIA GTX
Titan X GPU, and it takes approximately 30 minutes to finish the
training.

In both experiments, we randomly split the images from the
Visual Realism Dataset into 80% as a training set and 20% as a test
set. We use a five-fold cross-validation and repeat the validation
five times to determine the result.

4.2 CNN-based model
Recently, CNNs have been increasingly used in high-level image
understanding [29], [28], [22]. Thus we also train a deep convolu-
tional neural network (CNN) model (referred to as “VR-CNN”, VR
represents Visual Realism). The CNN model is trained using Keras
with a Tensorflow backend [79], [80]. We initialize the training
to the pretrained parameters for VGG-19 on ImageNet [81]. The
parameters of the CNN are then learned end-to-end on the training
images with stochastic gradient descent. Limited by the number
of images in the Visual Realism Dataset, we freeze the weights
of layers before the last max pooling layer (pool5). We use a
batch size of 64 for each epoch. A momentum of 0.9 and a weight
decay of 10−7 are used. The learning rate begins at 0.001. The
whole training contains 300 epochs. In each epoch, the network
is validated against the validation set of about 500 images to
monitor the convergence and overfitting. We stop learning when
the objective function does not improve on the validation set. We



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 8

TABLE 2
Experimental results of realism prediction (regression) and image type classification on Visual Realism Dataset. ρ s and

A s are respectively the Spearman’s rank correlation, and area under ROC curve on selected subset of
uniformly-distributed scores, ρ w and A w are those on whole dataset. The results on the first row are from human

annotations, the rest are from computational predictions. The best result from computational features on each evaluation
metric is highlighted in bold.

Category Feature / model Regressor / classifier Regression Classification
ρ s ρ w A s A w

Human Human annotation Human .651 .641 .792 .882

EF-SVM Empirically-based model SVM 4̇3 .53 .72 .79
EF-MLP Empirically-based model MLP .38 .47 .73 .78
VR-CNN CNN-based model Neural network .38 .51 .73 .78

Signal features

Wavelet [46] .16 .20 .56 .63
Geometry feature [48] .31 .47 .64 .74
Camera noise [47] SVM .04 .06 .53 .50

Color compatibility [27] .20 .23 .57 .61

Object/scene features

SIFT [72] .28 .34 .61 .66
GIST [71] .16 .23 .58 .61

HOG2x2 [77] SVM .28 .33 .58 .66
LBP [78] .25 .30 .59 .64

Our CVPR model [18] Empirically-based model SVM .41 .51 .68 .77
1 This result is the split half consistency among participants from Psychophysics Study II.
2 This result is from Psychophysics Study I.

train the network in a single NVIDIA GTX Titan X GPU, and it
takes approximately 3 hours to finish the training. We use five-fold
cross validation to get the performance on all images—for each
time, we randomly selected 80% of the images from the Visual
Realism Dataset as a training set, with the rest 20% as a testing set.
We repeat the validation five times to determine the result.

We evaluate our empirically-based models and CNN-based
model on the Visual Realism Dataset, in terms of their ability to 1)
predict image realism scores, 2) accurately classify images as photo
vs. CG. For 1), we use human realism scores from Psychophysics
Study I as ground truth. For 2), image-type labels (i.e., photo and
CG) are used as ground truth.

4.3 Evaluation methods
To evaluate realism prediction (i.e., regression) performance, we use
the Spearman’s rank correlation coefficient [82], [28]. To evaluate
classification performance, we adopt the criterion of area under the
Receiver Operating Characteristic (ROC) curve [83].

We design two additional measures to evaluate performance.
Realism scores are not uniformly distributed in our dataset, perhaps
in part due to judgment bias in humans (see Sec.3.2.1). To test if the
non-uniformity of the realism score distribution affect prediction
performance, we compose a subset of images purposefully selected
so they had realism scores distributed as uniformly as possible for
both photos and CG images, over the entire realism score range.
We test all computer models on both the whole dataset as well as
the uniform subset.

Our attribute annotation experiment indicates variability in
human visual realism sensitivity (see Fig. 4). We use the non-
parametric sign-test to evaluate how well our predicted results
will t with human realism perception, on each separate image. In
brief, the sign-test checks, for a series of comparisons, whether
the number of positive versus negative values differs from chance
(modeled by a binomial distribution drawn from a population with
no relationship). The null hypothesis is that data in a vector X
come from a continuous distribution with median m. We used the
visual realism scores provided by each of the 10 human judges from
Psychophysics Study II to tune the null model. Values are shuffled

10 times, and each time we pick up one score r and perform
a two-sided sign test against each of the remaining 9 scores, to
test if the 9 scores (X) follow the null distribution with median
r. We then use the computationally predicted score p (computed
from annotated attributes, our models, and from other established
algorithms, for comparison) for the same image, and test if X
follows the distribution with median p. Finally, we calculate the
percentage of images for which the null hypothesis cannot be
rejected. The higher the rate, the better the performance (i.e., less
it deviates from human performance).

Fig. 6. ROC curve of binary image classification of the whole dataset.
Our computer models (EF-SVM, EF-MLP, VR-CNN) outperform other
comparing methods, yet still fall short of human performance.

4.4 Experimental results

The experimental results are shown in Table 2 and Fig. 6-8. We
compare the prediction and classification performance with the
performance based on signal processing features commonly used in
CG and photo classification, which include high-order correlations
of wavelet coefficients [84], physics-motivated geometry structure
[85], camera noise [47], and color compatibility [27]. We further
test some well known object and scene features such as SIFT
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Fig. 7. Evaluation results using sign tests on the Visual Realism Dataset. The vertical axis denotes percentages of images whose regression scores
were within the range of human scores, which means that these are the percentage of images for which we could not reject the null hypothesis
of no difference between humans and predictor. Figures (a)-(e) show results on images with realism score between 0 ∼ 0.2, 0.2 ∼ 0.4, 0.4 ∼ 0.6,
0.6 ∼ 0.8, 0.8 ∼ 1, respectively. Figure (f) shows the results on all images.

ground truth realism

predicted realism

Fig. 8. Example images predicted by our EF-SVM model. The green and
red background colors represent correct and false predictions respectively.
Our model overpredicts realism for images with unusual scenes (e.g., CG
character on the upper left quadrant), whereas it under-predicts realism
for images of common scenes but with unusual illumination (e.g., the
glass reflectance in the lower right image).

[72], GIST [71], HOG2x2 [77], and LBP [78], computed using an
open-source library [86]. Finally, we also compare the regression
and classification performance with our previous CVPR work [18].
The results suggest the followings.

Comparison on overall performance: As shown in Table 2, the
proposed methods (EF-SVM, EF-MLP and VR-CNN) perform
considerably better than other methods for both regression and
classification. EF-SVM performs either comparable (for classifi-
cation) or better (for regression) compared with other proposed
methods (EF-MLP and VR-CNN), possibly due to the fact that
the empirically-based features are carefully designed for encoding
human perception of realism and works well for this particular
task. It may also suggest that the large margin classifier SVM is
more suitable here given the limited sample size. The advantage of
EF-SVM is more prominent in regression than classification. This
might be because for the classification task, we use image types
(i.e., photo and CG) as labels, which could be relatively easily
distinguished using certain low-level and human-indiscernible
features (many of which are provided by the comparing methods),
which apparently diminishes the advantage of our empirically-based
features. Whereas for the regression task, we use human perceptual
realism scores as ground truth. Compared with classifying photo
vs. CG, the regression task of predicting realism scores requires
subtler understanding and descriptions of human perception,
thus benefiting more from the designed features rather than the
automatically learned ones (from VR-CNN) or those from the
other comparing methods. Regarding the camera noise feature
type, there may be higher sensitivity to image compression and
post-processing, accounting for some of its poor classification and
prediction performance. In summary, the high performance of our
empirically-based features demonstrates that understanding human
perception helps create better computational models.

Comparison with our previous CVPR model: Our EF-SVM
outperforms our previous CVPR model on both regression and
classification tasks. This suggests that our new set of features
better represents human perception of realism. This is because
the previous CVPR model is based on greedy feature, whose
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feature selection was driven by maximizing the regression objective
function, whereas we now apply exploratory and confirmatory
factor analysis on the entire set of human attributes, allowing for
a broader set of performance tasks, such as regression and binary
classification.

Whole dataset vs. subset: The performance of most computer
algorithms is generally lower on the subset. The performance drop
is understandable as due to realism scores being more distributed
(making the prediction task more challenging) and a smaller sample
size of images. This suggests that machine learning performance
might be improved by increasing the sample size.

Performance at different realism levels: As shown in Fig. 7,
computer models are better at identifying borderline images, but
when it comes to clearly real images humans do better. This may
be because humans have a higher daily interaction with the real-life
objects and scenes that tend to be captured by realistic looking
photos, leading to a higher rate of classifying such images as real,
whereas computer algorithms do not have such a bias. For images
across all realism ranges, The proposed methods (EF-SVM, EF-
MLP, and VR-CNN) are the best among the computational models
(see Fig. 7 (f)). Their advantage is most obvious in detecting images
of low realism (see Fig. 7 (a)).

Fig. 9. Realism prediction performance (+/−SD) as a function of feature
dimension, increased in an incremental manner for the three components:
attraction (A), naturalness (N), oddness (O) and face (F). Baseline is
obtained by randomly selecting dimensions from our empirically-based
features, CNN-learned features, and geometry features.

4.5 Comparison with baseline

To check that the superior performance of our empirically-based
features is not due only to a combination from diverse methods,
but relies on the structure of the empirical model, we compare
the performance of our combined feature set to that of a baseline
containing the same number of feature dimensions for realism
prediction. We construct a pool of 15,256 dimensional features.
These features consist of the features in the empirically-based
feature set, and the features from exhibited adequate performance
as described in the previous sections: i.e., the CNN feature and
geometry feature. Baseline performance is obtained by randomly
selecting features from the pool.

We aggregate our four components in an incremental manner,
starting from the component with smallest feature dimension, until
reaching the full combination (see Fig. 9). This process is repeated
five times. As shown in Fig. 9, the performance of our feature
set exceeds that of the baseline, and its performance improves

when adding feature dimensions, whereas baseline does not. This
indicates that our feature combination is meaningful.

4.6 Generalization to new dataset
In this subsection we extend our experiments on another dataset—
Washington 3D Scene Dataset [8]. The aim is to test how well
our features and dataset can be generalized for new images. This
includes tests on two aspects: feature generalizability and dataset
generalizability.

The Washington 3D Scene Dataset [8] consists of 100 Flickr
photos—all of outdoor architectures—and their image-based ren-
dered replicas. Each image was resized/rendered to four different
resolutions such that the resultant images were 100, 200, 400,
and 600 pixels in the smaller dimension (see Fig 10 (a,b,d,e)).
Recall that the images in the Visual Realism Dataset are scaled and
cropped about their centers to 256 × 256 pixels. Thus some images
only show a partial scene (e.g. fourth and fifth images in the first
row in Fig. 1). For consistency, we do the same post-processing
on the images from Washington 3D Scene Dataset to form images
with size 256 × 256 (see Fig.10 (c)). Due to the small number
of images (200) in Washington 3D Scene Dataset, it is almost
impossible to train a CNN without overfitting, so we only use the
empirically-based features in the following experiments.

4.6.1 Feature generalizability
First, we compare the performance of our empirically-based feature
set on image type classification for the Washington 3D Scene
Dataset to the performance of human judges. The human judge
classification performance for this dataset is reported in [8]. As
shown in Fig. 11, across the four resolutions, the performance of
our feature set follows the same trend as for human performance:
as resolution decreases, performance decreases. While humans
outperform our model on resolutions of 200 pixels or higher,
our findings suggest that our empirically-based features are
generalizable to the new dataset.

4.6.2 Dataset generalizability
We use the model trained with empirically-based features and the
CNN-based model from the Visual Realism Dataset to predict
the image types in Washington 3D Scene Dataset. We obtain
a classification accuracy of 53.30% for the CNN-based model,
and 54.50% for the model using empirically-based features. This
indicates that training on Visual Realism Dataset alone is not
sufficient for good performance on classifying images in the
Washington 3D Scene Dataset. However, we show below that
the classification performance can be substantially improved by
adding a small number of training images from it into the training
set.

We use Sequential Minimal Optimization (SMO) [87], an
improved training algorithm for SVM that is used by the popular
LIBSVM tool [62]. We iteratively add images from Washington 3D
Scene Dataset to the Visual Realism Dataset to form a series
of training sets. Using each training set, we then predict the
remaining images from Washington 3D Scene Dataset. We also
reverse the procedure to incrementally add images from the Visual
Realism Dataset to Washington 3D Scene Dataset. To keep the
tests comparable, we randomly select 200 images from the Visual
Realism Dataset in the reversed procedure. We repeat five-fold
cross-validation thirty times and compute the average.

As shown in Fig. 12, a strong boost in classification accuracy
on images in the Washington 3D Scene Dataset results by adding
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(a) 100px       (b) 200px                  (c) 256px                                   (d) 400px                                                           (e) 600px

Fig. 10. Test images at different resolutions (a,b,d,e) in the Washington 3D Scene Dataset. For each pair at a given resolution, the reference photo is
on the left, and the rendered image is on the right. The 256-pixel resolution (c) was created by us for the feature generalizability experiment.

its images to the Visual Realism Dataset Base. With 100 images
added (less than 4% of the whole set), the classification accuracy is
improved significantly (73.63% vs. 52.70%). This suggests that our
benchmark dataset provides a good base for generalizable visual
realism perception. Furthermore, the performance of the Visual
Realism Dataset Base increases faster than that on the Washington
3D Scene Dataset Base (refer to the steeper slope of the red
line in Fig. 12). This indicates that, as a base dataset, the Visual
Realism Dataset outperforms the Washington 3D Scene Dataset
in the classification task. This may be due to the high diversity in
the Visual Realism Dataset in terms of both image semantics and
rendering type.
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Image resolution

Fig. 11. Image type classification accuracy (+/−SD) at four resolutions.
Human classification accuracy is from [8], who did not provide variability
information for the human judgments.

4.7 Summary
Using insights from our psychophysics experiments, we develop an
empirically-based feature set for realism prediction on the Visual
Realism Dataset. The proposed methods (EF-SVM, EF-MLP and
VR-CNN) perform considerably better than other methods on
both realism prediction and image type classification, and for both
parametric measures (ROC curve) and non-parametric measures
(Spearman’s rank correlation and sign test).

We test the performance of our empirically-based features on
another independent dataset—the Washington 3D Scene Dataset.
We demonstrate that our empirically-based features are generaliz-
able to the new dataset. We further demonstrate that adding a small
proportion of images from a new dataset to the Visual Realism
Dataset can boost classification performance on the new dataset,
suggesting the generalizability for our benchmark dataset.

Fig. 12. Classification accuracy (+/−SD) with incremental training data
on two datasets. X-axis stands for the number of images added to the
corresponding dataset base from the other dataset. Chance performance
is 50% (base line).

5 C O N C L U S I O N S A N D F U T U R E W O R K

In this paper we propose a comprehensive visual realism dataset
that includes human annotated labels of extensive image attributes.
We perform statistical modeling on human data to identify image
attributes that are most related to visual realism. We develop both
empirically-based and CNN-based models for realism prediction
and image type classification. We demonstrate the generalizability
of our empirically-based features and our benchmark dataset by
testing them on a new dataset.

In comparison to human performance, the model trained with
SVM using our empirically-based features (EF-SVM) over-predicts
realism for images with specific content (e.g., CG character),
whereas it under-predicts realism for images of common scenes but
with extreme illuminations or image quality (see Fig. 8). Future
investigation of model prediction and classification performance on
salient objects [88], [89] and patch distinctness [90] may generate
useful insights for visual realism modeling.

The current research distinguishes itself from other investi-
gations into visual realism modeling by its cross-disciplinary
integration of methods from psychology, computer vision, and
computer graphics. The analysis framework and the resulting find-
ings not only provide unique contributions toward understanding
human visual realism perception, but also has a variety of related
applications, such as image forensics and immersion level control
in virtual reality entertainment.
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