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Abstract—Multi-task learning (MTL) methods have shown promising performance by learning multiple relevant tasks simultaneously,

which exploits to share useful information across relevant tasks. Among various MTL methods, clustered multi-task learning (CMTL)

assumes that all tasks can be clustered into groups and attempts to learn the underlying cluster structure from the training data. In this

paper, we present a new approach for CMTL, called flexible clustered multi-task (FCMTL), in which the cluster structure is learned by

identifying representative tasks. The new approach allows an arbitrary task to be described by multiple representative tasks, effectively

soft-assigning a task to multiple clusters with different weights. Unlike existing counterpart, the proposed approach is more flexible in

that (a) it does not require clusters to be disjoint, (b) tasks within one particular cluster do not have to share information to the same

extent, and (c) the number of clusters is automatically inferred from data. Computationally, the proposed approach is formulated as a

row-sparsity pursuit problem. We validate the proposed FCMTL on both synthetic and real-world data sets, and empirical results

demonstrate that it outperforms many existing MTL methods.

Index Terms—Clustered multi-task learning, representative task, group sparsity

Ç

1 INTRODUCTION

MANY real-world applications involve the learning of
multiple relevant tasks. For example, in fine grained

visual recognition, the task is to recognize many but closely
relevant object categories [48]. Instead of learning them sep-
arately, previous works [1], [3], [21], [26] have shown that
the generalization performance can be improved by learn-
ing them jointly. This idea is called multi-task learning
(MTL) [4], [10], [12], [23], [25], [34], [38], [41], [43], [51], [52],
[58] and it attempts to share useful information across mul-
tiple relevant tasks by exploiting their intrinsic relation-
ships. Multi-task learning has been applied to many areas
including computational biology [28], [33], [35], [62], com-
puter vision [47], [56], natural language processing [1], [40]
and music recommendation [17].

A large number of existing MTL methods assume that all
tasks are relevant and share information to the same extent.
For example, Regularized MTL [21] enforces that the model
parameters of all tasks are similar to each other, and a set of
common features are imposed to share in multi-task feature
learning methods [3], [12], [36]. However, this assumption
is often invalid in many practical problems, and the perfor-
mance of MTL can be significantly degraded due to the neg-
ative transfer among unrelated tasks.

Various methods have been proposed to address the neg-
ative transfer problem. Some works propose to use prior
knowledge on task relationship structure to guide informa-
tion sharing among multiple tasks, for example, with pair-
wise task relationship network [20], [31], tree-guided MTL

[33], and graph-guided MTL [14]. While the above works
make use of prior knowledge on relevant tasks, Romera-
Paredes et al. [42] further exploit prior information on irrele-
vant tasks to improve the performance of target tasks that
are to be learned. The assumption of all methods along this
line, however, is that the task relationships are available as
a priori, which is not always true.

Instead of assuming all tasks to be relevant, clustered
multi-task learning (CMTL) assumes that all tasks can be
clustered into disjoint groups [26]. Compared to Regular-
ized MTL [21] that enforces all tasks to be similar to
each other, the assumption of CMTL is that the model
parameters for tasks in the same group should be close
to each other.

Despite the success of CMTL, there are two major limita-
tions in existing methods: first, the number of clusters needs
to be specified, while it is rarely available in real-world
tasks. Second, CMTL assumes that all tasks can be clustered
into a set of disjoint groups and tasks in the same cluster
share information to the same extent. This assumption,
however, may not be true and such hard-assignment can
lead to either negative transfer (some tasks that are not
strongly relevant are forced to cluster into the same group)
or ineffective sharing across all tasks (some relevant tasks
are clustered into different groups).

Motivated by representatives/exemplars used in dictio-
nary learning and data clustering [18], [19], this work pro-
poses a new approach for clustered multi-task learning. In
this approach, a subset of tasks (called representative tasks)
are identified and used to describe tasks. An arbitrary task
is allowed to be described by multiple representative tasks
for an accurate representation. Since each representative
task establishes one cluster, an arbitrary task in this frame-
work can be assigned to more than one cluster with differ-
ent weights, allowing tasks in the same cluster to share
information to different extents. Furthermore, the number
of clusters is automatically inferred from training data
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instead of manually set. We call the proposed approach flex-
ible clustered multi-task learning (FCMTL).

1.1 Main Idea

The key insight is that representative tasks can effectively
describe all tasks in multi-task learning. Intuitively, if one
task is selected by another task as the representative task, it
means that these two tasks are relevant and information can
be shared between them. Furthermore, those tasks which
select a common representative task can be considered as
clustered into the same group and sharing information with
the same representative task. Therefore, clustering tasks in
multi-task learning can be casted as identifying a set of rep-
resentative tasks where each representative task is consid-
ered as one cluster.

In practice, one task may have multiple representative
tasks since one representative task generally has limited
power in characterizing all important features of an arbitrary
task. Therefore, unlike previous CMTL works, we allow one
task to be clustered into multiple clusters, and with different
weights. The weights determine how much information one
task shareswith each of its representative tasks.

The proposed approach involves identifying representa-
tive tasks and using them to cluster all tasks. Intuitively, the
objective is that a small number of representative tasks can
encode well all tasks thus we formulate it by minimizing
the number of representative tasks with some constraints.
The problem, however, is intractable due to the NP-hard
property of ‘0-norm. Alternatively, we consider optimizing
its convex surrogate and formulating it as a row-sparsity
pursuit problem. We adopt the block coordinate descent
optimization algorithm to solve the optimization problem
in our approach.

1.2 Contributions

In this work, we propose a flexible clustered multi-task
learning approach. The advantages of the new method can
be summarized as: (a) it allows each task to be assigned to
multiple clusters thus it does not require the clusters to be
disjoint, (b) tasks within the same group does not have to
share information to the same extent, and (c) the number of
clusters can be automatically learned instead of set as a pri-
ori. We demonstrated the effectiveness of the proposed
FCMTL on common data sets for MTL research, as well as
for fine grained visual recognition.

The remainder of this paper is organized as follows: we
review related multi-task learning works in Section 2. We
then introduce the proposed Flexible Clustered Multi-Task
Learning and its kernel extension in Section 3. Extensive
experimental results are presented in Section 4, followed by
conclusions and future works in Section 5.

2 RELATED WORK ON MULTI-TASK LEARNING

This section discusses several previous multi-task learning
works that are relevant to the proposed approach and shows
the differences between the proposed approach and them.

Regularized MTL [21] assumes that all tasks are similar
so they can all be clustered into one cluster. To this end, it is
a special case of the proposed FCMTL with all tasks select-
ing only one representative task.

In order to deal with outlier tasks in multi-task learning,
Robust MTL [13] uses a low-rank structure to capture the
relevant tasks and models the outlier tasks by a group spar-
sity structure. There are at least two important differences
between the referred work and the proposed approach:
(a) the referred work aims at identifying irrelevant tasks
from multiple tasks, while our goal is to cluster all tasks
into groups. (b) Although both works include a group spar-
sity regularization, the motivation is totally different. [13]
uses it to model outlier tasks, while the proposed work uses
it to regularize the number of representative tasks in clus-
tered multi-task learning.

CMTL [26] assumes that all tasks are clustered into some
disjoint groups and learns the cluster structure from data.
However, such hard-assignment can lead to either negative
transfer or ineffective sharing across all tasks. In addition,
CMTL limits itself in modeling the exact cluster structure
due to the spectral relaxation used in [26], [61]. Further-
more, compared to CMTL, available prior knowledge can
be easily incorporated into the proposed approach by intro-
ducing additional constraints on the assignment matrix that
describes the assignment of all tasks to representative tasks.
Clustering tasks into disjoint groups has also been exploited
in [30] to improve multi-task feature learning [3]. The task
relatedness in [30] is modeled as learning shared features
among the tasks, while the proposed FCMTL assumes that
the model parameters of relevant tasks are similar. Unlike
CMTL that clusters tasks at the task level, Zhong and Kwok
[60] have investigated how to cluster tasks at the feature
level. Recently, the equivalence relationship between alter-
nating structure optimization [1] and CMTL has also been
studied [61].

Several works [6], [7], [39], [44], [53] have studied multi-
task learning in the context of Gaussian process, which
assumes that the models of different tasks are generated
from a common distribution. In [7], the authors explicitly
model the task relationships via a task covariance matrix in
their formulations. In their work, the final covariance matrix
is a Kronecker product of the task covariance matrix and the
sample variance matrix. As the method needs to calculate
the inverse for the covariance matrix, its computational cost
grows cubically with both the sample size and the task
number, which does not scale well to large-scale problems.
Zhang and Yeung [55] propose a framework to automati-
cally learn task relationships via a regularization formula-
tion, which uses a matrix-variate distribution to model the
model parameters of multiple tasks. In their formulation, a
positive semi-definite constraint is imposed on the task rela-
tionship matrix, which is not sufficiently strong in some
cases, e.g. all tasks follow a cluster structure. Compared to
[55], the proposed approach encourages row-sparsity on the
assignment matrix which is more effective.

3 PROPOSED APPROACH

In this section, we introduce the proposed flexible clustered
multi-task learning (FCMTL) approach. The key insight of
FCMTL is that a subset of tasks in multi-task learning can
be used to represent other tasks due to the similarity among
multiple tasks. We call this subset as representative tasks
and use them as bridges between any two relevant tasks. In
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general, we aim to identify these representative tasks and
use them for clustered multi-task learning.

In the rest of this section, we first describe the concept of
representative tasks and ways to identify them, followed by
the introduction of the FCMTL approach that incorporates
the representative tasks for multi-task learning. We then dis-
cuss how to solve the optimization problem by the block
coordinate descent procedure. We also mention how to
extend the proposed approach to nonlinear kernel functions.

Problem setup. Suppose we are givenm learning tasks, the
ni training samples associated with the ith task are

fðxi
1; y

i
1Þ; . . . ; ðxi

ni
; yiniÞg where xi

j 2 Rd is the input (d is the

feature dimension) and the corresponding output is yij 2 R

for regression problems and yij 2 f�1; 1g for binary classifi-

cation problems. For the ith task, the goal is to learn a linear

function fiðxi
jÞ ¼ wT

i x
i
j þ bi where wi 2 Rd is the model

parameter for the ith task. W ¼ ½w1; . . . ; wm� 2 Rd�m and

b ¼ ½b1; . . . ; bm�T denote the model parameters for all tasks.

3.1 Representative Tasks

Representative tasks are a subset of the givenm tasks. Intui-
tively, a representative task is one that other tasks are rele-
vant to, and can be used to describe or represent other
tasks. Formally, if the rth task is selected by the gth task as a
representative task, it is expected that the model parameters
for the gth task (wg) is similar to those of the rth task (wr). To
describe one task in an accurate way, one representative
task can be insufficient to capture all important characteris-
tics of the task. Furthermore, the similarity between an arbi-
trary task and each one of its representative tasks may be
different as different representative tasks describe different
aspects of the task.

Let Z 2 Rm�m denote the assignment of representative
tasks for all tasks. Specifically, we consider Zik (Zik 2 ½0; 1�)
as the probability that the kth task selects the ith task as its
representative task. If Zik ¼ 0, the ith task will not be the
representative task of the kth task, and if Zik ¼ 1, it denotes
that the ith task will be the only one representative task of
the kth task. Otherwise, the ith task will be one of the repre-
sentative tasks of the kth task when 0 < Zik < 1. To ensure
that the total probability of all tasks selected by one task as
its representative tasks sums up to one, we impose a con-
straint on Z:

Pm
i¼1 Zik ¼ 1.

3.1.1 Identifying Representative Tasks

Since each task is expected to be similar to its representative
task, we determine the representative tasks for each task
according to the distance or dissimilarity of the model
parameters between it and any other tasks. Intuitively, the
goal is to minimize the weighted distance between each task
and its representative tasks. In this work, we define the dis-
tance between two tasks as the square of Euclidean distance
between their model parameters, thus the weighted distance
of the kth task to all its representative tasks is formulated asXm

i¼1
Zik wi � wkk k22: (1)

It is easy to verify that each taskwill select itself as the only
representative task if we straightforwardly minimize (1) with

the mentioned constraint on Z (
Pm

i¼1 Zik ¼ 1). In this setting,
one task cannot benefit from its representative tasks since no
relationship has been established between any two tasks.
This will lead to the conventional single-task learning (STL).

In many real-world problems, tasks are relevant. It is
thus highly desirable to establish relationships for relevant
tasks in a multi-task learning framework, which enables
these relevant tasks to share useful information with each
other. To encourage information sharing, the number of
representative tasks is expected to be small. Consequently,
relevant tasks will select common representative tasks and
establish relationships through their representative tasks.

Formally, we formulate the representative task selection
problem as row-sparsity pursuit on the assignment matrix Z.
Take the ith row in Z for example, if at least one element in
this row is non-zero, it means that the ith task is a representa-
tive task to those tasks indexed by non-zero elements in this
row. Otherwise, no task has selected the ith task as a repre-
sentative task if all elements in the ith row are zero. Hence,
the row-sparsity pursuit aims to minimize the number of
non-zero rows in Z. Following previous works on group
sparsity [27], [54], we use the ‘q-norm of one vector to deter-
mine whether all elements are zero or not. Let Zði; :Þ denote
the ith row inZ, then kZði; :Þkq as the ‘q-norm ofZði; :Þwill be

non-zero except Zði; :Þ ¼ 0 2 Rm. The number of representa-
tive tasks can then be calculated as the number of rows in Z
whose ‘q is non-zero. Let IðxÞ denote the indicator function
whose function value is zero if x ¼ 0 and is one otherwise,
the non-zero rows in Z can be obtained by the ‘0;q-norm ofZ

Zk k0;q ¼
Xm
i¼1
I kZði; :Þkq
� �

:

Overall, the problem of learning representative tasks can
be formulated as

min
Z

�
Xm
i¼1

Xm
k¼1

Zik wi � wkk k22þm Zk k0;q

s:t: 0 � vec Zð Þ � 1mm;Z
T1m ¼ 1m;

(2)

where� denotes componentwise inequality for vector, vecð�Þ
denotes vectorization operator, and 1m is a m-dimensional
vector where all components are one.

3.2 Flexible Clustered Multi-Task Learning

Next, we introduce a new multi-task learning approach by
incorporating the idea of representative tasks into multi-
task learning. Among various multi-task learning methods,
our focus is a new clustered multi-task learning approach.
Specifically, we consider tasks that select a common repre-
sentative task as a group, then all tasks can be clustered into
groups based on their representative tasks. According to the
definition of the representative task, tasks assigned to the
same group have similar model parameters. Formally, we
formulate the proposed approach as follows

min
W;b;Z

LðWÞ þ g

2
kWk2F þ

�

2

Xm
i¼1

Xm
k¼1

Zik wi � wkk k22

þ m

2
Zk k0;q

s:t: 0 � vec Zð Þ � 1mm; Z
T1m ¼ 1m;

(3)
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where LðWÞ is the empirical loss, which is squared loss for
regression problem

LðWÞ ¼
Xm
i¼1

1

ni

Xni
j¼1

wT
i x

i
j þ bi

� �
� yij

� �2
;

and logistic loss for binary classification problem

LðWÞ ¼
Xm
i¼1

1

ni

Xni
j¼1

log 1þ exp �yij wT
i x

i
j þ bi

� �� �� �
:

In (3), the squared Frobenius norm kWk2F ¼ Tr WWT
� �

is
used to control the complexity of each linear model. The
third term is used to enforce the similarity between each
task and their representative tasks, and the last term is to
regularize the number of representative tasks or clusters.
The first constraint expresses that the probability of each
task being assigned to a particular cluster is from 0 to 1, and
the second constraint ensures that the probability of each
task assigned to all clusters sums up to 1.

Previous CMTL methods assume that the number of
clusters is known as a priori, while it is usually unavailable
in practice. In comparison, the proposed approach does not
require the number beforehand and automatically infers it
from training data. Furthermore, compared to previous
CMTL works that assume each task to be assigned to only
one cluster, an arbitrary task in the proposed approach is
allowed to be assigned to multiple clusters with different
weights. This enables each task to share information with its
relevant tasks to the right extent.

The optimization problem in (3) involves the ‘0-norm and
it is intractable due to the NP-hard property of the ‘0-norm.
Following the previous work [54], we relax the ‘0-norm by
its convex proxy ‘1-norm, so the last term becomes the
‘1;q-norm of Z: Zk k1;q¼

Pm
i¼1 kZði; :Þkq. According to [27],

[54], the value of q is typically chosen from f2;1g. If q ¼ 2,
the values of the elements in a row can be different within
the range 0 to 1, while q ¼ 1 encourages the entire row to be
the same value. Obviously, q ¼ 2 is more suitable in the pro-
posed approach, which allows tasks to select representative
taskswith different probabilities. Consequently, the final for-
mulation of the proposed FCMTL is

min
W;b;Z

LðWÞ þ g

2
kWk2F þ

�

2

Xm
i¼1

Xm
k¼1

Zik wi � wkk k22

þ m

2
Zk k1;2

s:t: 0 � vec Zð Þ � 1mm; Z
T1m ¼ 1m:

(4)

3.3 Solving the Optimization Problem

In order to solve the problem in (4), we adopt block coordi-
nate descent method by iteratively updating W, b and Z.
Specifically, when updating W and b with fixed Z, the opti-
mization problem can be written as

min
W;b

LðWÞ þ g

2
kWk2F þ

�

2

Xm
i¼1

Xm
k¼1

Zik wi � wkk k22: (5)

Proposition 1. The optimization problem (5) is convex with
respect toW and b.

Proof. The proof is shown in Appendix A. tu
Problem (5) can be solved by performing gradient

descent on W and b. Here, we apply the accelerated proxi-
mal gradient (APG) method [5], [37] to optimize the prob-
lem. APG has been extensively used to solve machine
learning problems [11], [12], [24], [59], [60], [61] due to the
optimal convergence rate among all first-order methods.

Next, with fixed W and b, the subproblem that mini-
mizes (4) over Z can be written as

min
Z

�

2
Tr DTZ
� �þ m

2
kZk1;2

s:t: 0 � vec Zð Þ � 1mm; Z
T1m ¼ 1m;

(6)

whereD 2 Rm�m withDik ¼ kwi � wkk22.
Solving the optimization problem in (6) can be consid-

ered as identifying representative tasks for all tasks. The fol-
lowing theorem establishes the conditions for (a) each task
selects itself as its only representative task, and (b) only one
representative task is selected for all tasks. Otherwise, mul-
tiple representative tasks will be learned for all tasks.

Theorem 1. In the optimization problem with fixed W and b (6),
let b ¼ m=� andDi denotes the ith row ofD,

k ¼ argmin
i

Di1m; (7)

bmin ¼ min
j

mini6¼jDij �Djj

� �
; (8)

bmax ¼ max
i6¼k

ffiffiffiffiffi
m
p
2

Di �Dkk k22
Di �Dkð Þ1m ; (9)

when b � bmin, the optimal Z of the optimization problem (6)
is an identity matrix, which means each task selects itself as its
only representative task and the method reduces to single-task
learning. When b 	 bmax, all tasks select the kth task as their
only common representative task and the optimal solution is

Z ¼ ek1
T
m, where ek 2 Rm denotes the vector whose elements

are all zero except its kth element which equals to 1.

Proof. The proof is provided in Appendix B. tu
The problem in (6) involves certain constraints and we

adopt the alternating direction method of multipliers
(ADMM) [8] to solve it. In order to use ADMM, we first con-
vert (6) to the following equivalent problem

min
Z

� Tr DTZ
� �þ g Pð Þ þ mkQk1;2

s:t: 0 � vec Zð Þ � 1mm; Z
T1m ¼ 1m

Z ¼ P; P ¼ Q;

(10)

where gðPÞ is the indicator function of convex set
fC ¼ Pj0 � vecðPÞ � 1mmg. Then, the augmented Lagrang-
ian for (10) can be written as

Lr Z;P;Q;C1;C2;C3ð Þ
¼ � Tr DTZ

� �þ g Pð Þ þ mkQk1;2
þ C1;Z� Ph i þ C2;P�Qh i þ C3;Z

T1m � 1m
� �

þ r

2
kZ� Pk2F þ kP�Qk2F þ kZT1m � 1mk22
� �

;

(11)
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where C1 2 Rm�m;C2 2 Rm�m;C3 2 Rm are Lagrange multi-
pliers and r is a positive penalty parameter. Details of the
ADMM procedure for (11) are described in Appendix C.

The entire optimization procedure will be terminated
when the changes of W, b and Z between two consecutive
iterations are all small. Although the algorithm does not
guarantee a global optimum, we found it perform well in
our experiments. We summarize the optimization proce-
dure for FCMTL in Algorithm 1.

In addition, we also show that the proposed FCMTL (4)
can be easily extended to nonlinear kernel functions and the
details are shown in Appendix D.

Algorithm 1. Solving the Optimization Problem in (4)

1: Input: Training data f xi
j; y

i
jjnij¼1

� �
; i ¼ 1; . . . ;mg.

2: InitializeW and b by single-task learning (with Z ¼ I in (5)).
3: while not converged do
4: Update Z by using the ADMM algorithm to solve (11)
5: UpdateW and b by using the APG method to optimize (5)
6: end while
7: Output: W, b and Z

4 EXPERIMENTS

To evaluate the performance of the proposed approach, we
perform extensive experiments on both synthetic and real-
world data sets. We compare the proposed approach with
the following baseline and multi-task learning methods:

STL: single-task learning method as a baseline, in which
all tasks are learned separately.

Regularized MTL [21]: the method assumes that all tasks
are relevant and enforces their model parameters to be close
to a single center.

Dirty MTL [29]: model parameters of all tasks are consid-
ered as two parts: the first part is shared by all tasks and the
second part represents specific features of each task.

Robust MTL [13]: instead of assuming all tasks to be rele-
vant, this work aims at identifying outlier tasks in multi-
task learning.

Group MTFL [30]: the method improves multi-task fea-
ture learning [2] by clustering tasks into disjoint groups and
learning shared features in each group. Notice that, follow-
ing their paper, we repeat the gradient descent with 10 ran-
dom initializations and choose the best local optimum
among them.

FlexTClus [60]: this work also decomposes the model
parameters to two parts: one part models the shared fea-
tures by all tasks and another part models specific features
of each task. The shared part is clustered using ‘1.

MTRL [55]: the work learns the relationships between
tasks and uses the learned task relationships to improve the
multi-task learning methods.

CMTL [26]: all tasks are clustered into disjoint groups
and tasks in the same group are enforced to have similar
model parameters.

4.1 Synthetic Data Sets

We evaluate comparative methods on three different syn-
thetic data sets as sanity check to show that the proposed

approach can learn the underlying cluster structure of tasks
in various scenarios. Specifically, the task is a linear regres-
sion problem and the dimension of the input feature
d ¼ 100. The input data are generated from x 
 N 0; Ið Þ and
the output of the ith task is obtained by yi 
 wT

i x þ
N 0; 150ð Þ. For each task, we generate 30 samples as training
data and 100 samples for testing. In order to tune the regu-
larization parameters of all methods, we generate a valida-
tion set with 100 samples separately for each data set. Note
that the synthetic data sets are generated using a similar
procedure as reported in [26].

4.1.1 Data Set 1

This data set consists of four clusters and each cluster con-
tains 10 tasks. All 100 dimensions are randomly divided
into four disjoint groups and each group is assigned to only
one cluster. The model parameters for tasks from a particu-
lar cluster are non-zero only for corresponding dimensions,
and are zero for all other dimensions, so that different clus-
ters are orthogonal to each other. For the ith task in the cth
cluster, the value of each dimension is the sum of its cluster
center wc and a task specific component wi, where
wc 
 Nð0; 900Þ and wi 
 Nð0; 16Þ.

4.1.2 Data Set 2

This data set is the same as data set 1 except we generate the
four cluster centers from the first 96 dimensions and the
remaining four dimensions for all tasks are generated from
Nð0; 16Þ.

4.1.3 Data Set 3

This data set is the same as data set 2 except we generate
another five outlier tasks from 50þNð0; 900Þ. All dimen-
sions are non-zero in these outlier tasks.

We use the normalized mean square error (NMSE) as the
evaluation measure, which is obtained by using the vari-
ance of the ground truth to normalize the mean square
error. Table 1 reports the mean and standard derivation
over 10 trials on the three synthetic data sets.

It is shown that the proposed FCMTL performs the best
on all three data sets. Furthermore, all multi-task learning
methods outperform single-task learning. However, the
improvements of Regularized MTL and Dirty MTL are
insignificant due to the invalid assumption that all tasks are
related. Robust MTL performs well on the first data set as

TABLE 1
Mean and Standard Deviation of NMSE of All Methods

on the Three Synthetic Data Sets

Data Set 1 Data Set 2 Data Set 3

STL 0.703 � 0.011 0.719 � 0.015 0.698 � 0.014
Regularized MTL 0.605 � 0.040 0.627 � 0.016 0.638 � 0.020
Dirty MTL 0.612 � 0.022 0.670 � 0.015 0.653 � 0.013
Robust MTL 0.078 � 0.010 0.253 � 0.014 0.319 � 0.017
Group MTFL 0.363 � 0.018 0.504 � 0.026 0.587 � 0.032
FlexTClus 0.498 � 0.019 0.552 � 0.025 0.560 � 0.187
MTRL 0.147 � 0.020 0.293 � 0.016 0.360 � 0.024
CMTL 0.073 � 0.010 0.214 � 0.012 0.303 � 0.016
FCMTL 0.040 � 0.017 0.129 � 0.017 0.212 � 0.024
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all tasks indeed follow a low-rank structure, yet FCMTL
achieves significantly better performances than it on the sec-
ond and third data sets. One possible reason is that the last
four dimensions for all tasks make the low-rank assumption
in these two data sets invalid. Feature sharing has been
restricted in each disjoint group, yet the performances of
Group MTFL are still clearly worse than CMTL or FCMTL.
This is largely because the regularization used in Group
MTFL is the square of trace norm instead of the trace norm as
used in Robust MTL, where the latter is more powerful on
pursing a low-rank solution due to the regularization of ‘1
norm of the singular values. Since tasks are from various clus-
ters, there does not exist a shared part for all tasks (data set 1)
or the shared part is not extensive enough (data sets 2 and 3),
the improvement of FlexTClus is not significant. Although
MTRL attempts to learn pairwise task relationships, the posi-
tive semi-definite constraint on the task relationship matrix
may not be strong enough. When four clusters are exactly
orthogonal, the performance of CMTL is comparable to
FCMTL, otherwise, FCMTL clearly outperforms CMTL, pos-
sibly due to the spectral relaxation used in CMTL.

Fig. 1 shows the correlation matrices of the learned
model parameters on synthetic data set 1. From the figure,
we observe that the proposed FCMTL learns the exact
underlying cluster structure. In comparison, although
CMTL also obtains a good quantitative result, it introduces
some noise to the correlation matrix which is possibly

attributed to the spectral relaxation used in CMTL. Similar
observations can be made in Robust MTL (Fig. 1e), where
certain incorrect correlations have been introduced between
irrelevant tasks due to the noise in the structure of all tasks
which is not exactly low-rank. As shown in Fig. 1f, the task
relationships in each group learned by Group MTFL are not
close to the ground truth, which is still largely due to the
use of the square of trace norm in regularization. Due to the
assumption that one part is shared by all tasks in FlexTClus,
there are considerable noises between two tasks from two
different clusters. Of course, the noise can be decreased by
using a smaller regularization parameter for the shared
part. We find, however, that the current regularization
parameter gives better performance, which is possibly
because smaller regularization parameter also less enforces
the sharing between relevant tasks. Fig. 1h shows that
MTRL learns well the relationships of tasks from the same
cluster, yet unwanted correlations exist between tasks from
different clusters whose model parameters are orthogonal
and uncorrelated. This is probably due to that MTRL only
imposes the positive semi-definite constraint on the task
relationship matrix, which is ineffective for unrelated tasks.
Other MTL methods and the STL baseline fail to obtain
good results even for the relevant tasks, and introduce con-
siderable noise for unrelated tasks due to the invalid
assumptions on task relationships.

Fig. 2 shows the representative tasks and the assignment
matrix Z obtained by the proposed FCMTL. It can be seen
from the figure that the proposed FCMTL can effectively
capture the underlying cluster structure even though not all
tasks are orthogonal and in cases of outlier tasks. In the syn-
thetic data set 2, all tasks within a particular cluster are
assigned to the same representative task from their cluster.
In data set 3, each outlier task is selected as a representative
task only by itself.

4.2 Examination Score Prediction

In this section, we evaluate the algorithms on the School
data set [2] which has been widely used in multi-task learn-
ing research. The data set contains the examination scores
of 15,362 students from 139 secondary schools and each
school has been considered as one task. The problem is to
predict the scores for students according to their input
attributes. The same preprocessing as [2] is used in our
experiments. We run the experiments under five different
settings: 10, 20, 30, 40 and 50 percent of the data are used as
training data. Similar to [13], [60], we use 20 percent of the

Fig. 1. The correlation matrices of different methods: (a) Ground Truth,
(b) STL, (c) Regularized MTL, (d) Dirty MTL, (e) Robust MTL, (f) Group
MTFL, (g) FlexTClus, (h) MTRL, (i) CMTL, and (j) FCMTL. Darker color
indicates higher correlation.

Fig. 2. The representative tasks and the corresponding assignment
matrix Z obtained by the proposed method on the synthetic data set 2
and 3. Darker color indicates larger value.
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data as a validation set to tune the regularization parame-
ters for all methods. The rest of the data are used for testing.
For each setting, we repeat the experiments 10 times by ran-
domly splitting the data.

Table 2 reports the mean and standard derivation over
10 trials for five different split schemes. As can be seen, all
multi-task learning methods achieve better results than the
single-task learning method. FCMTL outperforms the other
methods or achieves comparable results under all settings,
which clearly demonstrates its effectiveness. Furthermore,
we note that the performance of Regularized MTL is also
better than other MTL methods. This is because in this sce-
nario, all tasks are indeed closely relevant which has been
mentioned in previous works [4], [20]. Similarly, FlexTClus
can perform well by using a large regularization parameter
for the shared part. Fig. 3 shows the representative tasks
and the assignment matrix Z obtained by the proposed
FCMTL. In both settings, two tasks are selected as represen-
tative tasks and the probabilities that they are assigned to
each task are slightly different (the reader please zoom-in
the figure for the best viewing effect).

4.3 MHC-I Binding Data Set

Next, we experiment on the MHC-I binding data set which
has been used in [26]. The data set contains binding affini-
ties of various peptides with different MHC-I molecules. In
this experiment, each task is a binary classification problem.
Following the protocol used in [26], we conduct experi-
ments on the same 10 tasks where each has less than
200 examples. In total, we have 1,200 examples for all the
10 tasks and the feature dimension is 180. We run the
experiments by using 20 and 40 percent of the data for train-
ing. We use 20 percent of the data as a validation set and the

regularization parameters for all methods are tuned on it.
The remaining data are used for testing. To evaluate the per-
formance, we report the mean average precision (mean AP)
on all 10 tasks. For each setting, we repeat the experiments
five times by randomly splitting data.

Table 3 shows the mean and standard derivation over
five trials on both settings. We observe that the performance
of the Regularized MTL and Dirty MTL are worse than the
single-task learning, since these two methods assume all
tasks to be relevant which is not valid in this data set.
Although Robust MTL explicitly models the outlier tasks in
its formulation, it also fails to achieve good performance,
possibly due to low-rank structure of all tasks on this data
set is not quite obvious. The performance of Group MTFL is
better than Robust MTL as tasks have been clustered into
groups, which leads to a more reasonable assumption than
for Robust MTL. In comparison, FCMTL, CMTL, FlexTClus,
and MTRL perform better than STL, since all these methods
attempt to learn the underlying task structure or relation-
ships from training data. The proposed FCMTL outper-
forms all other methods on both settings.

Fig. 4 shows the representative tasks and the assignment
matrix Z obtained by the proposed FCMTL. As shown in
Fig. 4, some tasks in this data set are not related to others
and they are selected as representative tasks only by them-
selves. Other tasks select multiple representative tasks with
different probabilities, making the sharing across tasks
more flexible. As shown in Fig. 4, the proposed FCMLT is
still able to achieve performance gains even though the
number of representative tasks is equivalent to the number
of total tasks. Intuitively, the strength of sharing of the

TABLE 2
Mean and Standard Deviation of NMSE of All Methods on the School Data Set

10% 20% 30% 40% 50%

STL 1.083 � 0.017 0.953 � 0.012 0.894 � 0.010 0.855 � 0.013 0.840 � 0.010
Regularized MTL 0.815 � 0.012 0.770 � 0.011 0.773 � 0.005 0.770 � 0.011 0.767 � 0.012
Dirty MTL 1.016 � 0.025 0.885 � 0.017 0.843 � 0.013 0.814 � 0.012 0.807 � 0.011
Robust MTL 0.993 � 0.024 0.863 � 0.014 0.819 � 0.010 0.792 � 0.014 0.787 � 0.013
Group MTFL 0.953 � 0.023 0.830 � 0.015 0.795 � 0.010 0.773 � 0.013 0.755 � 0.010
FlexTClus 0.816 � 0.010 0.783 � 0.010 0.776 � 0.008 0.766 � 0.010 0.752 � 0.012
MTRL 0.991 � 0.027 0.852 � 0.014 0.806 � 0.010 0.784 � 0.015 0.774 � 0.013
CMTL 0.831 � 0.011 0.806 � 0.008 0.795 � 0.004 0.772 � 0.012 0.770 � 0.008
FCMTL 0.813 � 0.013 0.770 � 0.010 0.763 � 0.006 0.758 � 0.012 0.759 � 0.012

Fig. 3. The representative tasks and the corresponding assignment
matrix Z obtained by the proposed method on the School data set by
using 10 and 30 percent of the data as training data. Darker color indi-
cates larger value. Please zoom-in the image for the best visual results.

TABLE 3
Mean Average Precision (%) for the

10 Molecules with Less Than 200 Training
Samples Each in the MHC-I Data Set

20% 40%

STL 74.4 � 2.0 79.9 � 2.8
Regularized MTL 73.8 � 2.2 79.7 � 3.3
Dirty MTL 73.0 � 2.1 79.7 � 3.9
Robust MTL 72.2 � 1.2 79.3 � 2.8
Group MTFL 74.7 � 1.5 79.5 � 2.9
FlexTClus 75.3 � 1.6 80.5 � 2.4
MTRL 74.5 � 1.8 81.3 � 3.2
CMTL 75.1 � 1.2 81.1 � 2.4
FCMTL 76.6 � 1.7 81.9 � 2.2
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proposed FCMTL is more significant if less tasks are
selected as representative tasks. We would like to, however,

clarify that according to the third term ðZik wi �wkk k22Þ in
(4), sharing always holds between the ith and kth tasks as
long as Zik is nonzero, because this enforceswi andwk to be
similar to each other. As shown in Fig. 4, sharing is mainly
observed within two clusters: tasks 1, 2 ,3 can be considered
as to form one cluster and task 4, 6, 7, 8 to form another clus-
ter. In addition, in both 20 and 40 percent cases, task 5 also
selects task 1 as its representative tasks with a weight of
about 0.21. The flexible clustering makes it possible for task
5 to share with task 1, while at the same time not sharing
with tasks 2 and 3. Note that in CMTL, tasks can only be
shared within each disjoint cluster, and with a same fixed
weight for each pair of tasks in the cluster. Differently, how-
ever, in the proposed FCMTL, tasks can be flexibly shared
beyond disjoint clusters; further even in one cluster, the
sharing strength for each pair of task is determined by a
learned weight (Zik) instead of a same fixed one for all pairs.

4.4 Fine Grained Visual Recognition

Finally, we report evaluation results for fine grained visual
recognition. Different from the traditional visual recogni-
tion, fine grained visual recognition aims at solving subordi-
nate category classification (all categories are divided into
families where each family consists of fine grained catego-
ries). In our experiments, we consider the fine grained bird
classification on the Caltech-UCSD (CUB) Birds data set
[48], [50], which contains 200 categories and each category
includes about 30 and 60 images in versions 2010 and 2011,
respectively.

Specifically, we run experiments on six families (Fly-
catcher, Gull, Term, Vireo, Woodpecker, and Wren) which con-
tain 42 bird categories in total. We extract the HOG feature
[15] and use LLC [49] to represent the low-level descriptors
with 1,024 visual words. PCA has been applied for dimen-
sion reduction with 40 percent energy preserved. Table 4
summarizes the experimental setting on this data set. About

15 training images for each category on CUB2010 and
around 30 training images for each category on CUB2011
are used. As the training data per category are scare, we val-
idate the parameters on the test data and report the best
results of each method.

Table 5 reports the results on this data set. We again use
the mean average precision (mean AP) of all categories to
evaluate the performance. Our approach achieves the best
performance on both CUB2010 and CUB2011, especially
when only few training images are available for each cate-
gory. We also note that the results of Regularized MTL,
Dirty MTL and Robust MTL are worse than STL. This can
be attributed to the invalid assumption which fails to cap-
ture the correct task relationship.

4.5 Convergence Analysis

Since the overall model in (4) is non-convex with both sub-
problems (5) and (6) convex, Algorithm 1 converges to local
optimum if both subproblems converge to their global opti-
mum. For the first subproblem, with smooth convex objec-
tive function in (5), APG converges to the global optimum.
For the second subproblem, the convergence property of
ADMM for convex objective function with more than two
block variables cannot be theoretically guaranteed as is gen-
erally accepted currently [22], [8]. Therefore, the theoretical
proof of the convergence of ADMM for (6) is not straightfor-
ward since there are three block variables in the ADMM
procedure for the second subproblem (6). Consequently, the
convergence of FCMTL cannot be shown by theoretically
analysis. Empirically, we observe from experiments on both
synthetic and real data sets that the Algorithm 1 performs
well in terms of convergence. In Fig. 5, we experimentally
demonstrate the convergence of FCMTL and show typical
examples on synthetic, School and MHC-I data sets. As
shown in Fig. 5, the objective values of FCMTL (4) usually
converge in less than five iterations. We have similar obser-
vations on other data sets.

4.6 Computational Complexity

In the block coordinate descent procedure, the FCMTL prob-
lem (4) is solved by iteratively solving (5) and (11). We focus
on discussing the computational complexity of the main
components involved in each iteration of these two subpro-
blems. As shown in Fig. 5, the block coordinate descent pro-
cedure usually converges after less than five iterations.

Fig. 4. The representative tasks and the corresponding assignment
matrix Z obtained by the proposed method on the MHC-I data set by
using 20 and 40 percent of the data as training data. Darker color indi-
cates larger value.

TABLE 4
Summarization of 42 Categories (Six Families)

of the Caltech-UCSD Birds Data Set
Used in Our Experiments

# Dim # Training # Testing

CUB2010 94 630 656
CUB2011 145 1,257 1,223

TABLE 5
Mean AP (%) of All Methods on the

Caltech-UCSD Birds Data Set by Running
Experiments on 42 Categories (Six Families)

CUB2010 CUB2011

STL 14.57 22.64
Regularized MTL 12.46 22.31
Dirty MTL 14.06 21.46
Robust MTL 13.62 21.77
Group MTFL 15.14 22.93
FlexTClus 14.84 23.22
MTRL 15.39 23.54
CMTL 15.27 23.87
FCMTL 16.44 24.07

ZHOU AND ZHAO: FLEXIBLE CLUSTERED MULTI-TASK LEARNING BY LEARNING REPRESENTATIVE TASKS 273



For ease of analysis, we assume that the number of train-
ing samples for each task is n. For the subproblem (5), the
main computational cost comes from computing the gradi-
ent of W. Specifically, the computational cost for the three

terms in (5) are OðmdnÞ, OðmdÞ and Oðm2dÞ, respectively.
Therefore, the overall computational complexity of the sub-

problem (5) is Oðmdnþm2dÞ, which grows quadratically
with the task number, and linearly with both the feature
dimensionality and the number of training data. For the

subproblem (11), the computational complexity is Oðm3Þ,
which grows cubically with the task number.

In addition, we also compare the proposed method with
previous methods on computational running time. All the
computational running times are assessed on a PC with 3.40
GHz Intel(R) Core(TM) i7-3770 CPU and 32 GB memory.
The results on the three synthetic data sets are shown in
Table 6. Notice that, for Group MTFL, following their paper,
the gradient descent has been conducted 10 times for
obtaining better performance. In the comparison shown in
Table 6, we only count the mean computational time of the
10 gradient descent processes, which means the true run-
ning time of Group MTFL is much longer than the time we
reported. All the codes are written in MATLAB except some
parts of Dirty MTL and FlexTClus. The time consuming
part in Dirty MTL and FlexTClus has been speeded up by
using C-MEX programming; otherwise, the computational
time will be much longer for them. For Dirty MTL, we find
that the speed of C-MEX code is about five times faster than
its MATLAB counterpart. In general, the computational

time of the proposed FCMTL has the same scale in running
time as Dirty MTL, MTRL and FlexTClus. We observe that
STL, Regularized MTL and Robust MTL perform consider-
ably faster as the models are relatively straightforward,
while Group MTFL and CMTL are clearly slower than STL
and other MTL methods.

5 CONCLUSIONS AND FUTURE WORK

This paper proposes a new approach called Flexible Clus-
tered Multi-Task Learning for multi-task learning. The pro-
posed FCMTL learns the underlying cluster structure
among tasks by identifying representative tasks, and all
tasks are clustered into groups according to the shared rep-
resentative tasks. The new approach does not require all
clusters to be disjoint or all tasks within the same cluster to
share information to the same extent, thus more flexible in
characterizing an arbitrary task and capturing the underly-
ing clustering structure in terms of information sharing.
Promising results on both synthetic and real-world data
sets demonstrate the effectiveness of the proposed method.
For future work, we plan to investigate on a convex formu-
lation for FCMTL.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. It is easy to verify that the first two terms in the objec-
tive function of problem (5) are convex respect to W and

b. For the third term, (a) the jth dimension in kwi � wkk22
is ðwij � wkjÞ2, whose convexity can be proved by verify-
ing its Hessian to be positive semi-definite. (b) Since Zik

is nonnegative, thus this third term is also convex as a
nonnegative weighted sum of convex functions is convex
[9]. Same as (b), (5) is convex as it is the sum of three con-
vex terms. tu

APPENDIX B
PROOF OF THEOREM 1

Proof. To start with, we convert the problem in (6) to the
following equivalent problem

min
Z

Tr DTZ
� �þ bkZk1;2

s:t: 0 � vec Zð Þ; ZT1m ¼ 1m;
(12)

where b ¼ �=m.

Fig. 5. Illustration of the convergence of FCMTL. (a) Synthetic data set 1.
(b) Synthetic data set 2. (c) Synthetic data set 3. (d) School data set with
10 percent data . (e) School data set with 30 percent data. (f) MHC-I data
set with 20 percent data.

TABLE 6
Computational Running Time (in Seconds)

Synthetic Data

Set 1 Set 2 Set 3

STL 0.30 0.28 0.34
Regularized MTL 0.41 0.44 0.47
Dirty MTL 2.17 2.23 2.37
Robust MTL 0.63 0.79 0.93
Group MTFL 32.71 31.45 41.59
FlexTClus 2.82 3.09 2.90
MTRL 2.07 2.21 2.87
CMTL 23.24 61.56 59.02
FCMTL 6.08 6.94 8.00
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It is easy to verify that (12) satisfies the Slaters’s condi-
tion, thus strong duality holds. The Lagrangian of (12) is

L Z;A;Bð Þ ¼
Xm
i¼1

Xm
j¼1

DijZij þ b
Xm
i¼1
kZik2

�
Xm
i¼1

Xm
j¼1

AijZij þ
Xm
j¼1

Bj

Xm
i¼1

Zij � 1

 !
;

(13)

where A 2 Rm�m and B 2 Rm are the Lagrange multi-
pliers associated with the inequality and equality con-
straints, respectively.

Then, theKarush-Kuhn-Tucker (KKT) condition of (13) is

Aij 	 0; (14)

AijZij ¼ 0; (15)

@L Z;A;Bð Þ
@Zi

¼ Di þ b@ Zik k2 �Ai þ BT 3 0T ; (16)

where @ Zik k2 is the subgradient of Zik k2 with respect to
Zi and it is defined as [46]

@ Zik k2 ¼
Zi
Zik k2 if Zi 6¼ 0T

VVij VVik k2� 1
	 


if Zi ¼ 0T ;

(
(17)

and VV 2 Rm�m.
We first prove the requirement of b for each task select

itself as the only representative task, i.e., ðZ ¼ IÞ.
Since Zi 6¼ 0, the gradient of Zik k2 with respect to Zi

exists. For each Zij, the condition in (16) can be written as

@L Z;A;Bð Þ
@Zij

¼ Dij þ Zij

Zik k2
b�Aij þ Bj ¼ 0: (18)

Since Zij ¼ 0 for j 6¼ i, thus we have

Bj ¼ Aij �Dij: (19)

Apply (18) on the Zjj, we get

b ¼ Ajj �Djj � Bj: (20)

According to (15), we have Ajj ¼ 0 due to Zjj ¼ 1.
Therefore,

b ¼ �Djj � Bj: (21)

Substitute (19) for Bj in (21), we get

b ¼ �Djj �Aij þDij: (22)

By (14), we have

b � Dij �Djj: (23)

Consider (23) for all i 6¼ j together, we get

b � min
i6¼j

Dij �Djj: (24)

Since all columns of Z should satisfy (24), thus we obtain

bmin ¼ min
j

mini6¼jDij �Djj

� �
: (25)

Next, we prove the requirement of b for only one rep-

resentative is selected for all tasks, i.e., ðZ ¼ ek1
T
mÞ:

It is easy to verify if all tasks select only one common
representative task, then the representative task is the
kth task that satisfies

k ¼ argmin
i

Di1m: (26)

As the constraint of ZT1m ¼ 1m, so each Zkj can be repre-
sented as Zkj ¼ 1�Pi 6¼k Zij. Based on this, the objective

function in (12) can be written as

X
i6¼k

n
DiZ

T
i þ b Zik k2

o
þ
Xm
j¼1

Dkj

�
1�

X
i 6¼k

Zij

�

þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

�
1�

X
i6¼k

Zij

�2vuut :

(27)

The optimality condition for the kth task be the only rep-
resentative task is

Di þ b@ Zik k2�Dk � b
1Tmffiffiffiffiffi
m
p 3 0T ; 8i 6¼ k; (28)

which implies

Dk �Di

b
� 1Tmffiffiffiffiffi

m
p

� �
2 @ Zik k2: (29)

According to the definition of subgradient in (17), we
have

Dk �Di

b
� 1Tmffiffiffiffiffi

m
p











2

� 1; (30)

which implies

b 	
ffiffiffiffiffi
m
p
2

Di �Dkk k22
Di �Dkð Þ1m : (31)

Since for all i 6¼ k should satisfy (31), we get

b 	 bmax ¼ max
i6¼k

ffiffiffiffiffi
m
p
2

Di �Dkk k22
Di �Dkð Þ1m : (32)

This ends of the proof of the theorem. tu

APPENDIX C
DETAILS OF THE ADMM PROCEDURE FOR (11)

The ADMM procedure for (11) consists of iteratively apply-
ing the following update equations

ðaÞZkþ1  argminZLr Z;Pk;Qk;Ck
1;C

k
2;C

k
3

� �
ðbÞPkþ1  argminPLr Zkþ1;P;Qk;Ck

1;C
k
2;C

k
3

� �
ðcÞQkþ1  argminQLr Zkþ1;Pkþ1;Q;Ck

1;C
k
2;C

k
3

� �
ðdÞCkþ1

1  Ck
1 þ r Zkþ1 � Pkþ1� �

Ckþ1
2  Ck

2 þ r Pkþ1 �Qkþ1� �
Ckþ1

3  Ck
3 þ r Zkþ1T1m � 1m

� �
:

Next, we describe each of these steps in turn.
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Minimizing Over Z
The subproblem in Step (a) is

min
Z

� tr DTZ
� �þ g Pk

� �þ Ck
1;Z� Pk

� � þ
Ck

3;Z
T1m � 1m

� �þ r

2
Z� Pk


 

2

F
þ ZT1m � 1m


 

2

2

� �
:

(33)

This problem has the closed-form solution

Zkþ1 ¼ Im�m þ 1m1
T
m

� ��1
Pk þ 1m1

T
m �

�

r
D

�

� 1

r
Ck

1 �
1

r
1mC

k
3

T
�
:

(34)

Minimizing Over P
In Step (b), we need to solve the following problem

min
P

g Pð Þ þ Ck
1;Z

kþ1 � P
� �þ Ck

2;P�Qk
� �

þ r

2
Zkþ1 � P


 

2

F
þ P�Qk


 

2

F

� �
:

(35)

This problem also has the closed-form solution

Pkþ1 ¼ PC
1

2
Zkþ1 þQk
� �þ 1

2r
Ck

1 � Ck
2

� �� �
; (36)

where PC denotes the Euclidean projection onto the set C.
Minimizing Over Q
The problem need to be solved in Step (c) is

min
Q

mkQk1;2 þ Ck
2;P

kþ1 �Q
� �þ r

2
Pkþ1 �Q


 



F
; (37)

which is equivalent to the following problem

min
Q

1

2
Q� Pkþ1 þ 1

r
Ck

2

� �









2

F

þm

r
kQk1;2; (38)

and the closed-form solution for it can be obtained by
applying the proximity operator on each row of Q sepa-
rately. For the ith row, the solution is

R ¼ Pkþ1 þ 1

r
Ck

2

Qkþ1ði; :Þ ¼ Rði; :Þk k2� m
r

Rði; :Þk k2

" #
þ
Rði; :Þ:

(39)

APPENDIX D
KERNEL EXTENSION

Several previous works also studied the non-linear exten-
sion of MTL methods [3], [16], [20], [30], [45], [55], [57].
Here, we show that the proposed FCMTL (4) can be easily
extended to nonlinear kernel functions. In the following, we
demonstrate it with the nonlinear regression problem as an
example, yet it can be generalized to other forms.

Formally, for the ith task, the goal is to learn a regression

function fiðxijÞ ¼ wT
i fðxi

jÞ þ bi where fðxi
jÞ denotes the non-

linear feature map by a reproducing kernel. Then, the opti-
mization problem for learningW and bwith fixed Z is

min
W;b

Xm
i¼1

1

ni

Xni
j¼1

yij � wT
i fðxijÞ � bi

� �2
þ g

2
kWk2F

þ �

2

Xm
i¼1

Xm
k¼1

Zikkwi � wkk22; (40)

which can be written as the following equivalent problem

min
W;b

Xm
i¼1

1

ni

Xni
j¼1

�ij

� �2
þ g

2
kWk2F þ

�

2

Xm
i¼1

Xm
k¼1

Zikkwi � wkk22

s:t: yij � wT
i fðxi

jÞ þ bi

� �
¼ �ij; 8i; j:

(41)

The Lagrangian of problem (41) can be written as

L ¼
Xm
i¼1

1

ni

Xni
j¼1

�ij

� �2
þ g

2
kWk2F þ

�

2

Xm
i¼1

Xm
k¼1

Zikkwi � wkk22

þ
Xm
i¼1

Xni
j¼1

ai
j yij � wT

i fðxijÞ þ bi

� �
� �ij

� �
;

(42)

where ai
j is the Lagrange multiplier associated with the jth

training sample of the ith task. Setting the derivative of L
with respect to wi equal to zero, we obtain

@L

@wi
¼ gwi þ �

X
k 6¼i

Zik wi � wkð Þ � �
X
k6¼i

Zki wk � wið Þ

�
Xni
j¼1

ai
jfðxi

jÞ ¼ 0:

Combining the above equation for all wi, we have

WS ¼
Xm
i¼1

Xni
j¼1

ai
jfðxi

jÞeTi ; (43)

where ei 2 Rm is the ith column vector of Im�m. S 2 Rm�m

and its element is defined by

Sii ¼ g þ �
X
k 6¼i

Zik þ Zkið Þ and Ski ¼ �� Zik þ Zkið Þ:

It is easy to verify that the matrix S is positive definite for
any g > 0. Since S is positive definite,W in (43) is

W ¼
Xm
i¼1

Xni
j¼1

ai
jfðxi

jÞeTi S�1:

Similarly, setting the derivatives of L with respect to bi and

�ij, we obtain

@L

@bi
¼ �

Xni
j¼1

ai
j ¼ 0

@L

@�ij
¼ 2

ni
�ij � ai

j ¼ 0) �ij ¼
ni

2
ai
j:

Substituting W, �ij back into (42), we obtain the following
dual form of problem (41):
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max
aa

Xm
i¼1

Xni
j¼1

ai
jy

i
j �

1

2
aaT Kþ 1

2
V

� �
aa

s:t:
Xni
j¼1

ai
j ¼ 0; 8i;

(44)

where aa ¼ ða1
1; . . . ;a

m
nm
ÞT . K 2 R

Pm

i¼1 ni�
Pm

i¼1 ni is the multi-
task kernel matrix defined on all training data of all tasks.

For any two training samples ðxi1
j1
; x

i2
j2
Þ, we define the corre-

sponding multi-task kernel to be eTi1S
�1ei2kðxi1

j1
; x

i2
j2
Þ where

kðxi1
j1
; x

i2
j2
Þ is the kernel function defined by kðxi1

j1
; x

i2
j2
Þ ¼

fðxi1
j1
ÞTfðxi2

j2
Þ. V 2 R

Pm

i¼1 ni�
Pm

i¼1 ni is a diagonal matrix with

diagonal element ni if the corresponding data point is from
the ith task. Similar to SVM, (44) can be solved by using the
SMO algorithm [32].

After solving (44), it is straightforward to update Z in (6)
with fixed W and b. Specifically, Dik can be calculated as
following

Dik ¼ kwi � wkk22 ¼ eTi Hei � 2eTi Hek þ eTkHek;

where

H ¼
Xm
i1¼1

Xm
i2¼1

Xni1
j1¼1

Xni2
j2¼1

a
i1
j1
a
i2
j2
S�1ei1e

T
i2
S�1kðxi1

j1
; x

i2
j2
Þ:

After substituting Dik back into (6), it can be solved by
ADMM as in the linear case.
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