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Abstract

This paper presents a spike sorting method using a simplified feature set with a nonparametric clustering algorithm. The proposed

feature extraction algorithm is efficient and has been implemented with a custom integrated circuit chip interfaced with the PC. The

proposed clustering algorithm performs nonparametric clustering. It defines an energy function to characterize the compactness of

the data and proves that the clustering procedure converges. Through iterations, the data points collapse into well formed clusters

and the associated energy approaches zero. By claiming these isolated clusters, neural spikes are classified.
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1. Introduction

Neurons in the brain communicate by firing of the action
potential, which induces transient voltage fluctuation in the
surrounding tissue environment. The brief voltage fluctua-
tion can be recorded with extracellular electrodes and the
signal take the shape of spike. Very often one electrode is
surrounded by multiple firing neurons, and their recorded
activities become superimposed. To correctly understand
the information in the biological neural network, it is crit-
ical to resolve spikes to individual neuronal sources [1–6],
which is referred to as spike sorting.

Spike sorting is a high dimensional clustering problem.
Directly classifying the recorded waveforms in high dimen-
sional space is challenging partially because data points
would be sparse, and clustering algorithms tend to be im-
precise [7]. Feature extraction algorithms that represent
spike waveforms using a few significant features are nor-
mally applied before clustering. A spike feature extrac-
tion algorithm is preferably to consume low computation
and small storage space, and feasible for microchip im-
plementation. A miniaturized microchip further equipped
with inductive power and data links [8–10] can provide
ultra-portability and real-time performance targeting neu-
ral prosthetic devices. Important examples of spike feature
extraction algorithms include principal components analy-
sis (PCA) [11–15], template matching [16–18], and wavelet
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[19,20], which involve significant computation. Tremendous
efforts to improve the efficiency of traditional spike feature
algorithms have been reported. The reported studies, how-
ever, either have an over simplified functionality, e.g. im-
plementing spike detection [21–23] only, or have a hardware
system consuming too much power and space.

After spike feature extraction, the extracted features be-
come input to the clustering algorithm, which further at-
tributes spike events to individual neuronal sources. The
literature on clustering is vast [19, 24–27], where the most
commonly used clustering algorithms can broadly fall into
two categories, the hierarchical clustering and the parti-
tional clustering. A hierarchical algorithm yields a struc-
ture representing the nested groupings of patterns and sim-
ilarity levels at which groupings change. On the other hand,
a partitional clustering algorithm obtains a single partition
of the data instead of a clustering structure. As an exam-
ple, the k -means family [11, 28, 29], which belongs to the
partitional category, is by far a most widely used cluster-
ing method for spike sorting. The popularity is largely due
to its low computation. The performance, however, is not
always satisfactory due to the following reasons. First, the
k -means is sensitive to initial seed selection and outliers.
Second, it tends to produce hyperspherical clusters and
it would lead to erroneous results with irregularly shaped
clusters. Third, the k -means algorithm is parametric, which
requires the number of clusters known as a priori.

This paper has two emphases. First, a feature extraction
algorithm targeting integrated circuit implementation is
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presented. Second, an energy based evolving mean shift
(EMS) algorithm with kernel scope obtained through N
nearest neighbor search (NNS) is formulated.

This rest of the paper is organized as follows. Section 2
describes spike feature extraction. Section 3 presents EMS
clustering algorithm. Section 4 shows experimental results
and Section 5 concludes the work. Additional explanations
of the spike detection algorithm and noise shaping theory
are included in the Appendix .

2. Spike Feature Extraction

Figure 1 shows our feature extraction engine, which in-
cludes spike detector, noise shaping filter, feature extractor
and controlling and storing units. It was initially designed
to process one channel spike data [30] and later expanded
to simultaneously process multiple channel data [31]. Ef-
forts are also made to integrate the feature extraction en-
gine into neural recording and stimulating chips [32–34].

Fig. 1. Block diagrams of the digital hardware of the proposed spike
detection and sorting algorithms. Except the PC clustering block,
the rest have been implemented on chip.

2.1. Spike Detection

Spike detector is a critical component for spike sorting. In
our work, we choose nonlinear energy operator (NEO) [23,
35] to implement due to its efficiency of separating spikes
from background activities, which are reported to exhibit
a low frequency fashion through power spectrum measure-
ment of data recorded from in-vivo experiments [36]. NEO
was originally invented by Teager [37] and is used for the
amplitude frequency demodulation and speech analysis.
With a discrete time signal, NEO is

ψ[x(n)] = x2(n)− x(n+ 1)x(n− 1). (1)

where ψ[·] and x(n) represent the NEO score and input sig-
nal, respectively. In Appendix 1, a simplified formulation is
included to show the usefulness of NEO as a spike detection
method.

Receiver Operating Characteristic (ROC) curves are
used to quantify the performance of detection algorithms,
and comparative results are plotted in Figure 2. The
“Probability of Correct Detection” used in Figure 2 is de-
fined as the ratio of the number of correctly detected spikes
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Fig. 2. ROC curves for spike detection algorithms. The red dotted
curve is the result from NEO based spike detection. The black dia-
mond curve is the result from amplitude based spike detection

over the total number of neural spikes. The “Probability
of False Detection” is defined as the ratio of the number
of detected noise events over the total number of detected
spikes. With NEO based spike detection, the detection
threshold is set to be three times of the root-mean-square
(RMS) score, which corresponds to 1.4% error detection
and detects 99.5% spikes as a worst case in our test [38] on
spike data from waveclus [19].

2.2. A Simplified Feature Set

According to [36], a derivative based frequency-shaping
filter significantly attenuates the low frequency noise
(derivations related to noise shaping are included in Ap-
pendix 2) and could help differentiate similar spikes from
different neurons. As a complementary approach to PCA,
spike feature extraction algorithm based on informative
sample set was first reported in [36] to identify uncorre-
lated local features. This concept requires only a subset
of samples containing the necessary information to cluster
the data. Intuitively, a sample is considered to be infor-
mative if the superimposed spikes can be classified into
multiple clusters by evaluating the sample alone. Combin-
ing derivative operation and sample selection, improved
sorting performance are observed. As a preliminary imple-
mentation to our feature extraction algorithm using infor-
mative samples, the height of the original spike waveforms
and maximum and minimum values of its first derivatives
are used as the features to classify spikes. The choice of
this simplified sample set for implementation is based on
three reasons. First, it requires small computation and
little memory [31]. Second, samples during the fast tran-
sition period frequently exhibit high information. Third,
obtaining these three features requires no training.

The digital filter in Figure 1 serves a two-fold purpose.
First, it sets the low pass and high pass corner frequencies
fc1 and fc2. Second, the filter outputs the derivative of
the spike waveforms. To handle a variety of noise profiles
and spike widths, the filter coefficients are programmable
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Fig. 3. Spike feature extraction IC and its test setup.

through the coefficient register array, and a matched filter
profile to a specific biologic neural network can be precisely
tuned. To achieve the minimal phase distortion, Bessel filter
is used. The out-of-band rejection is achieved at more than
60 dB, which is generally enough to reject low frequency
noise.

A NEO based spike detector, noise shaping filter, fea-
ture extractor, the corresponding storing device and con-
trol units described in Figure 1 are implemented with a
custom digital IC with .35 µm CMOS process, which con-
sumes 93 µW at 40 KHz clock frequency and occupies
1.62×1.62mm2. The test setup and chip photo is shown in
Figure 3 [30, 31].

3. Evolving Mean Shift Spike Clustering

The mean shift algorithm is a mathematical tool pro-
posed in the 1970s [39]. It offers an iterative scheme to
identify the peaks of the kernel density estimate of the tar-
get data set. Surprisingly, the mean shift algorithm did not
reach people’s attention until several publications [40, 41]
reestablished its theoretical foundation. Recently, the al-
gorithm has been successfully applied in the areas related
to visual tracking, image segmentation and clustering. For
clustering, the mean shift based algorithm is nonparamet-
ric, which does not require prior knowledge of the number
of clusters, and does not constrain the shape of the clusters.

The reported clustering algorithm in this work is related
to mean shift techniques. Compared with the current mean
shift algorithm and its variants [40–42], the used one has
improved efficiency. To avoid confusion, the used cluster-
ing algorithm is named as evolving mean shift (EMS). The
main novelty of our algorithm and the advantages are de-
scribed as follows. First, EMS clustering algorithm inher-
its the advantages from the mean shift algorithm, e.g. it is
nonparametric and robust to various cluster geometry and
density variation. Compared with other mean shift based
algorithms, EMS is faster, since it adopts a highly selec-
tive and adaptive iterative scheme. Second, EMS is de-
signed to be insensitive to noisy events. The recorded spike
data are usually contaminated by noise, sampling distor-

tion and events overlapping. It is also possible that some de-
tected spike waveforms are actually attributed to elements
of noise. Compared with k -means, mean shift or other clus-
tering algorithms where noisy spike events tend to corrupt
the classification, EMS automatically handles those noisy
events at an early stage and they are less likely to mis-
lead the classification of other events. Third, EMS takes
less number of iterations to converge, compared with tra-
ditional mean shift algorithms.

3.1. Principles of Mean Shift Clustering

The mean shift algorithm deals with the density estimate
using radially symmetric kernel satisfying

K(x) = k(|x|2), (2)

where K(x) integrates to one for normalization. Attaching
data points to peaks (modes) of the kernel density estimate
is an intuitive method to claim individual clusters. The
mean shift procedure elegantly locates these modes with-
out estimating the density, therefore, has significant speed
improvement compared with directly searching.

Consider a general density estimate of data set {ai} with
kernel K(x) and unform scope h

p(x) =
1

nhd

N
∑

i=1

K(
x− ai

h
), (3)

where d is the dimension of the feature space, h is the scope
with positive values and N is the number of data points.
p(x), by definition, is the estimated density distribution of
data set {ai} at location x. The focus of mean shift is to find
the modes of p(x) and therefore, claim individual clusters.

At the modes, the gradient of density estimate is zero

∇p(x) = 0. (4)

Combining the definition of the density estimator p(x)
and the gradient yields

∇p(x) = (5)

3



1

Nhd+2
[

N
∑

i=1

k′(|
ai − x

h
|2)][

∑N
i=1 aik

′(|ai−x
h |

2)
∑N

i=1 k
′(|ai−x

h |
2)
− x].

The last term in Eq. 5 is recognized as the mean shift
vector M(x). At the modes, the corresponding mean shift
vector has zero magnitude, therefore, zero gradient. For
any input data point xi, the iterative scheme xi+1 = f(xi)
with f(xi) = xi +M(xi) would eventually converge to the
modes. The mean shift procedure is an iterative scheme,
and any data point at location xi is assigned to the mode
it converges to.

If the iteration xi+1 = f(xi) applies to a replica of {ai}
and the original data set {ai} is always kept intact, it is the
typically used mean shift. If the iteration directly applies
to {ai} rather than its replica, the process is referred to as
blurring mean shift [40, 42].

3.2. Evolving Mean Shift Clustering

In this section, we describe an energy based evolving
mean shift clustering algorithm for spike sorting.

3.2.1. Energy Definition

Here we describe an objective function for EMS, whose
score is referred to as “energy” in this paper. The EMS iter-
ative scheme is essentially an energy reduction procedure,
and the energy is minimized to zero when the data points
are fully converged. Specifically, we denote the set of data
points to be clustered by X , each data point by xi and the
set of n data points that are closest to xi by N(xi). The
energy of the data points X is defined as

E(X) =
∑

xi∈X
E(xi) (6)

where

E(xi) =
∑

xj∈N(xi)
f(hxi

)(K(0)−K(
xi − xj

hxi

)) (7)

where K(x) is an arbitrary isotropic kernel with a convex
profile k(x), i.e., it satisfies K(x) = k(|x|2) and k(x1) −
k(x2) ≥ k

′(x2)(x1 − x2). Without loss of generality, we set
k(0) = 1. hxi

in Eq 7 is the kernel bandwidth and f(hxi
)

is a shrinking factor that is designed to be a monotonically
increasing function of bandwidth hxi

. For popular kernels,
e.g. Gaussian kernel, Epanechnikov kernel, hxi

∼ O(hκ
xi

)
with κ ≥ 2 satisfying the requirement. In this paper, we use
κ = 2. For the case of κ > 2, derivations can be similarly
applied.

3.2.2. Formulating the Energy based Clustering Algorithm

The problem of clustering the data points can be cast
as an energy minimization problem. EMS is an iterative
scheme, which reduces the total energy E(X) by moving
each data point. The goal of EMS is to create a well clus-
tered status where the data points stop moving and con-
verge.

In EMS, the scope hxi
with each data point xi is adap-

tively calculated according to the surrounding environ-
ment. This manipulation serves the purpose of resolving
the potential conflict from the scope and the minimal dis-
tance between two modes. By the linearity of Eq. 6, the
gradient of the total energy E(X) is

▽E(X) =
∑

i6=j
(
∂Ei,j

∂xi
+
∂Ei,j

∂hxi

∂hxi

∂xi
+
∂Ei,j

∂hj

hj

∂xi
). (8)

At each iteration, EMS intends to move a data point xi with
large energy gradient. Selecting a point with the largest
energy reduction for moving has several important benefits.
First, it avoids to operate data that lead to small energy
reduction (e.g. data points in plateau regions); therefore,
requires less iterations compared with the mean shift or
blurring mean shift algorithm. Second, it efficiently pushes
loosely distributed points towards a localized peak, which
prevents them from being absorbed into nearby clusters
with larger densities.

An example of feature space evolution is presented in
Figure 4. In Figure 4 (a), the original feature space is dis-
played, which includes 10000 data points. Figure 4 (b) -
(h) display an evolved feature space after 5000, 10000, ...
35000 iterations that correspond to 0.5, 1, ..., 3.5 iterations
per point. Through iterations, data points move according
to the EMS vector defined in Section 3.2.4 and eventually
converge to theirs corresponding cluster modes. The parti-
tion of the feature shown in Figure 4 (a) can be performed
by simply claim the two isolated cluster modes.

3.2.3. Selection of Kernel and Kernel Scope

Two kernels are commonly used in the mean shift algo-
rithm. One is the Epanechnikov kernel defined as

KE(x) =







ce(1− |
x

h
|2) if |x| ≤ h

0 otherwise,
(9)

where ce is merely a normalization constant.
The Epanechnikov kernel based energy function has par-

tial derivative to scope as

∂Ei,j

∂hxi

=







2cehxi
if |xi − xj | = hxi

0 otherwise.
(10)

The other commonly used kernel is Gaussian kernel de-
fined as

KG(x) = cgexp(−
1

2
|
x

h
|2), (11)

where cg is a normalization constant for the Gaussian ker-
nel.

The Gaussian kernel based energy function has partial
derivative to scope as

∂Ei,j

∂hxi

= 2cg[hxi
+ |xi − xj |(1− |

xi − xj

hxi

|)] (12)
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Fig. 4. Snapshots of the data evolution, 10000 data points. (a) - (h) Snapshots are captured at 0, 5000, 10000, ..., 30000, 35000 iterations (or
0, 0.5, 1, ...,3, 3.5 iterations per point).

·exp(−
1

2
|1−

xj − xi

hxi

|2).

Both Epanechnikov and Gaussian kernels are applicable
to EMS. Compared with Gaussian kernel, Epanechnikov
requires less computation since

∂Ei,j

∂hxi

is 0 except that the

moving point xj is the nth nearest point to xi. To accelerate
the clustering speed, Epanechnikov is applied in this work.
hxi

, the scope of xi, is a sensitive parameter which influ-
ences the performance of the algorithm. Many works [43,44]
have recognized the sensitivity of the mean shift and blur-
ring mean shift algorithms to the kernel bandwidth. When
the local characteristics of the feature space differ across
data, it is difficult to find an optimal global bandwidth [41].
[44] calculates the bandwidth through a sample point esti-
mate, and the algorithm works well with moderate train-
ing procedures. More sophisticated bandwidth estimation
method incorporating the input data is reported in [45],
with an increased computational complexity and manual
efforts from domain experts.

For EMS algorithm, hxi
is adaptively calculated using

one of the two following methods. A simple way is specify-
ing hxi

to be the distance from the nth nearest point to xi,
which is a NNS problem with complexity of O(logN). A
more complicated way is using a pilot density estimate to
train and individually assign “n” to each point. The deriva-
tions presented in this paper hold for both the cases of a
global “n” and individually assigned “n” to each point.

3.2.4. The EMS Clustering with Epanechnikov Kernel

The iterative scheme with Epanechnikov kernel is de-
scribed as follows.

Algorithm 1 The EMS Clustering Procedure

Input: A set of data points Xk, where k is initialized as 0
Output: A well clustered set of data points XEMS

– Find the data point xk
i ∈ Xk where |

−−−−→
vk

EMSi
| =

max(|
−−−−→
vk

EMSp
|, xk

p ∈ Xk). Here,
−−−−→
vk

EMSi
represents the

EMS vector for the data point xk
i , where the EMS vector

is defined in the 4th step.
– Obtain U(xk

i ), the set of n nearest neighbors of xk
i .

– Obtain the set of m data points V (xk
i ) where for each

point xk
l in the set, its n nearest neighbors contain xk

i ,
i.e., xk

i ∈ U(xk
l ).

– Move xk
i to the centroid of U(xk

i )
⋃

V (xk
i ). The vector

from the original xk
i to the centroid of U(xk

i )
⋃

V (xk
i ) is

the EMS vector under an Epanechnikov kernel.
– If E(Xk) satisfies Eq. 24, stop; otherwise, set k ← k + 1

and go to the 1st step.

3.2.5. Convergence of the EMS Algorithm

In this and the next subsections, theoretical validations
that support our clustering method are presented.

Theorem The Evolving Mean Shift Clustering Algorithm

converges.

Proof. Since E(X) is lower bounded, it is sufficient to
show that E(X) is strictly monotonic decreasing, i.e., if
Xk 6= Xk+1 then E(Xk) > E(Xk+1) for all k = 1, 2....

Following the procedure described in Algorithm 1, for
the kth iteration (in the following, the superscript k for
the data points is omitted for clarity), the data point xi ∈
X with the largest EMS vector is selected and moved to
the centroid of U(xi)

⋃

V (xi). In this proof, we denote the
energy related to xi as Er(xi), which refers to the energy
that could change with the movement of xi. By assuming
without loss of generality that the movement of xi does

5



Fig. 5. Evolving mean shift movement

not change the local data configuration, or, in other words,
the points in U(xi) and V (xi) do not change (cases with
configuration changes are explained later), we can write

Er(xi) =
∑

xj∈U(xi)

|xi − xj |
2 +

∑

xl∈V (xi)

|xi − xl|
2, (13)

where the first term on the right hand side is the energy of
xi and the second term corresponds to the energy of points
in V (xi) that is related to xi.

As illustrated in Figure 5, denoting xc as the centroid
of U(xi)

⋃

V (xi), θj as the angle between each −−→xcxj , (xj ∈
U(xi)) and −−→xcxi, and θl as the angle between −−→xcxl, (xl ∈
V (xi)) and −−→xcxi, Eq. 13 can be expanded as

Er(xi) =
∑

xj∈U(xi)

(|xi − xc|
2 + |xc − xj |

2 − 2|xi − xc||xc − xj | cos θj)

+
∑

xl∈V (xi)

(|xi−xc|
2 + |xc−xl|

2− 2|xi−xc||xc−xl| cos θl)

= (n+m)|xi−xc|
2 +

∑

xj∈U(xi)

|xc−xj |
2 +

∑

xl∈V (xi)

|xc−xl|
2

−2|xi − xc|(
∑

xj∈U(xi)
Pj +

∑

xl∈V (xi)
Pl), (14)

where Pj is the projected vector from xj to the vector −−→xcxi

and Pl the projected vector from xl to −−→xcxi. n and m are
the numbers of data points in U(xi) and V (xi). Since xc is
the centroid of the data points U(xi)

⋃

V (xi), we have
∑

xj∈U(xi)
Pj +

∑

xl∈V (xi)
Pl = 0. (15)

Substituting Eq. 15 into Eq. 14 results

Er(xi) = (n+m)|xi − xc|
2

+
∑

xj∈U(xi)

|xc − xj)|
2 +

∑

xl∈V (xi)

|xc − xl|
2 (16)

After the movement of xi to the centroid xc, the first
term of the right hand side of Eq. 16 becomes zero and
the second term remains the same as only xi moves in this
particular iteration. Recall that the goal here is to prove

that after the movement, the resulting energy E(Xk+1)
is smaller than the that of the previous iteration E(Xk).
Therefore, we write

E(Xk+1)− E(Xk) = ∆Er(xi) = −(n+m)|xi − xc|
2. (17)

Since (n+m)(xc−xi)
2 ≥ 0,E(Xk+1)−E(Xk) is nonpos-

itive. Further, as long asXk 6= Xk+1, the right hand side of
Eq. 17 is strictly negative, therefore E(Xk+1) − E(Xk) <
0. Consequently, the sequence E(Xk) is convergent.

To prove the convergence of the sequencesE(Xk)|k=1,2...

without assuming that the data configuration after the
movement of xi is preserved, we rewrite Eq. 13. The config-
uration changes are decomposed into two basic categories
to make this proof clear.

(1) Elements in U(xi) change.

This case describes the situation that a certain amount
of points in U(xi) may become too far to the moved xi

thereby their positions in U(xi) be replaced by another set
of points. Denote the set of points changed out of U(xi) as
Uout(xi) and the set of points changed in as Uin(xi), Eq. 13
can be expressed as

Er′(xi) =
∑

xj∈U(xi)
|xi − xj |

2 +
∑

xl∈V (xi)
|xi − xl|

2

−
∑

xj∈Uout(xi)
|xi − xj |

2 +
∑

xj∈Uin(xi)
|xi − xj |

2. (18)

Recalling that U(xi) contains n nearest neighbors to xi,
it is now straightforward to see that the distances between
the xi with the points in Uin(xi) are smaller than those
with points in Uout(xi). Therefore, after the movement

Er′(xi) < Er(xi) (19)

so that the resulting E(Xk+1) is even smaller and
E(Xk+1) < E(Xk) holds.

(2) Elements in V (xi) change.

(2-1) After the movement, xi may be too far to some
points in V (xi) so that these points do not belong to V (xi)
any longer. Denoting Vout(xi) as the set of points that leave
V (xi) and xq as the new point that replaces the xi for points
in Vout(xi), we can write Eq. 13 as

Er′′(xi) =
∑

xj∈U(xi)
|xi−xj |

2 +
∑

xl∈V (xi)
|xi−xl|

2

−
∑

xl∈Vout(xi)
(|xl − xi|

2 − |xl − xq|
2). (20)

For each point in Vout(xi), their distance to the corre-
sponding xq is smaller than that to the moved xi, thereby

Er′′(xi) < Er(xi). (21)

(2-2) The other possibility in this category is that some
points that previously did not belong to V (xi) find the
moved xi close enough so that they become elements in
V (xi). Denoting Vin(xi) as the set of points that enterV (xi)
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and xr the point replaced by the xi for points in Vin(xi)
yields

Er′′′(xi) =
∑

xj∈U(xi)
|xi − xj |

2 +
∑

xl∈V (xi)
|xi − xl|

2

−
∑

xl∈Vin(xi)
(|xl − xr|

2 − |xl − xi|
2). (22)

Similar to (2-1), we have

Er′′′(xi) < Er(xi). (23)

From Eq. 19, 21 and 23, we prove that the data config-
uration changes after each movement can only reduce the
total energy. This completes the proof.

3.2.6. EMS Stopping Criteria

A most intuitive stopping criteria for EMS is the conver-
gence of the data set. Quantitatively, for the each kth iter-
ation, a new set of data points are constructed and denoted

as Y k = {yk
i |i=1,...,N} where yk

i = xk
i +
−−−−→
vk

EMSi
. Then, the

stopping criteria is: given a small positive number of ǫ, if

E(Xk)− E(Y k) ≤ ǫ, (24)

the iterative procedure stops. The required amount of iter-
ations increases as ǫ decreases. In our implementation, ǫ is
fixed to be a fraction of the ADC’s resolution which is nor-
mally designed according to the SNR referred at the input
of the pre-amplifier.

3.3. Discussion

When applying our algorithm to the spike sorting appli-
cation, there are a few practical challenges.

A first challenge is that neurons may fire at a stochastic
pace: sometimes it fires at high frequency and later becomes
quiet. A data collection procedure is typically a few min-
utes and harvests thousands of spikes, thus, the constructed
feature space maybe spare and with large density varia-
tion. Kernel bandwidths dictated by a global “n” could be
a bias to large cluster, and contaminate high firing neurons
with low firing ones. An alleviation that is also mentioned
in Section 3.2.3 is to assign “n” locally, where data points
at different density region can have different “n”. Sample
density estimator techniques, which are used to train the
kernel bandwidth for mean shift algorithms [43,44], can be
similarly applied for EMS.

Specifically, a pilot density estimate is first calculated as

p(xi) =
1

hd
0

N
∑

j=1,j 6=i

K(
xi − xj

h0
), (25)

where h0 is a manually specified global bandwidth and d is
the dimension of the data space. Based on the pilot density
estimate, local bandwidths are updated as

hxi
= h0[

λ

p(xi)
]0.5, (26)

where p(xi) is the estimated density at point xi, λ is a
constant which is by default assigned to be geometric mean
of {p(xi)}|i=1...N . “n” can be assigned locally in accordance
with hxi

. An example that includes both fast and slow firing
neurons is presented in Figure 6, which shows that EMS
algorithm equipped with locally trained “n” using sample
point estimator can handle feature space with large density
variation.

A second challenge is the involved computation and stor-
age space cost for the proposed spike sorting algorithm, and
the feasibility for microchip implementation. Using the sim-
plified feature set as spike features, the required computa-
tion and storage space for feature extraction are negligible
compared with clustering part. Regarding the EMS cluster-
ing algorithm, it typically converges a spike feature space
with 2 ∼ 6 iterations per point and each iteration demands
O(logN) operations to find associated data points based on
which calculate to the EMS vector. Modern semiconduc-
tor technology can operate at very high frequency(>GHz),
which are sufficient to support clustering algorithms with
moderate computational load. One of the difficulties of im-
plementing clustering algorithm on chip is the required
memory size. According to a recent work implemented un-
der .35µm process [33], 1Mbit on-chip memory alone can
consume about 50mm2 die area. Many clustering algo-
rithms are usually designed for software implementation,
which may require large memory size that is expensive
for microchip implementation. EMS algorithm, for exam-
ple, consumes ∼1Mbits total memory for handling a few
thousands spikes. A corresponding implementation of EMS
using .35µm process, especially for processing multiple-
channel spike data, would be too large in size to pursue.
However, efforts have been made to implement EMS algo-
rithm using a smaller feature size technology. For example,
we have pursued to implement one dimension EMS clus-
tering algorithm that has relaxed requirements on compu-
tation and storage space using 90nm process [46].

4. EXPERIMENT

4.1. Experiments on Synthesized Spike Data

Synthesized spike sequence from waveclus are used to
compare the performance of different feature extraction
approaches. Figure 7 (a) - (h), spikes with ground truth
are grouped by colors. Feature extraction using the pre-
specified subset consists of the peaks of the spike derivative
as well as the height of the original spike is shown in Fig-
ure 7 (i) - (p). Comparative feature extraction results using
PCA are also shown in Figure 7. The extracted spike fea-
tures are clustered on a PC. About 5% overlapping spikes
are ignored to clearly quantify the performance of different
spike feature extraction algorithms. The sorting accuracy
comparisons are listed in Table 1.

After the features have been extracted, clustering is done
by the EMS clustering algorithm, as introduced in Section

7
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Fig. 6. spike clustering on a feature space that includes both fast and slow neurons. (a) - (g) display the feature space at 0, 0.5, ... 3 EMS
iterations per point. (h) display the clustering partition results based on (g) without post processing.
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Fig. 7. spike sequences from waveclus are tested using both the proposed feature extraction method and PCA. (a) - (h), spikes with ground
truth grouped by colors. (i) - (p) display the extraction results using hardware. (q) - (x) display the extraction results using PCA.
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Fig. 8. (a) detected spikes from an in-vivo preparation, (b) extracted spike features using a subset of samples, (c) zoom in of (b) for better
visualization; (d) extracted features using PCA.

3. Only a spike cluster has a size larger than the threshold,
it is recognized as a neuronal source.

4.2. Experiments on Real Data

An example containing more than 4000 spikes recorded
from an in-vivo preparation is shown in Figure 8. In Fig-
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Fig. 9. (a) - (e) the classified 5 clusters of the in-vivo preparation shown in Figure 8, (f) - (j) the derivative of the classified 5 clusters. The
identity is indicated by color.

Table 1
Accuracy comparison of using different spike feature extraction al-
gorithms

Sequence 1 2 3 4 5 6 7 8

Hardware 97.6% 97.6% 97.4% 95.4% 98.2% 98.4% 93.2% 91.0%

PCA 97.8% 89.0% 60.4% 55.2% 97.6% 77.8% 80.2% 68.8%

ure 8 (a), detected spikes are superimposed. Extracted fea-
tures using the proposed method are shown in Figure 8 (b).
A zoom in of Figure 8 (b) is plotted in Figure 8 (c) to dis-
play the isolation quality of clusters in feature space. The
corresponding PCA based feature extraction is shown in
Figure 8 (d) as a comparison. The classified spike clusters
using the proposed method are plotted in Figure 9 (a) - (e).
Spike clusters plotted in Figure 9 (b), (c) and (d) resemble
each other in shape and magnitude. To demonstrate that
the informative samples based sorting does not over parti-
tioning the data set, the derivatives of spike clusters plot-
ted in Figure 9 (a) - (e) are also plotted in Figure 9 (f)-(j)
with the same color indication. Clearly, Figure 9 (g), (h)
and (i) present three well-differentiated waveform patterns
in either peak-to-peak magnitude or shape.

Unlike synthesized spikes where the “ground truth” is
given for comparison, sorting results on animal data are
difficult to evaluate. Spike correlogram that is defined as
a neuron’s conditional firing possibility could reveal cer-
tain temporal statistics of the classified spike clusters. Es-
timated correlograms of spike clusters in Figure 8 are dis-
played in Figure 10 and 11 at different time scales.

5. Conclusion

This paper presents a spike sorting method using a sim-
plified feature set with nonparametric EMS clustering al-
gorithm. The proposed spike feature extraction algorithm
requires very low computation and has been implemented
with a custom integrated circuit chip. The EMS clustering
algorithm performs nonparametric clustering. Through it-

erations, the data points collapse into well formed clusters.
By claiming these isolated clusters, neural spikes are clas-
sified.
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7. Appendix

7.1. An Intuitive Explanation of NEO

In this section, a simplified explanation of NEO as a
neural spike detection algorithm is presented.

For a general detection algorithm, its goal is to decide if
neural spike activities present within a time slot of interest.
Assuming V (i) and A(i) as neural spikes and background
signal, the output of NEO according to Eq. 1 is

ψ[·] = [2V (i)A(i)− V (i− 1)A(i+ 1)− V (i+ 1)A(i− 1)](27)

+[V (i)2 − V (i− 1)V (i+ 1)] + [A(i)2 −A(i− 1)A(i+ 1)]

Since a high pass filter is typically placed at a few hundred
Hz, V (i) and A(i) can be roughly treated as zero mean,
independent waveforms within the time slot. As a result,
the averaged correlation terms of V (i) and A(i) approach
zero
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Fig. 10. the auto- and cross correlograms of classified neuron spikes shown in Figure 8 and Figure 9. The time scale is set to -1 to 1 sec to
examine the excitatory and inhibitory firing relations.
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Fig. 11. the autocorrelograms of classified neuron spikes shown in Figure 8 and Figure 9. The time scale is set to 0-80 msec to examine the
refractory period.

2V (i)A(i)− V (i− 1)A(i+ 1)− V (i+ 1)A(i− 1) ≈ 0.(28) Given that the averaged NEO score ψ[V (i) +A(i)] is used
to decide if neural spikes present, those correlation terms
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in Eq. 27 should not influence a decision.
For a general sequence x(i), the auto-correlation function

Rx(τ) = x(n)x(i + τ) is by definition the reverse Fourier
transform of the power spectrum

Rx(τ) =

∫

P (f)ej2πfτdf. (29)

According to Eq. 27 and 29, the averaged NEO output is

ψ(x(n)) = Rx(0)−Rx(τ) =

∫

P (f)(1 − cos2πfτ)df (30)

When frequency of interest is much lower than the sam-
pling frequency, 1 − cos2πfτ is approximately 2π2f2τ2,
which attenuates low frequency components. Since back-
ground noise has dominant components at lower frequen-
cies while spikes are relatively high frequency events,
[V (i)2 − V (i − 1)V (i + 1)] become dominant when spikes
are present.

7.2. Noise Shaping Filter

In Section 2, we have mentioned applying a frequency-
shaping filter before feature extraction.

In general, the power spectrum of the input referred noise
at the first stage amplifier exhibits a decaying profile [30,47]
and approximates as

N(f) = Nneu +Ne.e +N1/f +Ntherm

≈ Nfc1
(
fc1

f
)α +Ntherm, (31)

where Nneu is the neuronal noise, Ne.e is the electrode-
electrolyte interface noise, N1/f is the flicker noise, Ntherm

is the thermal noise contributed by tissue impedance and
transistors, fc1 is the high pass corner frequency of the dig-
ital filter, and Nfc1

is the low frequency noise at frequency
fc1. Except thermal noise, the remaining noise is featured
at low frequency and assumed to have profile following f−α.
Noise profiles vary among both of objects and recording sys-
tems, however, low frequency noise is typically dominant.

Among various frequency shaping filters, taking deriva-
tive is a simple one, which almost linearly emphasizes signal
spectrum according to frequency. For a discrete time spike
sequence, taking the derivative after the analog-to-digital
converter (ADC) has the frequency response

H(f) = 2ejπf/2 sin(πf/fs), (32)

where fs is the sampling frequency of the ADC.
The effect of a frequency shaping filter on noise can be

quantitatively evaluated by the expression

k =
1

N0|H(fspike)|2

fc2
∫

fc1

N(f)|H(f)|2df, (33)

where fci are the corner frequencies (3dB attenuation fre-
quency points) of the digital filter before feature extraction,

fspike is the center frequency of the spike signal,N(f) is the
estimated power spectrum of the noise, and N0 is the inte-
grated noise over passing band. If k is less than 1, the SNR
further increases, which improves waveform differentiation.

After derivative, the noise spectrum density changes to

N(f)|H(f)|2 = 2[Nfc1
(fc1/f)α +Ntherm] sin2(πf/fs).(34)

For integer α, a closed loop expression of the integrated
noise after derivative (N1) can be obtained from Eq. 34 .
With a further assumption that the sampling frequency is
sufficiently higher than the signal spectrum, the expression
of N1 could be generalized to non-integer α as

N1 ≈
2Nfc1

fc1απ
2

(3− α)f2
s

[f3−α
c2 − f3−α

c1 ] +
2Nthermπ

2

3f2
s

[f3
c2 − f

3
c1].(35)

Combine Eq. 33 and 35, the parameter k that is used
to quantify the modification to SNR due to the frequency
shaping filter is

k =

Nfc1
fα

c1

3−α (f3−α
c2 − f3−α

c1 ) + Ntherm

3 (f3
c2 − f

3
c1)

Nfc1

fα
c1

1−α (fc21−α − f1−α
c1 ) +Ntherm(fc2 − fc1)

1

2f2
spike

.(36)

The quantitative impact of frequency shaping filter on
noise is affected by the recording system and biological en-
vironment. Here, we use α = 2 which is a typical value to
illustrate the analysis

k =
Nfc1

f2
c1(fc2 − fc1) + Ntherm

3 (f3
c2 − f

3
c1)

Nfc1
f2

c1(
1

fc1
− 1

fc2
) +Ntherm(fc2 − fc1)

f2
c2

2f2
spike

(37)

≈

f2

x

fc2
+ fc2

3

f2
x

fc1
+ fc2

f2
c2

2f2
spike

with

fx = fc1(
Nfc1

Ntherm
)1/2, (38)

where fx is the frequency at which the noise spectrum ap-
proximately settles to the thermal noise floor. During the
measurement, fx varies according to the recording system
and biological environment (varies from 6 to 12 KHz in
measurements).

In the case that the digital filter’s low pass corner fre-
quency fc2 is designed smaller or comparable to fx, Eq. 37
can be simplified as

k ≈
fc1fc2

2f2
spike

≈
2fc1fc2

(fc1 + fc2)2
≤

1

2
, (39)

where the approximation holds well if the center frequency
of the spike signal is close to the middle point of the filter’s
passing band.

As a summary, the spectrum of the recorded noise ex-
hibits a decaying profile with respect to the frequency
within the signal band. Therefore, an appropriate fre-
quency shaping filter could be used to further improve the
SNR.
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