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Abstract

One of the most significant challenges in multi-label im-

age classification is the learning of representative features

that capture the rich semantic information in a cluttered

scene. As an information bottleneck, the visual attention

mechanism allows humans to selectively process the most

important visual input, enabling rapid and accurate scene

understanding. In this work, we study the correlation be-

tween visual attention and multi-label image classification,

and exploit an extra attention pathway for improving multi-

label image classification performance. Specifically, we

propose a dual-stream neural network that consists of two

sub-networks: one is a conventional classification model,

and the other is a saliency prediction model trained with

human fixations. Features computed with the two sub-

networks are trained separately and then fine-tuned jointly

using a multiple cross entropy loss. Experimental results

show that the new saliency sub-network improves multi-

label image classification performance on the MS COCO

dataset. The improvement is consistent across various lev-

els of scene clutteredness.

1. Introduction

Multi-label image classification is an essential computer

vision task, aiming to recognize scene-level properties of

an image from different aspects. Different from the ex-

tensively studied single-label image classification problem,

multi-label image classification is more common and prac-

tical in real-world applications. An arbitrary image is likely

to contain multiple objects and diverse information related

to different visual and cognitive properties, such as appear-

ance, emotions of human and animal, scene, interaction,

viewpoint, scale, occlusion, and illumination. Therefore,

one of the key problems in multi-label image classification

is to capture the rich semantic information in complex and

cluttered scenes [14].

To approach this problem, human visual system has de-

veloped a selective attention mechanism that allows us to

effectively attend to interesting or important regions in a vi-

C
on
ca
te
na
te

d 
 
 

d 

Fu
lly
­C
on
ne
ct
ed

2d 

Pa
irw

is
e 
So
ftm

ax

2C 
 

person

kite

truck
car

dog

Multiple Cross­Entropy

B
ra
nc
h

Tr
un
k

Sp
at
ia
l P
oo
lin
g

Sp
at
ia
l P
oo
lin
g

Figure 1: A dual-stream model is proposed to study the ef-

fect of visual attention on multi-label image classification.

It consists of a sub-network (i.e., trunk) to learn the features

for classification while another sub-network (i.e., branch) to

be trained to predict image saliency. This model allows to

quantify how much attention-related information contribute

to multi-label image classification.

sually cluttered world [7]. Computational models of atten-

tion predict saliency (i.e., features of importance in a scene)

by mimicking such a selective attention mechanism [7]. Vi-

sual attention models have been empirically proved to be

useful for various computer vision tasks, such as image re-

targeting [21], object recognition [25], video compression

[3], tracking [16], image captioning [23], and so on. Al-

though there are attempts to incorporate machine attention

for multi-label image classification, e.g. [27], it is unknown

to how human-like visual attention works in the context of

multi-label image classification.

The objective of this work is to investigate the use of

human-like visual attention in multi-label image classifica-

tion. We first study the correlation between visual attention

(i.e., visual saliency predicting human gaze) and multi-label

image classification through statistical analyses. Based on

the analyses, we propose a dual-stream model to utilize hu-

man visual attention in the task of multi-label image classi-

fication. It consists of a sub-network that learns discrimina-

tive features for classification and another sub-network that

learns saliency features for predicting human gaze. The pro-

posed dual-stream model would yield its prediction based

on the two types of features.

The contributions of this work are summarized as fol-

lows:
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• We perform an extensive analysis to study the corre-

lation between visual attention and multi-label image

classification. The features characterizing visual atten-

tion are extracted and analyzed in the context of multi-

label image classification, showing the usefulness of

attention in multi-label image classification.

• We demonstrate that incorporating visual saliency

model into the proposed dual-stream model can boost

multi-label image classification performance.

• We provide quantitative and qualitative analyses to un-

derstand the influence of the attention-related features

on multi-label image classification.

2. Related Works

In this section, we briefly review the related literature on

multi-label classification and visual attention prediction.

Multi-label classification. Recently, Convolutional Neu-

ral Networks (CNNs) have made remarkable progress on

single-label classification [9]. Due to its superior perfor-

mance, CNN has been extensively applied to the problems

of multi-label classification with localization techniques,

such as region proposal [20] and localization [30]. Further-

more, recurrent neural networks (RNNs) are also widely

used with CNNs to jointly characterize the semantic la-

bel dependency and relevance, such as [26, 2]. As dis-

cussed in [27], [26] may ignore the specific associations

between semantic labels and the image content, and [27]

introduces a framework unifying CNN and long short-term

memory (LSTM), a special case of RNN, to fully exploit

the spatial context in the images and associate the contents

with semantic labels. A recurrent memorized-attentional

module searches the attentional regions containing poten-

tial foreground objects. Interestingly, the attention module

generalizes to various vision tasks, such as image caption-

ing [29] and visual question answering [28]. Therefore,

attention mechanisms have the potential to boost model

performances in various vision tasks. Particularly, multi-

label classification has a direct link to cognitive recognition

and faces the challenge that is caused by diverse and rich

context, where attention is needed. Several recent works

have investigated the characteristics of the loss functions in

multi-label classification task [12, 13]. As the cross entropy

loss is simple, effective, and widely-used in CNNs[9, 4, 5],

in this work, we adopt the multiple cross entropy (MCE)

loss proposed by [13] in this work.

Similarly, numerous deep neural network models have

been proposed to localize objects in images without addi-

tional human supervision. These models are learned end-

to-end in a similar way as single-label image classification,

while emphasizing the localization accuracy as well as the

classification accuracy. Oquab et al. [18] apply a global max

pooling to localize a point on objects, while Zhou et al. [34]

argue that a global average pooling leads to better classifi-

cation and localization performances with class activation

maps (CAMs). However, neither of them targeted complex

and cluttered scenes. Oquab et al. [18] scan the scene at

multiple scales to find small objects, while Zhou et al. [34]

only demonstrated single-label classification performance.

Minh et al. present a recurrent network model that can se-

quentially attend to different locations within an image for

image classification [17]. Xu et al. introduce hard and soft

attention mechanism to generate words for salient objects

in an image [29]. However, these are model-based atten-

tion mechanisms and it is still unknown that how a visual

saliency learned from human fixations works in the multi-

label image classification task.

Deep learning based saliency prediction. In the past

years, we have witnessed the remarkable success of saliency

modeling, especially using deep learning techniques. Kum-

merer et al. propose two deep saliency prediction networks:

DeepGaze I [11] built upon the AlexNet [9] and DeepGaze

II [10] built upon the VGG [22]. Liu et al. [15] intro-

duce a multi-resolution CNN, which is fine-tuned over im-

age patches centered on both attended and unattended loca-

tions. An model consisting of a deep neural network applied

at two different scales are presented by Huang et al. [6]. Pan

et al. [19] introduce SalGAN, a generative adversarial net-

work for saliency prediction. In [1], an LSTM-based deep

network is proposed to refine the predicted saliency map

iteratively. The most architectures of these works are com-

plicated. For simplicity and generalizability, we follow [6]

to use a similar network, which is based on ResNet-50 and

takes single-scale images as inputs, for saliency modeling

in this work.

3. Analysis

In this section, we analyze the correlation between visual

saliency and multi-label classification. To this end, we will

first build a classification model, based on the ResNet-50

architecture. We present the comparison of various object-

level, image-level, and class-level statistics of the model

predictions with the corresponding visual saliency ground

truths.

3.1. Baseline and Performance Metrics

In this work, for the multi-label classification task, we

use a baseline ResNet-50 network with a multiple cross

entropy loss [13]. This baseline model is trained on the

MS COCO training set and evaluated on its validation set.

We use the same metrics as the related works [27, 35],

i.e. classwise/overall precision (C-P/O-P), classwise/overall

recall (C-R/O-R), classwise/overall F1 score (C-F1/O-F1),

and mean average precision (mAP).

For the saliency prediction task, we use a variant of the

SALICON saliency model [6] which is also based on a
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Figure 2: Analysis of two groups, i.e., true positives (tp) and false negatives (fn) of classification, in terms of object size (a),

object distance to the image center (b), and saliency value on the objects (c). Error bars indicate standard error of mean.

ResNet-50 backbone. It is trained on the SALICON [8]

training set and predict saliency maps of MS COCO vali-

dation images. Normalized between 0 and 1, the values of

the saliency maps indicate the likelihood that humans look

at the corresponding pixels, which will be used in the fol-

lowing analysis.

3.2. Correlation between Visual Saliency and Multi­
label Classification

To study the effect of various factors on a classifier’s per-

formance, we separate objects into two groups according to

classification results: objects correctly recognized (i.e. true

positives) and objects incorrectly recognized (i.e. false neg-

atives). Between the two groups, we compare the ob-

jects’ size, distance to image center, and the max object

saliency (i.e. the maximum saliency value in an object’s

mask). As shown in Figure 2a, true positives (tp) are signif-

icantly larger than false negatives (fn), suggesting the larger

objects are easier to classify (unpaired t-test, t=25.2469,

p<0.0001). Figure 2b shows that objects closer to the im-

age center are classified more correctly (unpaired t-test,

t=-21.0477, p<0.0001). Further, correctly classified ob-

jects are also more salient (see Figure 2c, unpaired t-test,

t=34.8849, p<0.0001). Another observation on Figure 2c

is that visual saliency is prone to attend the objects whose

labels are correctly classified. The objects whose labels are

misclassified get less saliencies.

Moreover, we analyze the above statistics for each class,

and compute their correlations with the class-wise mAP

scores. The classification performance (mAP) is found pos-

itively correlated with the object size (Pearson’s ρ=0.2784,

p=0.0124) and negatively with the distance to image center

(Pearson’s ρ=-0.5010, <0.0001). It is also positively cor-

related with both the ground-truth “max object saliency”

(Pearson’s ρ=0.3651, p<0.0001) and model predictions

(Pearson’s ρ=0.3276, p=0.0030). These findings suggest

strong connections between the classification performance

and an object’s size, location and saliency.

4. Methodology

According to the analysis in Section 3, we know that

the correctly classified objects are more salient than the

incorrectly classified objects. This implies that the visual

saliency is prone to attend the objects which should be clas-

sified as a certain class. To verify this point, we propose a

dual-stream model for multi-label classification, which uses

saliency information as a complementary modality to com-

plement conventional multi-label classification models. The

overall architecture of the proposed dual-stream model is

shown in Figure 1.

4.1. Network Architecture

Similar to [35], we adopt the ResNet-50 [4] as the trunk

and the branch with the fully-connected layers removed.

The trunk is a stack of convolutional layers to generate the

feature maps. The features generated by the trunk are con-

catenated with the output of the branch that has the same

architecture as the trunk. The resulting features are used for

the inference of multiple labels. The proposed dual-stream

model is a unified framework and is trained in an end-to-end

manner.

The 7 × 7 × 2048 feature maps (for 224 × 224 input

images) generated by the last block in ResNet-50 is used

as input for the spatial pooling layer. We denote I as an

input image at size 224× 224 with ground-truth labels y =
[y1, y2, . . . , yC ], where yl ∈ {0, 1} and C is the number of

categories in the dataset. Assuming that the feature maps

Xt and Xb are generated by the last block of the trunk and

the branch, respectively, they would be passed to two spatial

pooling layers, respectively, leading to an output vector xt

and xb. This procedure can be written as follows,

xsource = fsource(I; θ), x ∈ R
2048, source = {t, b}

(1)

where ft (or fb) is the mapping of the trunk network (or

the branch network) and θ is the weights of this network.

Next, the trunk resulting vector xt would be concatenated



with the branch resulting vector xb to yield xcat ∈ R
4096.

Then, a linear transformation would be done before passing

its results to the loss criterion that evaluates the discrepancy

between the predictions and the ground truths. This proce-

dure can be formulated as follows,

xcat = concatenate(xt, xb) (2)

x = xcat ×W , W ∈ R
4096×2C (3)

where c is the number of the feature channels.

The advantages of our architectural design are three-

fold: 1) The incorporation of two networks is consistent

with the Feature Integration Theory [24] of human visual

attention, as the top-down attention (learned from the classi-

fication task) and the bottom-up attention (learned from the

saliency prediction task) are integrated in parallel. 2) Our

design is relatively simple compared with [35, 27], with-

out complex layers that could reduce the speed of model

training and inference. 3) The main components of the pro-

posed architecture can be extended or replaced with more

advanced designs.

4.2. Multiple Cross Entropy

Different from single-label loss as in ImageNet dataset,

multinomial logistic loss (softmax loss) cannot be used di-

rectly in the multi-label classification task. This is because

exponential normalization in softmax function will increase

the distance among all candidates, i.e. the confidences w.r.t.

each category, to highlight the largest candidate. This mech-

anism is suitable in single label classification which expects

to have only one predicted label, but it is hard to align to the

nature of multi-label classification task.

In this work, we adopt Multiple Cross Entropy (MCE)

[13] as the loss function. First, we will compute the confi-

dence

ŷij =
exp(xi

j)
∑

1

j=0
exp(xi

j)
(4)

where xi
j is the feature w.r.t. i-th class from the last layer,

j ∈ {0, 1} indicates the index of positive confidence and

negative confidence w.r.t. a class, and ŷ is the confidence.

After the confidences are computed, multi-class cross en-

tropy ℓ would be computed as follows

ℓ = −
∑

i

(

yi log ŷi
1
+ (1− yi) log ŷi

0

)

(5)

where yi is the i-th ground-truth label, it can either be 1 or

0.

5. Experiments

In this section, we introduce the experimental setup and

present the results of our proposed model. Qualitative ex-

amples will be presented to help understand the character-

istics of the proposed model in practice.

5.1. Experimental Setup

Dataset. MS COCO [14] is well-known for its rich contex-

tual information and widely-used for multi-label classifica-

tion. On the other hand, SALICON [8] is a visual saliency

dataset which is built on a subset of MS COCO images to

enable joint studies of image saliency and semantics. In

this work, we use the MS COCO dataset for the multi-label

classification task and the SALICON dataset to pre-train the

sub-network for visual saliency.

Training details. Training of the proposed model con-

sists of three phases: 1). the baseline model pre-trained

on ImageNet is fine-tuned on MS COCO for the multi-

label classification task. As a result, the resulting model

would be used as classification trunk in Figure 1. Simi-

larly, the baseline model also is fine-tuned on the SALI-

CON dataset for saliency prediction task as the SALICON

saliency [6] model did. By removing the last convolu-

tional layer and adding a spatial pooling layer and a fully-

connected layer, the resulting saliency model can be fine-

tuned on MS COCO training set for the multi-label classi-

fication task. Instead of using two-scale images as the in-

put in SALICON saliency model, we use a single-scale im-

age as the input for simplicity. The resulting classification

model would be used as the classification branch in Figure

1. 2). The features of the trunk and branch will be con-

catenated together and followed by a spatial pooling layer

and a fully-connected layer to fulfill multi-label classifica-

tion task. In this phase, the weights of the trunk and the

branch are frozen to merely fine-tune the fully-connected

layer. 3). The resulting model of Phase 2 is used to fine-

tune on MS COCO training set again, but without freezing

weights and with a smaller learning rate. The momentum

and weight decay in this work are the same as the ones in

[4], i.e. 0.9 and 0.0001. Due to the different data nature in

the MS COCO and ImageNet datasets, we use a small learn-

ing rate (1e−05 in Phase 2 and 1e−06 in Phase 3), instead

of 0.1 in [4], to prevent training from skyrocketing caused

by gradient explosion.

Baseline model. As we use the ResNet-50 [4] as the back-

bone architecture of the proposed model, we consider it as

a baseline for a fair comparison. Following [18], we use

global max pooling (GMP) in this work. To comprehen-

sively evaluate the baseline model, we apply a GMP on the

feature maps generated by the last building block before

proceeding to the fully-connected operation.

Multi-label classification metrics. We use the same eval-

uation metrics as [35], i.e., mean average precision (mAP),

classwise precision, recall, F1 (C-P, C-R, C-F1), and over-

all precision, recall, F1 (O-P, O-R, O-F1). C-P, C-R, C-F1,



Table 1: Performance on the validation set of MS COCO. C-P, C-R, and C-F1 stand for per-class precision, recall, and F-1

measure, respectively. O-P, O-R, and O-F1 stand for overall precision, recall, and F-1 measure, respectively. All the numbers

are presented in percentage (%). RSN-50 Dual-stream Baseline is the model that uses the same architecture as the proposed

Dual-stream model but is not finetuned on SALICON. In this way, it can show the contribution of saliency information to

multi-label classification performance.

C-P C-R C-F1 O-P O-R O-F1 mAP

VGG MCE [13] - - - - - - 70.2

Weak sup[18] - - - - - - 62.8

CNN-RNN[26] 66.0 55.6 60.4 69.2 66.4 67.8 -

RGNN [33] - - - - - - 73.0

WELDON [2] - - - - - - 68.8

Multi-CNN [32] 54.8 51.4 53.1 56.7 58.6 57.6 60.4

CNN+LSTM [32] 62.1 51.2 56.1 68.1 56.6 61.8 61.8

MCG-CNN+LSTM [32] 64.2 53.1 58.1 61.3 59.3 61.3 64.4

RLSD [32] 67.6 57.2 62.0 70.1 63.4 66.5 68.2

Pairwise ranking [12] 73.5 56.4 - 76.3 61.8 - -

MIML-FCN [31] - - - - - - 66.2

RDAR [27] 79.1 58.7 67.4 84.0 63.0 72.0 72.2

RSN-50 Baseline 64.6 77.9 57.9 70.8 80.5 63.2 71.5

RSN-50 Dual-stream Baseline 66.7 75.4 61.3 71.9 79.4 65.8 72.1

RSN-50 Dual-stream 66.7 78.4 60.3 72.1 80.6 65.2 72.5

O-P, O-R, and O-F1 are defined as follows

C-P =
1

C

∑

i

N
c
i

N
p

i

C-R =
1

C

∑

i

N
c
i

Nm
i

C-F =
2C-P × C-R

C-P + C-R

O-P =

∑
i
N

c
i∑

i
N

p

i

O-R =

∑
i
N

c
i∑

i
Nm

i

O-F =
2O-P × O-R

O-P + O-R

(6)

where C is the number of labels, N c
i is the number of im-

ages that correctly predicted for the i-th class, N
p
i is the

number of predicted images for the i-th label, N
g
i is the

number of ground truth images for the i-th label. More con-

cretely, average precision is defined as follows

APi =

∑R

k=1
P̂i(k)ri(k)

∑R

k=1
ri(k)

(7)

To compute the mAP, we collect all the predicted probabil-

ities for each class of all the images. The corresponding

predicted i-th labels over all images are sorted in descend-

ing order. The average precision of the i-th class is the mean

of the average of precision of correctly predicted i-th labels.

P̂i(k) is the precision ranked at k over all predicted i-th la-

bels. R denotes the number of predicted i-th labels. Finally,

the mAP is obtained by averaging AP over all classes.

5.2. Performance

We compare the proposed with several state-of-the-art

multi-label classification models. Experimental results are

shown in Table 1. For a fair comparison, we also report a

variant of the proposed model, i.e. the dual-stream model,

which follows the same training procedure as the proposed

model, but without fine-tuning on the SALICON dataset in

Phase 2. By comparing the proposed model to the dual-

stream model, we can quantify how much saliency informa-

tion from saliency dataset contributes to multi-label classi-

fication. We can see that concatenating two RSN-50 base-

lines (i.e. RSN-50 Dual-stream Baseline) can improve the

mAP to 72.1% from 71.5%. The additional saliency infor-

mation learned by the proposed RSN-50 dual-stream model

would further improve the mAP to 72.5%. Similarly, the

proposed RSN-50 dual-stream model overall achieves bet-

ter performances than the RSN-50 baseline in C-P, C-R, C-

F1, O-P, O-R, and O-F1. C-F1 and O-F1 of the proposed

RSN-50 dual-stream model are 60.3% and 65.2%, whereas

the ones of the RSN-50 baseline are 57.9% and 63.2%, re-

spectively. The improvement implies that visual saliency

information is helpful for multi-label classification. Then,

it is interesting to know the object size in favor of the pro-

posed dual-stream model.

5.3. Effects on Various Cluttered Scenes

To understand how saliency information working in dif-

ferent levels of cluttered scenes, we experiment the pro-

posed dual-stream model with the images in different lev-

els in terms of clutteredness and see how the performance

varies in response to this factor. To quantify the level of

clutteredness of an image, the number of objects/instances

in the scene is one of the feasible indicators. Therefore,
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Figure 3: (a) The increase of mAPs with numbers of objects in a scene. The mAPs are smoothed by convoluting with a

moving average [0.3333, 0.3333, 0.3333]. The start and the end of the mAPs vector are padded with the boundary value.

This reveals how saliency information works with the numbers of objects. (b) The histogram of number of objects in a scene.

It shows that the most images on MS COCO has less than 20 objects.
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Figure 4: Improvement in AP w.r.t. each category with the proposed dual-stream model. It is sorted by the improvement and

can be observed that APs of 70 categories out of 80 are improved by the proposed dual-stream model. This implies that the

feature learned for visual saliency prediction is useful for multi-label image classification.

we first group the images in the validation set according to

its number of objects. Then, we compute mAP w.r.t. each

group of images.

Figure 3a shows the increase of the classification per-

formance (mAP) with the number of objects in the image.

The mAPs are smoothed by convoluting with a moving av-

erage [0.3333, 0.3333, 0.3333]. The start and the end of the

mAPs vector are padded with the boundary value. It can be

seen that the proposed dual-stream model consistently out-

performs the baseline in images with fewer objects, while

for more cluttered scenes, the performance improvement

is less significant. Particularly, the additional saliency in-

formation improves the mAP from 0.7145 to 0.7304 when

there is only one object in an image. This is because that

saliency information captures the important regions of the

object for better classification. Since the mAP is calculated

upon all samples instead of an individual sample, we re-

port the histogram of the number of objects in Figure 3b to

show the distributions of the groups of images. Most images

contain less than 20 objects, and their mAPs are relatively

unbiased thanks to the scale of samples.

5.4. Categorical Performance

To compare the roles of saliency information across dif-

ferent object categories, we plot the improvements in AP

(AP of the proposed dual-stream model − AP of the base-

line) for each category. As shown in Figure 4, the additional

saliency information provides more performance gain on

the categories ‘handbag’, ‘snowboard’, ‘wine glass’, ‘ba-

nana’, ‘donut’, ‘remote’, and ‘book’, which on average oc-

cupy relatively small areas. On the other hand, the AP

improvement of the category ‘hair drier’ is decreased, and

its average size is relatively large and ranked at the 34th

largest category. Therefore, we believe visual saliency im-

proved the classification performance by localizing small

but salient objects, which tend to be overlooked by conven-

tional classification models.



(a) Bus: 0.2042 v.s. 0.5920

(b) Tie: 0.1866 v.s. 0.6666

(c) Handbag: 0.2393 v.s. 0.8325

(d) Clock: 0.3488 v.s. 0.6884

Figure 5: Class activation maps and classification confi-

dences of the baseline (left) and the proposed dual-stream

model (right). Specifically, the images are misclassified by

the baseline, but correctly classified by the proposed model.

This implies that saliency information helps the model lo-

cate the regions of interest w.r.t. a certain label.

5.5. Visualization

In this section, we visualize class activation maps

(CAMs) to illustrate how neural network features are

changed by the proposed dual-stream model. As introduced

by Zhou [34], by combining all features maps with class-

specific weights, the CAMs localize the discriminative re-

gions for each object category, bridging the gap between

image regions and semantic labels. Figure 5, shows typical

examples that are misclassified by the baseline model but

correctly classified by the proposed dual-stream model. As

can be seen, in the dual-stream model, CAMs focus on the

relevant regions of interest, to correctly classify the corre-

sponding objects, while the baseline localizes and classify

the objects incorrectly. For instance, the dual-stream model

does not attend to the man and the horse in Figure 5a when

classifying the bus. Similar observations can be obtained in

Figures 5b-5d.

6. Conclusion

In this work, we analyze the correlation between visual

attention and multi-label image classification. We observe

that visual saliency is correlated to the results of multi-label

classification, due to better localization of semantically-

related regions. Inspired by the observation, we propose

a dual-stream model to integrate visual attention models

into multi-label image classification network. The proposed

dual-stream model exploits the advantages of human vi-

sual attention data. Experimental results on the MS COCO

dataset shows that the proposed dual-stream model achieves

better performance to the baseline. Moreover, our analysis

shows that visual saliency feature is helpful for various lev-

els of scene clutteredness.
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