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Abstract

This paper presents a real time video surveillance sys-
tem which is capable of tracking multiple humans simulta-
neously. To better deal with various challenging issues such
as occlusions, sharp motion changes and multi-person con-
fusions, we propose an intelligent fusion framework where
multiple cues are combined to seek the optimal objects state
and more reliable cues have larger influences on the final
decision. Further, part based human tracking provides a
second-level information fusion in that parts with weak ob-
servability can be compensated by tracking other more vis-
ible ones, which demonstrates its effectiveness for highly
articulated objects like humans.

1 Introduction

Multiple human tracking is one of the most challenging
research topics in computer vision. The literature on hu-
man tracking is very large and some related methods are
reviewed in the next section.

Many existing methods apply single cue, e.g. color in-
formation [4, 13, 14], for tracking. Color information is
simple and effective when colors are distinguishable and no
sharp illumination changes exist. However, for many real
applications, color alone is not reliable due to background
clutter, illumination change, low video resolution, etc. Dif-
ferently, some authors fuse different visual cues [17, 21], or
visual and audio data [2, 24] to more reliably solve prob-
lems in multiple human tracking. In this paper, we focus on
fusing different types of visual information in a more natu-
ral way. Specifically, features we consider include motion,
appearance and other local image information.

• Human motion is more complicated than motion of
other objects like cars or faces. For humans, large ac-
celerations or sudden changes in motion are common;
and human articulation further aggravates the problem.

Therefore human dynamic models are unreliable and
used with caution in our method.

• Compared with motion, appearance information is
more stable. People don’t tend to change appearance
from frame to frame. We build an appearance model
for each body part by clustering candidate body parts,
and then use these models to measure appearance sim-
ilarities for body parts in later frames.

• Other useful detection or tracking modules are also in-
corporated into our system. For example, we build a
head detector based on convolutional neural network,
which helps to detect and decompose humans in each
frame. When the head detection module misses possi-
ble humans, a torso detection procedure is carried out
to provide reliable observation data. Such information
offers strong local image information, which greatly
compensates the irregularity of the human motion.

As pointed out by Collins et al. [3], the most distinc-
tive features will change as the object moves from place
to place. To address this problem, the multiple cues used
in our framework perform intelligently in that their weights
are adapted over time so that more reliable cues always con-
tribute more to the final decisions.

Another novelty in this work is that in the fusion frame-
work, human body is divided into an assembly of natural
body parts to provide the second-level multiple cues to track
people. By modelling and tracking each part separately, and
imposing global constraint among them, the occlusion of
some parts can be compensated by tracking more visible
parts. Also, the problem of human articulation and fast mo-
tion are alleviated since the motion of a certain body part is
obviously more regular than that of the whole human body.

2 Background and Related Work

There has been considerable work in tracking humans.
A simple way to create appearance model is to model the
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whole human body as one blob [22]. Such models are too
rough for highly non-rigid objects like humans and robust
tracking procedure needs to depend on other models like 3D
human shape models [22]. At the other extreme are some
local feature based tracking methods. In [9], the appearance
is described using several typical corners instead of using
the raw texture information of the whole image. Those ap-
proaches succeed in handling certain partial occlusions.

Part based human tracking methods [13, 14, 18] is a mid-
dle ground of the above two extremes. By decomposing
human body into several parts, on one hand, it has its ad-
vantage on dealing with human articulation and partial oc-
clusions; On the other hand, it is less sensitive than purely
local feature based approaches. Ramanan et al. [13] model
the 2D view of the human body using 9 colored, textured
rectangles and track them based on the assumption of co-
herent appearance. Later they [14] developed an effective
algorithm to track people by finding stylized poses. The
problem is that it is computationally too expensive to ap-
ply pictorial structure model to enforce spatial relationships
in each frame. Part based representations are also employed
for human detection [11, 12, 19]. Those methods provide el-
egant results for human detection. However, completely ig-
noring dynamics and performing tracking by detecting parts
in each frame risks high false alarms or false negatives for
continuous tracking applications.

The difficulty in tracking humans can be generalized as:
Firstly, occlusion in multiple human tracking, in general,
remains a challenging issue. Although there are some sys-
tems proposed to deal with the occlusion problem either ex-
plicitly [16, 20, 23] or implicitly [6, 8, 10, 18], so far as I
know, only small number of humans having transient occlu-
sion can be tracked fairly reliably. Secondly, Human motion
contains lots of articulated motions, and modelling the hu-
man body as a whole blob can only handle limited shape va-
riety. Thirdly, human can move very fast and abruptly. Peo-
ple use the state in the current frame and a dynamic model
to predict the state in the next frame. Although these pre-
dictions can be refined using image data [1, 7, 15], stable
dynamics are still hard to obtain.

3 System Structure

The proposed algorithm is designed and tested in a sys-
tem as Fig.1 depicts. Firstly, a background modelling al-
gorithm is used to generate foreground mask, the result of
which is sent to a head detector. Then the head detection
results and camera calibration information are combined to
obtain human positions and sizes as the outputs.

In this paper, we focus on the Part Based Human Track-
ing module, where tracking decision is an overall consid-
eration based on part observations, dynamics, and human
model constraints.

Figure 1. System Diagram.

For the following sections, in section 4, a method to ob-
tain observation information for each human part is pro-
posed. Section 5 introduces a tracking algorithm for each
human part. In section 6, a probabilistic similarity mea-
sure is derived from the human model that combines the
local features and global relationship constraints into a sin-
gle equation to guide localization of parts and humans in
each frame.

4 Observation

The observation information for each human part is ob-
tained using the original image frame, the foreground mask
generated by a background modelling module and the head
detection results from a head detector. Any background
modelling method and head detection module can be used
to perform the human body decomposition, which identi-
fies human parts, as will be introduced later. The origi-
nal image provides the human part appearance information,
which is modelled using color histogram calculated within
the bounding box of each part.

In section 4.1, we present the human model adopted in
this work, section 4.2 describes the detailed approach of hu-
man body decomposition based on the human model, and in
section 4.3, part appearance models are built using the de-
composition results.

4.1 Human Model

In our human model, a 2D view of the human body is
modelled as a puppet of colored rectangles. 4 segments con-
sisting of the head, the torso and two legs are used to rep-
resent the body. On one hand, to characterize the property
of each part itself, orientation, width, and height for each
part are modelled. On the other hand, the geometric rela-
tionships between parts are also modelled, which include
relative positions between the parts and connectivity con-
straints, i.e., each part other than the torso needs to be con-
nected to the torso, where the connectivity constraints are
relaxed in that two parts are considered connected if they
are close enough.
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Figure 2. Human Body Decomposition.

4.2 Human Body Decomposition

Fig.2 is an illustration of the decomposition result, where
the rectangles are the bounding boxes of the human parts.

4.2.1 Decomposition with head detection result

If head detection result is available, the decomposition pro-
cess begins by estimating the size and position of the whole
human body based on its head size and position. We obtain
the bounding boxes for the torso and two legs by: Firstly,
estimating the region of each part based on the human body
size and position as well as relative positions of the parts
provided by the human model. Secondly, on the foreground
mask, extracting the major axis of each part by using PCA
on the points falling in each estimated region and choos-
ing the first principle axis. Thirdly, obtaining rectangles as
the bounding boxes for each part according to its estimated
region, major axis and the foreground mask.

4.2.2 Decomposition without head detection result

When head detection result is unavailable and possible hu-
mans exist, a torso detection method is proposed to com-
pensate the observation information. Occlusion is one of
the most possible reasons to cause head missing and the ca-
pability of this module to handle occlusion is shown.

Figure 3. Illustration of Torso Detection (a)
without occlusion; (b) with occlusion.

For a torso detection candidate, we search for foreground
blobs (FBs) in the current frame that are overlapped with the
candidate torso in the previous frame. When no occlusion

happens, the case is straightforward (Fig.3(a)). The white
and gray rectangles represent the bounding boxes of the FB
in the current frame and the candidate torso in the previ-
ous frame, respectively. To find the best torso state in the
current frame, locate the initial torso with its center at C4,
the corner of the FB that is closest to the center of the torso
in the previous frame (marked dot), and search for the best
state using the method introduced in section 5.3. The result-
ing best state of the torso in the current frame is illustrated
as the black rectangle. When occlusion happens, as in the
case of Fig.3(b), although the FB becomes larger, the initial
torso center for the right object is still C4. Therefore, the
search will stop at the local maximum and not go too far
to the other torso even if the two torsos are of the similar
appearances.

Using the localized torso as baseline information, the
head and two legs can be further localized based on the fore-
ground mask and human model, similar as in section 4.2.1.

4.3 Part Appearance Model

The decomposition results for the first a few frames
are analyzed to obtain the part appearance models. If the
decomposed parts of a person satisfy human model con-
straints, they are kept and then each collection of one hu-
man part is sent to a mean shift procedure to run for the
underlying part appearance model for that part [13].

More specifically, let ai be the constant underlying ap-
pearance feature vector for the ith part, pi

t, oi
t, wi

t and
hi

t the location, orientation, width and height of the part
in frame t and Zi

t the collection of the image patches
in frame t, indexed by given position, orientation, width
and height. The objective here is to achieve the maximal
P (Zi

t |pi
t, o

i
t, w

i
t, h

i
t, a

i). In essence, we are looking for a
point in the domain of ai such that for different ts, there are
many Zi

t(p
i
t, o

i
t, w

i
t, h

i
t)s that look like that point. By clus-

tering the representations of the part appearances collected
from the first a few frames, we are obtaining a reasonable
approximation to the true max marginal of ai.

In this work, the clustering is realized using mean shift
iterations. The advantage of the mean shift clustering is
that it is fast compared with many other clustering algo-
rithms. Moreover, since the Zi

t(p
i
t, o

i
t, w

i
t, h

i
t)s are obtained

from the decomposed results which are checked with both
the part’s own estimated properties (e.g., orientation, width
and height) and geometric relationships using the human
model, therefore the instances of the relevant part will look
like each other. This satisfies the requirement of mean shift
clustering that the initialization should be good enough.

Once the appearance models are generated for all parts,
they keep updated in later frames using a simple adaptive
filter, which allows compensation for lighting changes, etc.
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5 Human Part Tracking

The part based human tracking method uses Hidden
Markov Models to model human parts, where the hidden
state for each part includes location, orientation, width,
height, velocity and appearance information. Each part of a
person is identified by index i and its state at time t is repre-
sented by xi

t = (pi
t, o

i
t, w

i
t, h

i
t, v

i
t, a

i
t), where pi

t, oi
t, wi

t, hi
t,

vi
t and ai

t are the image location, orientation, width, height,
velocity and appearance of the ith part, respectively. The
maximum a posteriori (MAP) solution which maximizes

P (xi
t|zi

t) ∝ P (zi
t|xi

t)P (xi
t) (1)

is desired, where P (xi
t) = P (xi

0) for t = 0 and P (xi
t) =

P (xi
t|xi

t−1) for t > 0.

5.1 Dynamics

The parts’ predicted spatial distribution for the current
image are obtained using Kalman Filter prediction.

The novelty for dynamics in this study lies in the more
thorough use of the observation information: instead of us-
ing simple observations such as foreground blobs, we de-
velop a more sophisticated approach to obtain measure-
ments, as (will be) introduced in section 4, sections 5 (5.2
and 5.3) and section 6, to update the Kalman Filter.

5.2 Observation Likelihood

The probability P (zi
t|xi

t) describes how the underlying
state xi

t of the ith part fits the observation zi
t, and is defined

as

P (zi
t|xi

t) = (P i
A)(w

i
A)t

t × (P i
D)(w

i
D)t

t × (P i
S)(w

i
S)t

t , (2)

where for each part i at time t (in the following, the indexes
i and t are omitted to keep notations simple),

PA = 1
αe−βDistrdist(HC ,HM ),

PD = ( 1
σa

√
2π

e
−(ccur−cdec)2

2σ2
a )wc ×

( 1
σb

√
2π

e
−(θcur−θdec)2

2σ2
b )wθ ,

PS = 1
σc

√
2π

e
−(λ(|diffW /W |+|diffH /H|+|diffW /W−diffH /H|))2

2σ2
c .

The observation likelihood is a weighted combination of
appearance similarity, decomposition result coherence and
scale similarity. wA, wD and wS are weights of the three
components in the likelihood computation for a certain hu-
man part, which are adaptive to different sequences and dif-
ferent scenarios. The underlying principle is that more reli-
able information and more observable parts are always as-
signed larger weights, e.g., appearance is more trusted when

motion is irregular and torsos usually have larger weights
than legs except that torsos are occluded. Besides initial-
izations based on preliminary analysis, those weights keep
updated throughout the sequence using an IIR filter.

DistrDist is a function used to compute the distance
between the histogram distribution of the current image
patch HC and that of the appearance model HM . In
our implementation, the distance function is chosen as:

Distrdist(HC ,HM ) = 1 −
∑m

i=1
HC

i HM
i√∑m

i=1
(HC

i
)2

∑m

i=1
(HM

i
)2

,

where HC and HM are with m bins each. ccur is the center
of the current bounding box of the specific part, and cdec

is the center of the decomposed part. θcur and θdec repre-
sent the orientations of the current bounding box and the
decomposed result, respectively. wc is the weight of the
location difference and wθ the weight of the orientation dif-
ference. W and H denote the width and height of the pre-
vious bounding box. diffW and diffH are the differences
in width and height of the previous and current bounding
boxes, and |diffW /W − diffH/H| penalizes the incon-
sistence of aspect ratio. In this algorithm, λ is chosen to be
(W + H)/2. α, β, σa, σb and σc are parameters w.r.t. the
variances of the information sources.

5.3 Tracking

For each human part, Kalman filter prediction and hu-
man body decomposition result serve as two threads for the
initialization of the state in a new frame. Each of the two
components is indispensable since motion or body decom-
position module alone may not be robust under certain cir-
cumstances, e.g., when the motion changes abruptly, such
as a walking person suddenly becomes static, the Kalman
Filter may lose track of the person; while human body de-
composition can not generate satisfactory results under oc-
clusion.

The tracking of a single human part is essentially the pro-
cess to find the best match with defined features. In this
study, we propose an efficient mean-shift-alike tracking al-
gorithm to find the best state around both initial states. In
each iteration of the tracking algorithm, we search at sev-
eral neighboring values and move the target window to the
place with the highest posterior, instead of simply moving
along the calculated moving vector through a weighted ker-
nel computation in the mean shift iteration. This alternative
has a larger recovery probability once one iteration goes in-
correct. For efficiency concerns, the search for the loca-
tion, orientation, width and height are realized sequentially.
Starting from different initial states, the convergence points
are local maxima of the posterior (Eqn.(1)) and are taken as
the candidates for the specific part.

For each part, multiple candidates are kept for a human
level evaluation, as will be introduced in the next section.
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6 Human Body Assembling

In contrast with the model of a particular part, a model
of a person should represent the generic shapes of human
body. We use the posterior of the whole human configura-
tion to describe how the underlying state of the person fits
the dynamics, observations and human body model, which
is a combined consideration of the posterior for each part
and the model constraints for each human as a whole. The
advantage of this measurement is that it couples the local
and global constraints to guarantee a satisfactory match and
the human body parts to be of consistent global spatial and
size relationship as well as having consistent local shapes.

The human model assembling problem is to match a set
of observed human parts, i.e., parts with high enough pos-
teriors, against a set of human parts defined by the models.
Note that this is not a one to one mapping due to occlusion,
false alarm, etc. Given the frame at time t and the person is
present in the image, the MAP solution for the single person
tracking problem is obtained by

max P (Xt|Zt, p), (3)

where p denotes “person”.
Applying the Bayesian rule to Eqn.(3) yields

max P (Xt|Zt, p) ∝ max P (Zt|Xt, p)P (p|Xt)P (Xt),

where P (p|Xt) is proportional to the number of identi-
fied parts, and the first and third terms can be explained
as P (Zt|Xt, p)P (Xt) =

∏m
i=1(P (zi

t|xi
t)P (xi

t)). Here, m
is the number of identified human parts for each person,
where connectivity constraints are enforced to generate
those parts. P (xi

t) is obtained the same way as discussed
in section 5 and P (zi

t|xi
t) is computed using Eqn.(2).

When multiple human tracking is dealt with, the poste-
rior becomes the product of the posteriors for single per-
son tracking, where the derivation for each single person
is identical to that for Eqn.(3). To track multiple humans
simultaneously, all reasonable joint configurations for the
persons are evaluated. A configuration is considered rea-
sonable if the observed parts compose humans that fit the
defined human model. The objective in the multiple human
cases states as

max

N
′

∏

n=1

P ((Xn)t|(Zn)t, pn)P (N
′ |N), (4)

where N
′

is the number of persons in the current configu-
ration and N the expected number of persons kept by the
system. P (N

′ |N) penalizes for number inconsistency.
In some sense, to obtain the MAP of a single part is

to locate each individual part in the frames while seeking

the MAP introduced in this section is evaluating the over-
all configuration of a person and performing the basic data
association task. Furthermore, the data association task pre-
sented in this paper has a significant difference to many
other multiple human tracking methods in that human part
instead of single human is used as the basic unit for the task.

In this algorithm, we do not employ detailed human
models, which may include more human parts or have more
elaborate structures, e.g., the pictorial structure. Instead, we
employ a coarse human model and at the same time, make
full advantage of other useful but not so time-consuming
modules to assist tracking.

7 Experiments

Fig.4 displays the results of tracking a person in low
resolution instances. Moreover, different parts of the per-
son share similar colors in this sequence, which imposes
difficulty for many part based tracking methods using ap-
pearance information. In our fusion framework, the insuf-
ficiency, or unreliability, of certain information are com-
pensated for by other cues. In this case, head detection
results and foreground mask are more stable than appear-
ance information, therefore are more depended by the sys-
tem. Fig.4(b) shows the case of self-occlusion, where the
occluded part is deleted for human body assembling.

(d) (e)

(b) (c)(a)

Figure 4. Tracking in low resolution.

In a second example, a simple background modelling
method is applied, which tends to generate weak foreground
mask information. As illustrated in Fig.5, the unsatisfactory
mask throughout the sequence did not severely degenerate
the tracking performance. The same effect, however, can
largely perturb background subtraction based blob trackers.

Fig.6 shows another example, demonstrating the capa-
bility of the tracker to deal with inter-occlusion. When two
people with similar appearance walk across each other, the
decomposition module is difficult to carry out and appear-
ance information becomes ambiguous. In such cases, the
observable parts contribute more to the overall evaluation,
which makes the tracking procedure constantly robust, e.g.,
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Figure 5. Tracking with weak foreground
mask information.

for one of the persons in Fig.6(d), only the head and torso
are used to make final decision.

(c)(b)(a)

(f)(e)(d)

Figure 6. Tracking with occlusion. Sample
frames before(a,b), in(c,d,e), and after(f) oc-
clusion are shown.

Careful C++ implementation of the tracking algorithm
allows real-time (20 fps on a 3.2 GHz PC) processing of the
video streams, including the running of the head detection
and background modelling modules.

8 Conclusions

This paper presents an integrated human body decompo-
sition, part localization and human tracking vision system,
where information fusion is intelligently performed. By
modelling and tracking each part independently, and eval-
uating them using the whole human model, a natural way to
robustly handle human articulation and partial occlusion is
provided. It demonstrates that the system can track humans
in various shapes, sizes, clothes, postures and movements.
Future work will focus on the quantitative evaluation of the
algorithm using public data, e.g., PETS04 dataset [5].
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