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Abstract

Illumination changes cause object appearance to change

drastically and many existing tracking algorithms lack the

capability to handle this problem. The Earth Mover’s Dis-

tance (EMD) is a similarity measure that is more robust

against illumination changes. However, EMD is computa-

tionally expensive and we therefore propose the Differen-

tial EMD (DEMD) algorithm which computes the deriva-

tive of the EMD with respect to the object location so that

the EMD does not need to be computed for every location

in the tracking window. The fast differential formula is de-

rived based on the sensitivity analysis of the simplex method

as applied to the EMD formula. To further reduce the com-

putation, signatures, i.e., variable-size descriptions of dis-

tributions, are employed as an object representation. The

new algorithm models local background scenes as well as

foreground objects to handle scale changes in a principled

way. Extensive quantitative evaluation of the proposed al-

gorithm has been carried out using benchmark sequences

and the improvement over the standard Mean Shift tracker

is demonstrated.

1. Introduction
Illumination changes are a commonly encountered phe-

nomenon in visual tracking. Shading, inter-reflections and
other lighting condition changes cause illumination to vary
spatially both in intensity and in spectral composition,
which may result in drastic changes of object appearance.

Traditional methods to approach this problem include
using illumination-invariant features. The contour based
methods such as snakes, balloons, and geodesic active con-
tours all belong to this category. However, these methods
may fail when the contours are not stable, or there are not
many contours, e.g., for small objects. Image photomet-
ric, i.e., color, texture, etc., based tracking methods have
gained popularity in the last decade. Unfortunately, these
methods are sensitive to illumination changes due to their
reliance on image photometric variables. One solution is

to pre-process the image using some color constancy al-
gorithms [10, 12, 15]. The drawback of such approaches
is their degenerated performance under fixed illumination.
Freedman and Turek [11] have recently proposed to com-
pute illumination-invariant optical flow fields so as to utilize
the photometric information under illumination changes,
but the algorithm can be slow, as addressed by the authors.

Instead of using illumination-variant features, or apply-
ing transforms to make the features illumination-invariant,
this paper approaches illumination changes using the EMD
[18] as a similarity measure to match color distribu-
tions, which allows the features to vary under illumination
changes. The problem with the EMD is its expensive com-
putation, as each calculation requires solving a linear pro-
gramming problem. This prohibits its application in real-
time tracking systems.

The focus of this paper is to derive a gradient descent
method to find the object location quickly using the EMD
as a similarity measure. Since the objective of tracking us-
ing EMD is represented in the form of linear programming,
direct differential methods [9, 13] cannot be applied. In this
work, we conduct a two-phase analysis: firstly, we perform
sensitivity analysis of the simplex method, i.e., an efficient
algorithm to solve the EMD, to obtain the derivatives of the
EMD with respect to the object colors. Secondly, in order to
derive the derivatives of the object colors with respect to the
location, we represent the statistical color feature in a kernel
framework. By convolving the feature with an isotropic ker-
nel, these derivatives can be calculated directly. Having the
results of the two-phase analysis, the differential formula of
the EMD with respect to the location is obtained.

To further reduce the computation, signatures [18] are
employed as object representations. Unlike histograms, the
structures of signatures are adjustable, in a sense that will
be made precise in section 3. The use of color signatures
significantly reduces the size of the EMD problem and con-
sequently requires much less computation as the EMD has
an exponential worst case running time.

Many existing tracking algorithms which consider fore-
ground objects alone fail to estimate the object scale when
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the object has a similar feature value for the entire object
as well as parts of the object [7]. To cope with this prob-
lem, the proposed algorithm models both the objects and
local background scenes, and the matching step considers
the similarity measures for both of them. Discriminative
tracking methods [3, 4, 8] have also utilized background in-
formation, but in a different manner than the generative way
used in our approach. Those methods focused on discrim-
inating the foreground objects from the background scenes
and the scale adaptation problem was not explicitly handled.

The rest of the paper is organized as follows: section
2 describes related work. Section 3 discusses the details
of the DEMD tracking algorithm. Section 4 proposes the
DEMD tracking with background modeling to handle scale
changes. Section 5 demonstrates promising comparative
and quantitative results and section 6 concludes the paper.

2. Related Work
There are three areas of computer vision that bear on

the work presented in this paper: object representations,
similarity measures, and optimization techniques for kernel
based tracking. We briefly review the most relevant litera-
ture in each case.

The literature on object representations is vast. In this
paper, we use color distributions as our representation due
to their simplicity, efficiency and robustness to rotation,
scaling and partial occlusions. The early work of Swain
and Ballard [19] employed color histogram as a global vi-
sual feature, demonstrating that color can be exploited as a
useful feature for rapid detection. Later, methods such as
the Mean Shift [9] and the CAMShift [6] algorithms were
proposed using this representation for visual tracking.

Similarity measures between histograms broadly fall
into two categories: the bin-by-bin similarity measures that
only compare contents of corresponding histogram bins;
and the cross-bin similarity measures that also compare
non-corresponding bins. In practice, most existing his-
togram based tracking algorithms use bin-by-bin similarity
measures such as the Bhattacharyya coefficient based dis-
tance [14] and the SSD [13]. These approaches tend to
break down under color variations as no ground distances
with different bins are used and thereby a small amount of
deviation is treated the same way as a large difference as
long as the color falls into a different bin. The cross-bin
similarity measures are rarely employed for tracking largely
due to their computational complexity. Ling and Okada [16]
proposed to reduce the computation of EMD using EMD-
L1 and applied it to image feature matching, but the method
is limited by using the L1 distance as a ground distance.

Real-time tracking imposes rigorous requirements on
the algorithm speed. Instead of a brute-force search, ker-
nel based objective functions allow the use of optimization
techniques to find the optimal object state quickly. Some

commonly used approaches include the Mean Shift algo-
rithm [9] and the Newton style minimization procedure
[13]. Generally, the use of these techniques require the ob-
jective function to be written in an closed form.

3. Differential EMD (DEMD) Tracking
3.1. The EMD as A Similarity Measure

The EMD [18] gains its name from the intuition that
given two distributions, one can be seen as a mass of earth
properly spread in space, the other as a collection of holes
in that same space. The EMD measures the least amount
of work needed to fill all of the holes with all of the earth,
where a unit of work corresponds to transporting a unit of
earth by a unit of ground distance.

In this paper, the EMD is employed to compare the color
distributions of the object model and that of the object can-
didate. The distributions are represented in the form of sig-
natures. Formally, a signature represents a set of feature
clusters and is defined as

s = {su}u=1,..,m, su = (au, wu), (1)

where m is the number of clusters in the signature, au is the
mean of the u-th cluster and wu the weight of the cluster.

Representing the model distribution as model signature,
and the candidate distribution as candidate signature, we
denote the ground distance between the u-th cluster in the
model signature and the v-th cluster in the candidate sig-
nature as duv , and the flow (amount of transported earth)
between them as fuv(y). The goal is to find the location y
that corresponds to the smallest EMD

arg min
y

(min
fuv

Z(fuv(y))). (2)

In Eq.2 the inner optimization is to find the EMD for each
location, and the outer one is to obtain the best object loca-
tion. According to the definition of EMD [18], Z in Eq.2 is
formulated as

Z(fuv(y)) =
∑mM

u=1

∑mC

v=1
duvfuv(y),

subject to
∑mM

u=1
fuv(y) = wC

v (y), 1 ≤ v ≤ mC

∑mC

v=1
fuv(y) = wM

u (y), 1 ≤ u ≤ mM

∑mM

u=1

∑mC

v=1
fuv(y) = 1

fuv(y) ≥ 0, 1 ≤ u ≤ mM , 1 ≤ v ≤ mC .

In these equations, the superscript M denotes the object
model and C is for the object candidate. wC

v is the weight



of the v-th cluster in the candidate signature and wM
u the

weight of the u-th cluster in the model signature. mC and
mM are the numbers of clusters in the candidate and model
signatures, respectively.

3.2. Overview of the DEMD Algorithm

Figure 1. Diagram of the DEMD algorithm.

The main theoretical contribution of the paper is the
derivation of a differential formula to compute the deriva-
tive of the EMD with respect to the location so as to locate
the object quickly. Since the formulation of the EMD is
a linear programming problem, derivative of the EMD can
not be directly computed. To overcome this difficulty, we
propose a two-phase algorithm, as depicted in Figure 1.

Specifically, we formulate the gradient descent represen-
tation of the EMD with respect to the location as ∇yZ(y),
which can be expressed using the change of the EMD with
respect to each cluster weight ( ∂Z(y)

∂wC
v (y)

) and the derivative of
the cluster weight with respect to the location (∇ywC

v (y))
as

∇yZ(y) =
∑mC

v=1

∂Z(y)
∂wC

v (y)
∇ywC

v (y), (3)

where wC
v (y) is the weight of the v-th cluster in the candi-

date signature and mC the number of clusters in the candi-
date signature.

In the following two subsections, we first calculate
∂Z(y)

∂wC
v (y)

through a sensitivity analysis of the simplex
method, followed by a density gradient estimation of the
color feature to obtain ∇ywC

v (y).

3.3. Simplex Method and Sensitivity Analysis

3.3.1 Simplex Method in Matrix Form

To perform the sensitivity analysis the problem in Eq.2 is
first represented in a matrix form. The starting matrix is
then transformed to an optimal form where the change of
EMD with respect to the changes of the cluster weights are
expressed in an explicit way.

Specifically, since there are mM × mC variables fuv(y)
and mM×mC constants duv in Eq.2, we use column vectors
f(y) and d, both of size mM×mC , to represent the flow and
the ground distance. Stacking the first three equations of the
constraints in Eq.2, the coefficients, which are either 1 or 0,

can form a 2-dimensional matrix of mM + mC + 1 rows
and mM × mC columns. Denoting this coefficient matrix
as H and representing [(wC(y))T (wM)T 1]T as b(y), we
have the matrix form of Eq.2 as

arg min
y

(min
f

Z = dT f(y)), (4)

subject to
Hf(y) = b(y)

f(y) ≥ 0.

1. To perform matrix transformations, the matrix is
reformulated. Since there are mM × mC variables and
mM + mC + 1 constraints in the problem, there are mM +
mC +1 basic variables, i.e., variables of nonzero value, and
mM ×mC − (mM +mC +1) non-basic variables. Group-
ing all the basic variables together and all the non-basic
variables together we split the flow vector f into [fT

B fT
NB ]T

where the subscript B denotes basic variables and NB is for
non-basic variables. The ground distance vector d is simi-
larly divided as [dT

B dT
NB ]T , and H = [HB HNB ]. Thus

the starting tableau for the simplex method is written as

Z fB fNB RHS
1 −dT

B −dT
NB 0

0 HB HNB b

Table 1. Starting Tableau

In this table, RHS denotes the right hand side of the
equations. The second row corresponds to the objective
function of Eq.4, and the third row is a vector representa-
tion of all the constraints in Eq.4.

2. Apply matrix transformations (details omitted due to
space limitations), the optimal tableau is

Z fB fNB RHS
1 0 −dT

NB + dT
BH−1

B HNB dT
BH−1

B b
0 I H−1

B HNB H−1
B b

Table 2. Optimal Tableau

3.3.2 Sensitivity Analysis

Based on the optimal tableau we analyze the sensitivity of
the EMD to a change in the cluster weights of the color sig-
nature. Note that sensitivity analysis can only be performed
on the wC(y) part, i.e., the cluster weights corresponding
to the object candidate.

From the second row of Table 2, we have Z = dT
BH−1

B b.
Assume b is changed to b

′
, where in b

′
, b

′
i = bi+Δbi, (1 ≤

i ≤ mC), i.e., the weight of the ith cluster changes, and bj

(j �= i) remain the same. The optimal solution becomes

Z
′
= dT

BH−1
B b

′
= dT

BH−1
B b + dT

BH−1
B [0..0 Δbi 0..0]T



= dT
BH−1

B b + kiΔbi,

where ki =
∑mM+mC

l=1 (dB)l(H−1
B )li.

Therefore,

∂Z

∂bi
= limΔbi→0

ΔZ

Δbi
=

kiΔbi

Δbi
= ki. (5)

As the sum of the cluster weights of the candidate signa-
ture is 1, the change of color in one cluster causes a change
to the value of the other clusters due to a normalization pro-
cedure. Considering this constraint leads to

∂Z

∂bi
= ki −

∑
j �=i

kj
bj∑
j �=i bj

, i = 1, ..., mC . (6)

The proof is given in the Appendix A. The intuition of
this equation is the projection of the ki (Eq.5) from a mC

dimensional space to a mC − 1 dimensional space, where
the “−1” is imposed by the constraint of

∑mC

i=1 bi = 1.
Eq.6 provides an explicit formula of how the EMD

would change with respect to the color changes.

3.4. Density Gradient Estimation of the Color Fea-
ture

3.4.1 Representing Objects using Color Signatures

In this paper we use color signatures instead of color his-
tograms to represent the objects due to their compactness.
Figure 2 illustrates an example of using a 16-cluster signa-
ture to represent the image. Though the cluster number is
small, the color of the image is well preserved.

(a) (b) (c)
Figure 2. An example of a color signature. (a) Original image
(from the MIT Pedestrian Dataset [17]). (b) Rendered image
using a 16-cluster signature. (c) Color signature.

Without loss of generality, the object model is consid-
ered as centered at the spatial location 0 and a kernel based
representation [9] is defined according to Eq.1 as sM =
{sM

u }, u = 1, .., mM , where sM
u = (aM

u , wM
u ) and

wM
u = β

∑N

n=1
K(‖xn

h
‖2)δ[c(xn) − u]. (7)

In this equation the density in the feature space is clus-
tered into mM clusters. xn denotes 2D image coordinates,

and the number of pixels is N . c is a function which as-
sociates the pixel at location x to the cluster which is the
nearest to the color of that pixel. K(x) is an isotropic ker-
nel which assigns a smaller weight to the locations that are
farther from the center of the object. The summations are
performed over a local window around the object center,
with h being the window radius. δ is the Kronecker delta
function and β is the normalization factor.

Similarly, the object candidate is defined at location y
as sC(y) = {sC

v (y)}, v = 1, .., mC , where sC
v (y) =

(aC
v (y), wC

v (y)) and

wC
v (y) = γ

∑N

n=1
K(‖xn − y

h
‖2)δ[c(xn) − v]. (8)

Here, the feature space has mC clusters and γ normal-
ized the feature.

3.4.2 Estimation of the Density Gradient

Take the gradient of the cluster weights (Eq.8), we have the
density gradient of the color feature as

∇ywc
v(y) =

2γ

h2

∑N

n=1
(xn−y)g(‖y − xn

h
‖2)δ[c(xn)−v].

(9)
In this formula, g(x) = −k

′
(x), where k is the profile

of kernel K and is defined as k : [0, +∞) → R such that
k(‖x‖2) = K(x).

3.5. Closed-Form DEMD Tracking

Recall from Eq.3 that the gradient descent representation
of the EMD is ∇yZ(y) =

∑mC

v=1
∂Z(y)

∂wC
v (y)

∇ywC
v (y).

Substituting the RHS of Eq.6 for ∂Z(y)
∂wC

v (y)
and the RHS of

Eq.9 for ∇ywC
v (y) yields

∇yZ(y) =
2γ

h2

∑N

n=1
(xn − y)g(‖y − xn

h
‖2)πn. (10)

In Eq.10, the weight of each pixel xn is

πn =
∑mC

v=1
(kv −

∑
j �=v

kj
bj∑

j �=v bj
)δ[c(xn)− v] (11)

where kv =
∑mM+mC

l=1 (dB)l(H−1
B )lv.

Thus, the distance minimization can be efficiently
achieved based on Eq.10, using the following algorithm:

Algorithm 1 Fast Differential EMD (DEMD) Procedure

Input: Object center of the previous frame y0 = yi−1

Output: Initialized object center for the current frame yi
0

• Initialize the location of the object in the current frame
with y0. Evaluate EMD(y0) using Eq.2.



• Compute the weights {πn}n=1,..,N for the pixels in the
tracking window according to Eq.11.

• Compute the gradient ∇xZ(y0) based on Eq.10.

• Move the object along the gradient vector to one of
its 8 neighboring pixels y1. Evaluate EMD(y1) using
Eq.2.

• If EMD(y1) > EMD(y0), set yi
0 ← y0 and stop;

otherwise, set y0 ← y1 and go to the 1st step.

4. DEMD Tracking with Background Model-
ing

4.1. DEMD Tracking with Background Modeling

The DEMD algorithm provides accurate tracking results
under most scenarios. However, the method may be insuffi-
cient in cases of scale changes, background clutter, etc. To
determine the object scale and position in a principled way,
we model local background scenes as well as foreground
objects and consider the similarities of both components to
determine the object state. Using the notations in section
3, the goal is to find the object position y and scale σ corre-
sponding to the smallest sum of the EMD for the foreground
object and the EMD for the local background scene

arg min
y,σ

(min
fuv

Z(fuv(y, σ))+min
fBg

uv

ZBg(fBg
uv (y, σ))), (12)

where the superscript Bg denotes the local background
scenes. The formulations for Z are addressed in Eq.2 and
ZBG is formulated in the same way. The linear combina-
tion is found to be simple and effective in balancing the in-
fluence of the foreground objects and background scenes.

To achieve real-time performance the initial object lo-
cation for the current frame is obtained by the fast DEMD
algorithm, as discussed in section 3. This offers a good ini-
tialization for the following steps where the scale and posi-
tion of the object are adjusted iteratively according to Eq.12.
Figure 3 illustrates the method and the detailed algorithm
for the adjustment step is given in Appendix B.

4.2. Background Alignment

When the background is static, features on the same
background region, i.e., a rectangle with two overlapping
holes, in two consecutive frames are compared to estimate
the background similarity. With a dynamic background it
is not reasonable to compare the same regions in consecu-
tive frames. This paper allows for dynamic backgrounds by
aligning the background in consecutive frames by solving
the optical flow equations using the direct method [5]. In
this way, background similarity can be obtained by compar-
ing the background candidate region in the aligned image
with the background model in the previous frame.

(a) (b)
Figure 3. DEMD tracking with background modeling (a) The
(t − 1)th frame (b) The tth frame. Pixels within the solid-line
rectangle belong to the object, pixels outside the solid-line rect-
angle and within the larger dashed-line rectangle belong to the
local background. For the ideal object scale and position in
the tth frame, the object should conform to its model; besides,
the local background region, i.e., the area outside the two fore-
ground regions and within the background region of the tth

frame, should match the same area of the previous frame.

5. Experimental Results
Extensive and comparative experiments are carried out

and reported in this section. We first show examples of
the DEMD tracking on foreground objects only and then
the DEMD tracking with background modeling, followed
by quantitative results. In all these experiments a simple
“divide and recombine” strategy [18] is applied to compute
16-cluster color signatures of the image regions, and the Eu-
clidean distance in RGB color space is used as the ground
distance.

5.1. Examples of the DEMD Tracking

In the first experiment we compare the Bhattacharyya
coefficient based distance with the EMD under color vari-
ations. Figure 4 shows the results of the standard Mean
Shift (MS) tracker which employs the Bhattacharyya coeffi-
cient based distance, and the proposed DEMD tracker using
EMD of color signatures on an indoor Pedestrian sequence.
The color of the pedestrian is changing due to reflections.
The figures beside the actual frames show the values of the
two distances. Figures 4(j) and 4(l) illustrate that the min-
imum in the error surface is very close to the actual ob-
ject location, which indicates that the color variation does
not cause the EMD to change significantly. However, the
color change makes a difference for the Bhattacharyya co-
efficient, causing the expected minimal distance to be large,
as shown in Figures 4(d) and 4(f), thereby the tracker starts
to drift away from the pedestrian. The MS tracker loses the
object quickly while the DEMD tracker manages to track
the pedestrian throughout the entire sequence.

The average number of iterations for the DEMD tracker
on the Pedestrian sequence is 3.01 iterations per frame. The
differential method requires only a small number of itera-
tions to find the location of the object which is critical for a
real-time tracking system.

We then perform comparative experiments of the DEMD



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4. Comparison between the Bhattacharyya coefficient based distance and the EMD. Frames 1, 11, 21 from the Pedestrian
sequence are shown. (a)(c)(e) Tracking results of the MS tracker. (b)(d)(f) Bhattacharyya coefficient based distances for a 40 × 40
region. “+” indicates the ground truth object location. (g)(i)(k) Tracking results of the DEMD tracker. (h)(j)(l) EMDs.

(a)

(b)
Figure 5. Frames 1, 13, 35, 86, 110 from the Highway-Car sequence. (a) The MS tracker starts to wander when the car is entering
the strong shadow and fails around frame 13. (b) The DEMD tracker successfully follows the car into and out of strong shadows.

tracker and the MS tracker on two outdoor sequences, where
the moving objects undergo severe appearance changes due
to the sunshine and the strong shadows. Figure 5 and Fig-
ure 6 illustrate the tracking results.

The fourth experiment is performed on the OTCBVS
benchmark data [1]. The tracking results using the DEMD
tracker with 16-cluster color signatures are presented in Fig-
ure 7(a). It can be observed that the tracker provides quite
accurate location of objects. However, due to the lack of
any scale adaptation mechanism, the performance degener-
ates in cases of large scale changes.

5.2. Examples of the DEMD Tracking with Back-
ground Modeling (DEMDB)

As shown in Figure 7(b), for the same OTCBVS se-
quence, the DEMDB tracker keeps tight track of the object
thereby it is more robust against background distraction.

In the fifth experiment we track a vehicle in the RedTeam

sequence from the PETS’05 dataset, where the background

(a)

(b)

Figure 7. Frames 1, 354, 486 from the OTCBVS sequence. (a)
The performance of the DEMD tracker degenerates as the ob-
ject becomes smaller and eventually loses track of it. (b) The
DEMDB tracker keeps tight track of the object.

is dynamic. From the results shown in Figure 8, we see that
the DEMDB tracker deals with scale changes reliably.



(a)

(b)
Figure 6. Frames 1, 10, 30, 51, 65 from the Running-Girl sequence. (a) The MS tracker has lost track of the girl by frame 10. (b)
The DEMD tracker maintains a secure focus on the object throughout the sequence though there are shadows all along the path
and the object is moving fast.

Source Description Object Frames Tracked Position Error Size Error
Dataset / File Name Type MS DEMDB MS DEMDB MS DEMDB

PETS’01 Red-Coat Female - Cam2 Person 577/651 651/651 0.284 0.133 0.264 0.136
PETS’01 White Van - Cam1 Vehicle 135/260 260/260 0.229 0.090 0.312 0.152
PETS’04 Female - Front View Person 81/162 162/162 0.260 0.156 0.135 0.120
PETS’04 Female - Corridor View Person 381/381 381/381 0.047 0.040 0.057 0.072
PETS’04 Male - Corridor View Person 550/550 550/550 0.097 0.102 0.133 0.122
PETS’05∗ RedTeam Vehicle 1918/1918 1918/1918 0.170 0.056 0.282 0.108

Table 3. Quantitative results for several public data of the proposed DEMD tracker with background modeling (DEMDB) and its compar-
ison with the standard Mean Shift (MS) Tracker. In datasets with ∗, ground truth was provided every 10 frames and we count only those
frames with ground truth for comparison. Others have ground truth for each frame.

Figure 8. DEMDB tracking with a moving camera. Frames 60,
1650, 1895 from the RedTeam sequence are shown.

5.3. Quantitative Results

We have conducted a quantitative evaluation of the
DEMD algorithm with background modeling. We carry out
comparisons with the MS tracking method, where the con-
ventional scheme for scale adaptation, i.e., varying the ob-
ject size by +/ − 10% and choosing the one with smallest
distance [9], is implemented. We use 6 sequences taken
from the public PETS’01, PETS’04 and PETS’05 datasets
[2], where ground truth data are available. Quantitative
results are shown in Table 3. All the objects are initial-
ized using ground truth data. Tracking is deemed to fail
if the tracker-identified bounding box has no overlap with

the ground truth bounding box. The object centroid posi-
tion error is calculated as the Euclidian distance between
the centroids of the bounding boxes of the ground truth and
the tracking results on frames of successful tracking. To
prevent errors in frames with larger object scales from dom-
inating the averaged error, the centroid error is normalized
with respect to the ground truth length of the object’s di-
agonal. Similarly, the size error is defined as the Euclidian
distance between the two (height, width) vectors, normal-
ized by the ground truth length of the object’s diagonal.

In Table 3, the MS tracker tracks throughout three of the
sequences, while the DEMDB tracker succeeds in tracking
throughout all the six sequences. Additionally, the DEMDB
tracker outperforms the MS tracker in terms of accuracy.
This is due to the robustness of the DEMDB against il-
lumination changes and the tracker’s capability in accu-
rately estimating the object scale even when the objects
are of mostly uniform-color, where algorithms considering
only the matching score of the foreground objects have no
“force” to keep the window expanded as the object becomes
larger [7].



6. Conclusions
Illumination changes make image photometric based

trackers unreliable. This paper employs the EMD as a sim-
ilarity measure to approach this problem. To the best of our
knowledge, this is the first work using the EMD and signa-
tures in visual tracking. The main theoretical contribution in
this work is the development of a fast differential algorithm
based on the sensitivity analysis of the simplex method. The
gradient descent technique and the use of signature signif-
icantly reduce the computation of the EMD based tracker
and make real-time processing of video streams possible -
the tracker runs comfortably at 30 fps on a PIV 3.20GHz
PC. Experiments demonstrate the advantage of the EMD
over other commonly used metrics under varying illumi-
nations, and the importance of knowing local background
scenes in estimating the object scales.

7. Appendix

A. Proof of Eq.6 Due to the constraint that
∑mC

i=1 bi =
1, the increase/decrease of bi would decrease/increase bj

(j �= i) after normalization. Therefore, the partial derivative
of Z with respect to bi is written as

∂Z

∂bi
= limΔb∗i →0

kiΔb∗i +
∑

j �=i kjΔbj

Δb∗i
, i = 1, ..., mC ,

(13)
where Δb∗i is the change of bi after normalization, and Δbj

is the change of bj . ∂Z/∂bi can be solved considering the
following two conditions:

Condition 1: Δbj/bj = Const. for all j �= i.
This is justified by the fact that the bj are unchanged

without the normalization procedure, therefore they simply
scale down/up to satisfy the constraint.

Condition 2: Δb∗i +
∑

j �=i Δbj = 0.
From the two conditions, we obtain Δbj =

− bj∑
j �=i bj

Δb∗i . Substituting this into Eq.13 results

∂Z

∂bi
= ki −

∑
j �=i

kj
bj∑
j �=i bj

, i = 1, ..., mC . (14)

B. Algorithm to Adjust the Object Scale and Position

Algorithm 2 Algorithm to Adjust Object Scale and Posi-
tion with Both Foreground and Background Cues

Input: Object center y0 = yi
0 returned by Algorithm 1

Object scale from the previous frame σ0 = σi−1.
Output: Object center yi and scale σi of the current frame

• Initialize the object location with y0, vary σ0 by +/ −
10% and evaluate which scale is the best using Eq.12.

• If the scale with the smallest distance σ1 equals σ0, set
σi ← σ0, y

i ← y0 and stop; otherwise, set σ0 ← σ1,
and run a numerical gradient algorithm to obtain the
new location y1.

• If y1 equals y0, set σi ← σ0, y
i ← y0 and stop; other-

wise, set y0 ← y1 and go to the 1st step.
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