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ABSTRACT

A novel deep convolution neural network is proposed to pre-
dict gaze on current frames in egocentric videos. Inspired by
human visual system, we introduce a fovea module responsi-
ble for sharp central vision and name our model as Foveated
Neural Network (FNN). The retina-like visual inputs from the
region of interest on the previous frame are analysed and en-
coded. The fusion of the hidden representations of the previ-
ous frame and the feature maps of the current frame guides the
gaze prediction on the current frame. In order to simulate mo-
tion, we also include the dense optical flow between these ad-
jacent frames as additional input. Experimental results show
that FNN outperforms the state-of-the-art algorithms in the
publicly available egocentric dataset. The analysis of FNN
demonstrates that the hidden representations of the foveated
visual input from the previous frame as well as the motion in-
formation between adjacent frames are efficient in improving
gaze prediction performance in egocentric videos.

Index Terms— Visual Attention, Saliency, Egocentric
Videos, Gaze, Fovea

1. INTRODUCTION

One important property of human perception is that we fo-
cus selectively on parts of the visual world at one time and
allocate processing resources on the primary region of inter-
ests in high resolution. This property enables us to reduce the
complexity of the scene and ignore the distraction from irrel-
evant features. In line with this fundamental role in human
perception, attentional modeling has been extensively studied
in computer vision. In this paper, we are interested in predict-
ing gaze locations (where humans look) on current frames in
egocentric videos. Different from normal videos, egocentric
videos are recorded from a first person perspective and in-
volve complex motions due to head movements.

Previous works for estimating human visual attention are
based on saliency detection [1]. There are both bottom-up
[2, 3, 3, 4, 5, 6, 7] and top-down streams [8, 9, 10]. The pi-
oneering saliency prediction models adopted feature integra-
tion theory [11] where fusion of low level features, such as
color, contrast, and intensity, attract human visual attention.
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Fig. 1. Flowchart of gaze prediction in egocentric videos.
Given the previous frame, the region of interest (yellow rect-
angle) is foveated and encoded into hidden representations.
The optical flow is computed between the previous and cur-
rent frames to simulate motion. The feature maps are extract-
ed from the current frame. The hidden representations of the
foveated visual inputs, the feature maps of the current frame,
and the optical flow between these adjacent frames can then
be used for predicating the gaze location (blue dot).

Huang et al. had greatly improved saliency prediction on
images by leveraging on rich pools of semantic regions or ob-
jects in the scene from deep convolution neural network (2D-
CNN)[12]; but the temporal information is discarded. Baz-
zani et al. extended the saliency prediction on static images
in the spatial domain to the temporal saliency prediction in
normal videos using Long Short Term Memory (LSTM)[13].
Meur and Coutrot’s model incorporate systematic bias in se-
mantic visual category for scanpath prediction [14]. There
is another recurrent visual attention model where Mnih et
al.’s algorithm predicted sequence of fixations on images [15].
One of the most related works, Li et al. directly addressed
gaze prediction problem on egocentric videos where they pre-
defined egocentric cues [16], e.g. hand poses.

We propose a novel deep neural network for gaze predic-
tion on current frames on egocentric videos. Inspired by the
foveal system of human eyes, we introduce a foveated mech-
anism to process visual inputs and name our model as Foveat-
ed Neural Network (FNN). To avoid accumulating errors by
feeding the predicted gaze back to the model using recurrent



neural network, we use a feed-forward 2D-CNN where only
the previous and current frames are required. The flowchart
is shown in Figure 1.

2. PROPOSED MODEL

We first introduce an overview of our model, named as
Foveated Neural Network (FNN), followed by a detailed
analysis of each module in FNN. We provide training and
implementation details in the end.

2.1. Architecture Overview

We formulate the gaze prediction problem on the current
frame of egocentric videos as: given the previous frame and
the current frame, FNN outputs the saliency map for the cur-
rent frame. Hence, the spatial coordinate with the maximum
probability on the saliency map is the predicted gaze location.
The overview of FNN is presented in Figure 2. FNN divides
into three modules: Pre-process Module (PP), Fovea Module
(F), and Re-alignment and Post-process Module (RP).

In PP, based on the current frame of low resolution, FNN
extracts the feature maps useful for gaze prediction and esti-
mates the region of interest (ROI) on the current frame. The
center of ROI will be used in the next iteration. In F, given
ROI on the previous frame, F simulates the human fovea and
outputs the feature maps extracted from the retina-like image
patches centered over ROI. They are of different resolution
and cover different sizes of the receptive field. The patch cov-
ering the large receptive field is of low resolution while the
one covering the small receptive field is of high resolution. In
RP, the extracted feature maps from the patches are re-aligned
based on the center of ROI and concatenated with the feature
maps extracted from the current frame. The combined feature
maps are post-processed and output the refined saliency map
and hence, the predicted gaze location on the current frame.

We define an egocentric frame I of low resolution and
high resolution using superscript l and h respectively. The
subscript denotes time t. A saliency map is defined as a prob-
ability distribution of gaze locations; thus, the spatial coordi-
nate of the maximum probability in the saliency map is the
predicted gaze location fr. Similarly, we use the estimated
saliency map obtained from the low-resolution frame to pro-
pose ROI centered at f c. We use superscript r as the refined
gaze location (the output of FNN) and superscript c as the
center of the proposed ROI.

2.2. Fovea Module

Given an egocentric high-resolution frame Iht−1 and the cen-
ter of ROI f c

t−1 at time t − 1, ROI is attended in a foveated
manner. In order to simulate the attentional processing in the
retina, we use the same approach as [15]. Instead of assessing
the frame in high resolution across all pixels, F extracts the

retina-like representation focused on f c
t−1, i.e.different image

patches of limited bandwidths centered at f c
t−1. In our case,

we use three bandwidths: H ×H , H
2 × H

2 and H
4 × H

4 ; how-
ever, not limited to three, F can be generalized to more than
three depending on the applications. When the receptive field
centered at f c

t−1 exceeds the frame boundary, we use zero
padding to fill in the empty areas. These multiple resolution
patches are then scaled to the same size H

4 × H
4 . This is to

simulate the fovea where the patch covering small receptive
field (Patch1) is of high resolution whereas the patch cover-
ing large receptive field (Patch3) is downsampled to be of low
resolution. Thus, it enables F to allocate the small amount
of processing power (the same number of parameters in 2D-
ConvNetPatch) on the large area of the frame in low resolu-
tion (Patch3) and vice versa.

As shown in [12], convolution layers of high levels in 2D
convolution neural network (2D-ConvNet) trained for object
recognition are effective in predicting saliency. We use the
pre-trained 2D-ConvNet on ImageNet for feature extraction.
The feature maps from these multiple resolution patches are
extracted using branches of 2D-ConvNetPatch. The branch-
es have the same architecture and share the same network
parameters. The outputs of F are feature maps denoted as
FP1t−1, FP2t−1 and FP3t−1 respectively. Each of their
feature maps are of size H

16 × H
16 .

2.3. Pre-process Module

Before assessing to ROI of the current frame in high resolu-
tion, I lt (size H

2 × H
2 ) is perceived in low resolution at time

t. PP uses 2D-ConvNetPreprocess for encoding features of
I lt and 2D-ConvNetCoarse for proposing the ROI. As ego-
centric videos involve head motions, we compute the dense
optical flow OFt between I lt and I lt−1 from [17] and use it
to implicitly represent motions between adjacent frames. 2D-
ConvNetPreprocess takes five channels as inputs: RGB chan-
nels from I lt and OFt in horizontal and vertical axis. We de-
note the output from 2D-ConvNetPreprocess as feature maps
FPt with each feature map of size H

16×
H
16 . FPt and FP1t−1,

FP2t−1, FP3t−1 from F are of the same size and they will
be used for predicting gaze location on the current frame.
Based on FPt extracted from I lt , 2D-ConvNetCoarse propos-
es one ROI where the model may be interested in focusing
attention on. The ROI is represented using the center of ROI
denoted as f c

t . f c
t is obtained by taking the spatial coordinate

of the maximum on the saliency map estimated from I lt in low
resolution. It will be used in F in the next iteration (time t+1)
where FNN predicts the next gaze location on frame I lt+1.

2.4. Re-alignment and Post-process Module

After obtaining FP1t−1, FP2t−1 and FP3t−1, RP realigns
these feature maps based on f c

t−1. The realignment process
includes the following steps: 1). scale FP1t−1, FP2t−1 and
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Fig. 2. Architecture of our model for Gaze Prediction on Current Frame. There are three modules: Fovea Module (F), Pre-
process Module (PP) and Re-alignment and Post-process Module (RP). In PP, the inputs to 2D-ConvNetPreprocess are 5
channels: RGB channels from I lt and the optical flow OFt in horizontal and vertical axis. Its outputs are the feature maps FPt.
2D-ConvNetCoarse outputs the estimated region of interest centered at f c

t (red dot). f c
t will then be used in the next iteration

(time t+ 1). In F, given the high-resolution frame Iht−1 and its region of interest centered at f c
t−1, it extracts Patch1, 2, 3 with

the different receptive coverage. These 3 patches are scaled to be of the same size. In RP, the outputs from PP ( feature maps
FP1, FP2 and FP3) are realigned based on f c

t−1. The concatenated feature maps from FP1t−1, FP2t−1, and FP3t−1

together with FPt are the inputs to 2D-ConvNetPost for estimating the refined saliency map at time t. The coordinate with the
maximum probability in the saliency map is the refined gaze location fr

t at time t (blue dot).

FP3t−1 to H
64 ×

H
64 , H

32 ×
H
32 and H

16 ×
H
16 respectively; 2). add

in zero paddings to each of the four sides of each feature map
by 3H

128 in FP1t−1 and H
64 in FP2t−1; 3). shift the concate-

nated feature maps back to f c
t−1 with respect to Iht−1. The

realignment process is used for consolidating all the feature
maps across multiple resolution patches to the same spatial
location with respect to Iht−1.

In 2D-ConvNetPost, we use one 2D convolution layer to
fuse the consolidated information on the previous frame to-
gether with FPt from the current frame. The fused informa-
tion is post-processed by another two fully connected layer-
s before generating the final predicted saliency map of size
H
16 ×

H
16 . The coordinate with the maximum probability in the

saliency map is the predicted gaze location fr
t on I lt .

2.5. Training and Implementation Details

We train FNN in stochastic gradient descent with learning
rate 0.01 and batch size 1. The fixation map (the ground
truth) is defined as the binary map with human gaze location-
s. As a common practice, we put an isotropic gaussian mask
over the binary map and normalize it to be [0, 1]. Same as
[12], we minimize Kullback-Leibler divergence (KLD) loss
between the predicted saliency map and the fixation map. All
the weights from 2D-ConvNet in FNN are pre-loaded using
VGG-16 trained on ImageNet [18]. The parameter H is set
to be 1200. All the numbers of feature channels for FP1t−1,
FP2t−1, FP3t−1 and FPt are 512. The input frames to FN-

N are normalized to [0, 1] with mean and standard deviation.
We implement the proposed algorithm in Torch.

We evaluate FNN using the publicly available egocentric
dataset, GTEA [9]. It contains 17 video sequences in total
with each video lasting for 4 minutes on average. 14 human
subjects are asked to prepare for meals in a kitchen at their
own wishes while wearing the eye-tracking devices. For fair
comparison, we choose videos 1, 4, 6-22 as training and vali-
dation sets while the rest are used for testing same as [16].

3. EXPERIMENT

We compare FNN with the state-of-the-art using standard e-
valuation metrics on one publicly available dataset. In the fol-
lowing subsections, we introduce the evaluation metrics and
comparative methods. In the end of the section, we present
the results and the detailed analysis.

3.1. Metrics

We used two standard evaluation metrics to measure the per-
formance of gaze prediction: Area Under the Curve (AUC)
[19] and Average Angular Error (AAE) [16]. AUC is com-
monly used in the saliency prediction literature. It measures
the consistency between a predicted saliency map and a fixa-
tion map of human gazes. AAE is used in the gaze tracking
literature and measures the error between the predicted and
the human gaze locations in an angular distance.
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Fig. 3. Results on GTEA Dataset. Evaluation of Gaze Pre-
diction using Area Under the Curve (AUC) in (a) and using
Average Angular Error (AAE) in (b). The comparative meth-
ods are introduced in Section 3.2

AAE AUC
SALICON (SAL) 16.5 0.76
SAL + 2 Fully Connected Layers (FC) 10.6 0.80
SAL + FC + OpticalFlow (OF) 8.33 0.88
SAL+ FC + OF + FoveaOnPreviousFrame 8.15 0.89

Table 1. Evaluation of Ablated Models. From top to bottom,
only one component is added into the previous model at one
time. They are evaluated using Average Angular Error (AAE)
and using Area Under the Curve (AUC). Number denoted in
bold is the best.

3.2. Comparative Methods

We compare our method with the state-of-the-art saliency
prediction algorithms: Graph-based Visual Saliency (GBVS)
[3], Saliency Using Natural Statistics (SUN) [4], Adaptive
Whitening Saliency (AWS) [5], Attention based on Informa-
tion Maximization (AIM) [6], Itti’s Model (Itti) [20], Image
Signature Saliency (ImSigLab) [7] and SALICON [12]. In
particular, SALICON is a 2D-ConvNet with the current frame
as the only input. We fine-tune SALICON on the training set
and evaluate its predicted saliency maps in the test set.

In addition, we include [16] as it directly addresses
the gaze prediction problem on egocentric videos by using
Hidden-Markov model for the temporal dynamics.

3.3. Results and Analysis

The results in AUC and AAE are presented in Figure 3. FNN
outperforms the state-of-the-art algorithms on gaze prediction
on current frames in egocentric videos in both AAE and AUC.

Compared with saliency prediction algorithms, FNN
yields a significant boost in gaze prediction performance.
Though SALICON learns the semantic features useful for
gaze prediction, it fails to take temporal information into
account. See the ablation study in Table 1 (Row 3).

Though Li’s work [16] uses the hidden markov model for
temporal dynamics, FNN performs better with an improve-
ment of 2.4% ((8.33 − 8.18)/8.33 = 2.4%) in AAE due to
the enriched pool of semantic feature representations in the
network and the fovea module on the previous frame.

To further explore the effect of individual components in-
troduced in FNN, we conduct an ablation study and report the
results in Table 1. We build up FNN based on SALICON and
we add in one component at a time. SALICON is a feedfor-
ward 2D-ConvNet with the last few fully connected layers re-
moved. We added in 2 fully connected layers in the end which
boosts up the performance to a significant extent in terms of
AAE (Row 2). Compared with SALICON containing only
convolution and pooling operations within a local receptive
field, we hypothesize that the added 2 fully connected layers
fuse all the information across space and increase the capacity
of saliency representations.

To study the effect of the foreground and background mo-
tions, we add in the dense optical flow between the current
frame and the previous frame as inputs to the network (Row
3). The first convolution layer has two additional input chan-
nels. The results improve by 2 in AAE and 0.08 in AUC. It
suggests that the motion estimation between adjacent frames
is an important egocentric cue for gaze prediction.

We present the result of FNN (Row 4). Compared with
the one in Row 3, we add in the fovea module and fuse its
feature maps with the one-stream network. Result shows an
improvement of 0.18 in AAE and 0.01 in AUC. It explains
that the integration of the foveated information on the previ-
ous frame is useful for predicting gaze on the current frame.

According to [16], there exists a strong center bias for
gaze distributions on current frames in egocentric videos s-
ince the large gaze shift often gets compensated by the head
motions. Hence, we use sAUC to evaluate FNN and com-
pare it with the center bias. We create the artificial center as
the predicted gaze location and we put an isotopical gaussian
mask over the center for sAUC evaluation. We report sAUC
results in GTEA: FNN (0.65) and center bias (0.5). It con-
firms that FNN predicts gaze locations more than center bias.

4. CONCLUSION

We present a novel foveated neural network for gaze predic-
tion on egocentric videos. Evaluation results on the publicly
available dataset demonstrate that FNN outperforms the state-
of-the-art methods. The integration process of proposing, at-
tending and analysing ROI on the previous frame as well as
the feature extraction from the current frame helps gaze pre-
diction performance. We also incorporate head movement to
FNN by introducing the dense optical flow as the additional
feature inputs. We will extend FNN to more than two adjacent
frames by introducing a memory module in the near future.
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and Raquel Dosil, “Saliency from hierarchical adapta-
tion through decorrelation and variance normalization,”
Image and Vision Computing, vol. 30, no. 1, pp. 51–64,
2012.

[6] Neil Bruce and John Tsotsos, “Saliency based on infor-
mation maximization,” in Advances in neural informa-
tion processing systems, 2005, pp. 155–162.

[7] Xiaodi Hou, Jonathan Harel, and Christof Koch, “Image
signature: Highlighting sparse salient regions,” IEEE
transactions on pattern analysis and machine intelli-
gence, vol. 34, no. 1, pp. 194–201, 2012.

[8] Antonio Torralba, Aude Oliva, Monica S Castelhano,
and John M Henderson, “Contextual guidance of eye
movements and attention in real-world scenes: the role
of global features in object search.,” Psychological re-
view, vol. 113, no. 4, pp. 766, 2006.

[9] Alireza Fathi, Yin Li, and James M Rehg, “Learning to
recognize daily actions using gaze,” in European Con-
ference on Computer Vision. Springer, 2012, pp. 314–
327.

[10] Ali Borji, Dicky N Sihite, and Laurent Itti, “Probabilis-
tic learning of task-specific visual attention,” in Comput-
er Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on. IEEE, 2012, pp. 470–477.

[11] Anne M Treisman and Garry Gelade, “A feature-
integration theory of attention,” Cognitive psychology,
vol. 12, no. 1, pp. 97–136, 1980.

[12] Xun Huang, Chengyao Shen, Xavier Boix, and Qi Zhao,
“Salicon: Reducing the semantic gap in saliency predic-
tion by adapting deep neural networks,” in IEEE ICCV,
2015, pp. 262–270.

[13] Loris Bazzani, Hugo Larochelle, and Lorenzo Torresani,
“Recurrent mixture density network for spatiotempo-
ral visual attention,” arXiv preprint arXiv:1603.08199,
2016.

[14] Olivier Le Meur and Antoine Coutrot, “Introducing
context-dependent and spatially-variant viewing biases
in saccadic models,” Vision research, vol. 121, pp. 72–
84, 2016.

[15] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.,
“Recurrent models of visual attention,” in NIPS, 2014,
pp. 2204–2212.

[16] Yin Li, Alireza Fathi, and James M Rehg, “Learning
to predict gaze in egocentric video,” in Proceedings of
the IEEE International Conference on Computer Vision,
2013, pp. 3216–3223.

[17] Thomas Brox, Christoph Bregler, and Jitendra Malik,
“Large displacement optical flow,” in CVPR. IEEE,
2009, pp. 41–48.

[18] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014.

[19] Ali Borji, Hamed R Tavakoli, Dicky N Sihite, and Lau-
rent Itti, “Analysis of scores, datasets, and models in
visual saliency prediction,” in IEEE ICCV. IEEE, 2013,
pp. 921–928.

[20] Laurent Itti and Christof Koch, “A saliency-based search
mechanism for overt and covert shifts of visual atten-
tion,” Vision research, vol. 40, no. 10, pp. 1489–1506,
2000.


