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Abstract. Benefiting from deep learning research and large-scale datasets,
saliency prediction has achieved significant success in the past decade.
However, it still remains challenging to predict saliency maps on images
in new domains that lack sufficient data for data-hungry models. To
solve this problem, we propose a few-shot transfer learning paradigm for
saliency prediction, which enables efficient transfer of knowledge learned
from the existing large-scale saliency datasets to a target domain with
limited labeled samples. Specifically, few target domain samples are used
as the reference to train a model with a source domain dataset such that
the training process can converge to a local minimum in favor of the tar-
get domain. Then, the learned model is further fine-tuned with the refer-
ence. The proposed framework is gradient-based and model-agnostic. We
conduct comprehensive experiments and ablation study on various source
domain and target domain pairs. The results show that the proposed
framework achieves a significant performance improvement. The code is
publicly available at https://github.com/luoyan407/n-reference.
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1 Introduction

Saliency prediction is the task that aims to model human attention to predict
where people look in the given image. Thanks to the power of deep neural net-
works [15, 24, 48] (DNNs), state-of-the-art saliency models [7, 50] perform very
well in predicting human attention on naturalistic images. Behind the success of
this task, a considerable amount of real-world images and corresponding human
fixations fuels the process of training the data-hungry DNNs.

However, it is still difficult to predict saliency maps on images in novel do-
mains, which has insufficient or few data to train saliency models with desired
performance. As the time/money cost of collecting human fixations is prohibitive
[3, 20], a feasible solution is to reuse the existing large-scale saliency datasets
along with a few target domain samples to solve this problem. Along this line,
we study how to transfer the knowledge learned from the existing large-scale
saliency datasets to the target domain in a few-shot transfer learning setting.

https://github.com/luoyan407/n-reference
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Figure 1: The proposed n-reference transfer learning framework for saliency pre-
diction. This framework aims to generate a better initialization with n reference
samples from the target domain when training on the source domain, followed
by fine-tuning to maximize knowledge transfer. It is based on the widely-used
two-stage transfer learning framework (i.e., first training and then fine-tuning)
and can easily adapt to other fine-tuning strategies

The necessity of few-shot transfer learning for saliency prediction lies in the
nature of the task. Based on findings drawn from the behavioral experiments,
the way that humans attend to regions is significantly affected by the scene
context [35, 45, 47]. The scene context is correlated to the image domain [43]. In
other words, each image from a specific domain could be representative of the
others from the same domain to some degree, e.g., webpage images generally have
a similar layout and design [41]. In visual saliency study, existing datasets [3, 42]
in non-natural images domain are much smaller than the natural image ones [20,
22]. Moreover, there are numerous images used in the subfields of medicine,
biology, etc., which may not have any human fixation data yet. In this work,
we assume that it is feasible and viable to collect human fixations on a small
number of images to enable few-shot learning.

Compared to n-reference transfer learning for classification task [1], we focus
on how to use very few target domain samples as references to learn a better
initial model for fine-tuning. Moreover, there exists no such works for saliency
prediction task. Models designed for classification may not work for saliency
prediction. First, visual samples in existing classification tasks often contain
limited visual concepts (i.e., pre-defined object classes), while objects of any class
may appear in the images used for saliency prediction. In this sense, saliency
prediction often handles images with higher diversity than the ones used for
classification. Second, the output of classification models [1, 15, 24, 32, 44] is a
discrete label, while saliency models [7, 50] output a matrix of real numbers.

In this work, we follow the widely-used two-stage transfer learning frame-
work [1, 13, 41], i.e., first training and then fine-tuning, and propose a n-reference
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transfer learning framework. Specifically, in the training stage, it aims to use a
small number of samples in the target domain as references to guide the knowl-
edge learned from the source domain dataset. In this way, the learned model is
adapted to the target domain and can be seen as a better initialization than the
one trained without the references. The small number of target domain samples
are used as references in both the training stage and as the training data in the
fine-tuning stage. The proposed framework is shown in Fig. 1.

Mathematically, we use cosine similarity between two gradients to facilitate
the reference aware model training, where the two gradients are respectively
computed by samples in the source and target domain. If the angle between
the two gradients is greater than 90 degrees, which implies that the directions
of the model update are significantly different from each other, we optimize
the gradient for the update to have smaller differences with the target-domain
referenced gradient in cosine similarity. The intuition behind is to mimic the
process of human learning with the reference sample, i.e., we adaptively learn
from new information so that the newly absorbed knowledge will not contradict
the observation of the reference samples [33, 31]. The proposed framework is
gradient-based and it is model-agnostic.

To comprehensively evaluate the proposed framework, we employ SALICON
[20] and MIT1003 [22] as the source domain datasets (i.e., the knowledge sets),
and WebSal [42] and the art subset in CAT2000 [3] as the target domain data.
We randomly select 1, 5, or 10 samples from the target domain data as references.
The contributions of this work can be summarized as follows:

– To study how humans perceive scenes from a partially explored domain, we
propose a model-agnostic few-shot transfer learning paradigm to transfer
knowledge from the source domain to the target domain. This is the first
work that studies few-shot transfer learning for saliency prediction.

– We propose a n-reference transfer learning framework to adaptively guide the
training process. It guarantees that the knowledge learned with the source
domain data would not contradict the references in the target domain, and
produce a good initialization for further fine-tuning. The proposed frame-
work is model-agnostic and can generally work with existing saliency models.

– Comprehensive experiments show the proposed framework works on various
combinations of source domain and target domain pairs. The experiment
with various baseline models show that the proposed approach can efficiently
transfer the knowledge from the source domain to the target domain.

2 Related Works

2.1 Saliency Prediction

Saliency prediction aims to mimic human vision system to perceive interesting
regions in a cluttered visual world. Itti et al. [19] develop the first bottom-
up stimulus-driven saliency model. Since then, many works emerge to inter-
pret visual saliency from various perspectives [14, 16, 22, 52]. With the advent
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of DNNs [15, 24, 48], saliency prediction benefitted from data-driven discrimina-
tive features instead of relying on hand-crafted features [6, 25, 26, 37]. Recently,
Cornia et al. [7] introduce a network that integrates ResNet-50 [15] and con-
volutional LSTMs to better attend to salient regions by iteratively refining the
predictions. Yang et al. [50] propose a dilated inception network (DINet) that
stacks dilated convolutions with different dilation rates upon ResNet-50 to cap-
ture wider spatial information. It achieves state-of-the-art performance on vari-
ous benchmarks. A widely-used practice to transfer the knowledge learned from
image classification to saliency prediction is by using the weights pre-trained on
ImageNet as model initialization [6, 25, 26, 37]. In contrast, this work studies the
few-shot cross-domain transfer learning problem, which takes place between two
domains. Without loss of generality, we follow [33] to adopt both ResNet-50 and
DINet as the baseline models in this work.

2.2 Few-shot Learning

Few-shot learning [11, 27, 32, 44] aims to study how to learn classifiers for unseen
visual concepts with only a few samples per class. Lake et al. [28] introduce a
Bayesian program learning framework that can learn from one example for pre-
dicting character strokes. Matching networks [46] use an attention mechanism
that is analogous to a kernel density estimator so that it can learn from a few
examples rapidly. Sung et al. [44] propose a relation network to learn a transfer-
able deep metric to compare the relation between the small number samples. In
[29], Lee et al. study how to learn feature embeddings with a few samples that
can minimize generalization error across a distribution of tasks. As the process
of collecting human fixations is prohibitive [20], learning with very few samples
is promising for saliency prediction to overcome the need for big data.

2.3 Transfer Learning

Transfer learning, a.k.a. domain adaptation or domain transfer, is a paradigm
to utilize training data in the source domain to solve the problem in the target
domain [8, 9, 30, 41, 38]. In general, it can be seen as a two-stage learning frame-
work, i.e., first training a model with source domain data and then fine-tuning
the pre-trained model with target domain data. There are many DNN-based
works [1, 2, 12, 13, 49] that use this learning framework for classification tasks.
Specifically, Guo et al. [13] study and design a variant of the standard fine-tuning
method for better transferability. However, it requires many training samples to
determine whether it should fine-tune or freeze the parameters in a particu-
lar layer. Recently, Bäuml and Tulbure [1] introduce a learning framework that
transfers the knowledge learned from the source domain to the target domain
with a few samples for tactile material classification. As saliency prediction is by
nature class-agnostic, learning to predict human fixations with very few samples
(e.g., ≤ 10) in the target domain is more challenging than the same paradigm
for classification and has not been explored yet. Different from the aforemen-
tioned methods, we propose the first model-agnostic few-shot transfer learning
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framework for saliency prediction and conduct comprehensive study on multiple
combinations of source domain datasets and target domain datasets.

3 Methodology

In this section, we first formulate the problem and discuss its theoretical gener-
alization bound. Then, we delve into the details of the proposed framework.

3.1 Problem Statement

In this work, we denote the images as IS , IT ∈ Rm and the human fixation maps
as yS , yT ∈ Y (Y ≡ [0, 1]m ⊆ Rm), where m is the dimensions of the image and
S (T ) indicates the source (target) domain. In general, given an image I, the

prediction function f : Rm θ−→ Y with parameters θ will predict z and then the
loss function ` : Y × Y → R+ will evaluate the discrepancy between z and y.
Transfer learning for saliency prediction task can be considered as a two-stage
learning problem. First, the model’s parameters are learned with the source
domain data through the training process, i.e.,

θTR = arg min
θ

1

|DS |
∑

(Ii,yi)∈DS
`(f(Ii; θ), yi)|θ0 (1)

where DS is the source domain dataset, |DS | is the number of the samples, and
TR stands for training. θ0 are the initialized parameters and the model is usually
pre-trained on ImageNet [10]. Then, θTR is taken as the initialization for further
fine-tuning on the target domain data, i.e.,

θ∗FT = arg min
θ

1

|DT |
∑

(Ii,yi)∈DT
`(f(Ii; θ), yi)|θ0=θTR (2)

In this work, we aim to learn a better initialization by the first stage objective
(1), which is in favor of the target domain data. Such initialized parameters (i.e.,
θTR) are expected to further achieve better performance by fine-tuning on DT .
To this end, we introduce a referencing mechanism that allows the training
process fed with DS to reference the model update w.r.t. the referenced samples
(IR, yR) ∈ DT (|DS | � |DT |). Mathematically, this can be formulated as

θTR−Ref = arg min
θ

1

|DS |
∑

(Ii,yi)∈DS

(IRj ,y
R
j )∈DT

`(fRef(Ii; θ, (I
R
j , y

R
j )), yi)|θ0 (3)

where TR−Ref indicates the training process references target domain samples
when updating the model. fRef is a variant of f which has the same forward
propagation as f but has more complicated backward propagation. θTR−Ref is
taken as the initialization in the second stage objective (2) for further fine-tuning.
We denote the resulting parameters as θFT|Ref .
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3.2 Generalization Bound of Saliency Prediction

Here, we discuss the theoretical guarantee of saliency prediction. Following the
setting used in [34], given training data (I1, y1), (I2, y2), . . . ∈ X × Y, where
Y ∈ [0, 1]m ⊆ Rm, we use the Lp loss, i.e., `p : Y×Y → R+, p ≥ 1. The prediction
function f(·; θ) is denoted as f(·) for simplicity. I is drawn i.i.d. according to the
unknown distribution D and y = f∗(I) where f∗ is the target labeling function.
Saliency prediction can be considered as a mathematical problem that finds
hypothesis f : Rm → [0, 1]m in a set H with small generalization error w.r.t. f∗,

RD(f) = EI∼D[`(f(I), f∗(I))].

In practice, as D is unknown, we use empirical error for approximation, i.e.,

R̂D(f) =
1

|D|

|D|∑
i=1

`(f(Ii), yi),

where |D| is the sample number in dataset D for training.
We introduce the generalization bound of saliency prediction as follows. The

proof is provided in the supplementary document.

Theorem 1 (Saliency generalization bound). Denote H as a finite hypoth-
esis set. Given `p and y ∈ [0, 1]m, for any δ > 0, with probability at least 1− δ,
the following inequality holds for all f ∈ H:

|RD(f)− R̂D(f)| ≤ m
1
p

√
log |H|+ log 2

δ

2|D|

Remark 1. Theorem 1 shows how the training set scale influences the general-
ization bound. When |D| tends towards infinity, RD(f) ≡ R̂D(f). This conforms
to the general intuition that it can train a more general model with more data.
Contrarily, when |D| = 1, it leads to the largest bound for |RD(f) − R̂D(f)|.
Moreover, it demonstrates the task is challenging with small number of samples.

3.3 Overall Framework

In this subsection, we introduce the few-shot transfer learning framework that
solves the objective function (2) and (3). The overall workflow of the proposed
n-reference transfer learning framework is shown in Fig. 2.

Similar to classification model [15, 17, 48], state-of-the-art saliency models
tend to be large. For example, DINet [50] and SAM-ResNet-50 [7] consist of 26M
and 70M parameters, respectively. Therefore, instead of inefficiently applying
the proposed framework to the whole saliency model, we only apply it to a few
downstream layers which are close to the output. The downstream layers produce
discriminative features used for prediction with a small number of parameters,



n-Reference Transfer Learning for Saliency Prediction 7

Model

Loss

Model

Loss

Training stage
Fine-tuning stage

In
it

ia
li

ze

Source 
domain
dataset

 
   target 
domain 
samples

Input

Reference
process

Figure 2: Proposed n-reference transfer learning framework. Note that we assume
that only very few samples from the target domain are available, i.e., n ≤ 10

and it makes the transfer learning process more cost-effective. Consequently, we
split the model into two parts, i.e., the model body θbody and the model head
θhead. This split would be only effective in the training stage and the two parts
will be integrated again as they always are in the inference stage. Note that the
split is flexible. The effective scope of the proposed framework could cover the
whole model and the model body would correspondingly turn to be an empty
set. As we only focus on θhead, we simplify it as θ in the following text.

In the forward propagation, as the training image IS ∈ DS and the reference
image IR ∈ DT are fed to the model body, the discriminative feature xS and
xR are generated, respectively. Then, the model head would take xS and xR as
input to produce prediction zS and zR, respectively. Specifically, zS = f(xS ; θ).
A similar process applies to zR. The loss function is used to compute the dis-
tance between zS and yS (and between yR and yR as well). In the backward
propagation, two gradients are computed by the chain rule

∂`S

∂θ
=
∂`(f(xS ; θ), yS)

∂zS
∂zS

∂θ
,

∂`R

∂θ
=
∂`(f(xR; θ), yR)

∂zR
∂zR

∂θ
.

Specifically, ∂`
S

∂θ indicates the model update towards a local minimum θ∗(S) which

is learned from the samples from DS , while ∂`R

∂θ indicates the model update

towards a local minimum θ∗(T ) which is learned from the samples from DT .
As shown in Fig. 2, θhead are updated by the proposed reference process

and θbody are updated with the standard gradients in the training stage. During
fine-tuning, θhead and θbody are updated with the standard gradients.

3.4 Reference Process

Here, we delve into the formulation of the proposed reference process (Fig. 3).

The cosine similarity between ∂`S

∂θ and ∂`R

∂θ can evaluate the difference of the two
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Figure 3: The reference process computing the gradient that better adapts to the
target domain data. θ∗(S) is a local minimum trained by sufficient source domain
samples, while θ∗(T ) is a local minimum trained by sufficient target domain
samples. Given a pre-defined threshold ε, if the cosine similarity between the

gradient (∂`
S

∂θ ) generated by the source sample and the gradient (∂`
R

∂θ ) generated
by the reference sample is smaller than ε, it will compute a corrected gradient

by optimizing the cosine similarity. It retains ∂`S

∂θ otherwise

gradients. Accordingly, we pre-define a threshold ε to determine if the difference

is considered as minor and the update with ∂`S

∂θ will be close to both θ∗(S) and

θ∗(T ). If the difference is significant, the proposed reference process will adjust
∂`S

∂θ so that it will move more towards θ∗(T ). This process is defined as follows

g̃ =

{
arg maxg cos(g, ∂`

R

∂θ )− λ‖g‖22|g0= ∂`S

∂θ

if cos(∂`
S

∂θ ,
∂`R

∂θ ) < ε,

∂`S

∂θ otherwise,
(4)

where λ is the regularization parameter and cos(·, ·) is the cosine similarity, i.e.,
cos(a, b) = a>b/|a||b| (a and b are the input vectors), and g̃ is the output gradient.
The embedded optimization problem in Eq. (4) aims to find a g̃, which is with

an initial point g0 = ∂`S

∂θ , to be consistent with the reference gradient ∂`R

∂θ in

terms of cosine similarity. In other words, the reference gradient ∂`R

∂θ provides a
reference so that g̃ is able to be aware of a rough direction towards the underlying
θ∗(T ). In this way, the knowledge learned from DS is transferred to the target
domain. We solve the embedded optimization problem with the gradient ascent

method because our goal is to maximize the cosine similarity between g̃ and ∂`R

∂θ .
Subsequently, θ would be updated with g̃, i.e., θ ← θ− ηg̃, where η is a learning

rate. Note that ∂`S

∂θ is generated by randomly selected training samples and is
the initial point for g̃. As a result, the process of optimizing cosine similarity in
the training stage is almost surely stochastic. This can effectively prevent g̃ from

overfitting ∂`R

∂θ .
The proposed reference process yields g̃ to update the model so that the

parameters are close to the underlying θ∗(T ). As θ is learned with the references

from the target domain, by the chain rule, ∂`S

∂θbody
= ∂`S

∂xS
∂xS

∂θbody
and ∂`S

∂xS
can be

considered as a function of θ. So θb will be affected by the references as well.
As the number of references is expected to be far smaller than the training

data, we follow a similar idea of the stochastic process to randomly draw a
reference from the reference pool at each iteration.
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4 Experiments

In this section, we introduce the experimental protocol, present the experimental
results, and then have a discussion about the results.

4.1 Experimental Setup

Datasets. We adopt the large-scale saliency prediction dataset SALICON [20]
(the 2017 version) and the MIT1003 [22] as the source domain datasets. Accord-
ingly, we adopt WebSal [42] and the art subset in CAT2000 [3] as the target
domain datasets. Specifically, SALICON consists of 10000 real-world images,
MIT1003 consists of 1003 natural scene images, and WebSal consists of 149
webpage screenshots. CAT2000 includes 20 categories and each category has
100 images. Art is one of the most common categories, whose images are the
pictures of human-made works, like the paintings, handcrafts, and etc.

Baseline Models. To study how well the proposed method would generalize to
different models, we use two baseline models, i.e., DINet [51] and ResNet-50 [15].

Settings. There are three dimensions to the experiments in this work, i.e., source
domain samples, baseline model, and target domain samples. Specifically, the
baseline model is trained with the source domain samples. The learned model is
further fine-tuned with the target domain samples. This setting is similar in the
case of the proposed method. For convenience, we denote the setting as a combi-
nation of the initials of the datasets or the models, e.g., 〈S,D,W〉 indicates that
we use SALICON as the source domain dataset, DINet as the baseline model,
and WebSal as the target domain dataset. Similarly, we use initials M, R, and A
to represent MIT1003, ResNet-50, and Art, respectively.

To understand how the number of references affects the performance, we eval-
uate the proposed method with n = 1, 5, 10. Moreover, to provide a benchmark
of the performance w.r.t. more references, a paradigm that is similar to 3-fold
cross validation is applied with more references. For instance, given WebSal as
the target domain datasets, we divide it into three subsets, which contain 50,
50, and 49 images, respectively. Then, we alternately use any two subsets as the
reference samples and the rest as the validation set. The process is repeated 3
times. We denote the results of this process as an empirical upper bound.

Evaluation Metrics. We adopt the common metrics used in [5] and [20], i.e.,
normalized scanpath saliency (NSS) [18, 40], area under curve (AUC) [4, 21], and
correlation coefficient (CC) [36]. Higher scores indicate better performance. We
use the public implementation3 provided by [20]. Each experiment is repeated
10 times and the mean metric scores are reported. Due to the space limits, we
report the corresponding standard deviation in the supplementary document.

3 https://github.com/NUS-VIP/salicon-evaluation

https://github.com/NUS-VIP/salicon-evaluation
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4.2 Training Scheme

We follow the widely-used two-stage transfer learning framework [1, 13, 41, 49],
i.e., first train a model with the source domain data and fine-tune with the target
domain data. We denote the trained model as TR and the fine-tuned model as
FT. In the proposed framework, the n-reference training stage first trains a
model with the source domain data and n target domain references (denoted as
TR−Ref), and then further fine-tune with the references (denoted as FT|Ref).

Regarding the experimental details, we follow DINet [50] to use Adam op-
timizer [23] with learning rate η = 5e-5 and weight decay 1e-4. We use batch
size 10 for all the experiments. The number of epochs is 10 and we decrease the
learning rate for every 3 epochs by multiplying with 0.2. In TR−Ref, we ran-
domly sample 10 training data without replacement as the training sample at
each iteration. Meanwhile, we randomly sample nr references with replacement
as the reference. In this way, the difference between the number of training sam-
ples and references will not cause a problem. nr are 1, 3 and 5 in the experiments
with n = 1, 5, 10, respectively. This process is the same for the one of FT. We
select the model with the best performance over epochs for further fine-tuning.
The normalized l1 loss [50] is used and the threshold ε is set to 0 for all the
experiments. We implement the proposed framework with PyTorch [39].

4.3 Performance

The experimental results with the following settings, i.e., 〈S,D,W〉, 〈S,R,W〉,
〈M,D,W〉, and 〈S,D,A〉, are shown in Table 1. Within setting 〈S,D,W〉, the
proposed framework (i.e., FT|Ref) achieves better performance than FT over all
metrics. Particularly, as the number of references increases, the consequently
trained models provide better initializations for fine-tuning. In other words,
FT|Ref yields better performance when the dependent trained model uses more
reference samples. Using a different baseline model, we experiment it with set-
ting 〈S,R,W〉 which FT|Ref achieves consistent improvement. Moreover, using
DINet as the baseline model leads to better performance than using ResNet-50.

We study how well the proposed framework generalizes to different target
domain data using setting 〈S,D,A〉. As seen in Table 1, similar performance im-
provement can be found, which implies the proposed framework can generalize
to a different target domain. Furthermore, the study with MIT1003 as the source
domain dataset, i.e., setting 〈M,D,W〉, shows consistent improvement. The over-
all performance within setting 〈M,D,W〉 is slightly lower than the one within
setting 〈S,D,W〉. This implies that SALICON is more efficient than MIT1003 to
transfer the knowledge to WebSal. On the other hand, models trained with one
sample in target domain have noticeable gaps w.r.t. EUB, and is improved with
more training samples. This is consistent with the implication of Theorem 1.

We perform paired t-test and permutation test over images within setting
〈S,D,W〉 to evaluate the difference between TR−Ref and FT|Ref. Both corre-
sponding p are less than 0.001. This implies that TR−Ref significantly provides
a good initialization to FT|Ref to yield high performance. To validate the effect
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Table 1: Performance with various settings of 〈source,model, target〉. Here, S is
SALICON, M is MIT1003, W is WebSal, A is Art subset, D is DINet, and R is
ResNet. ↑ implies that a higher score is better. The score in bold font indicates
the best result under the respective metric. We report the mean score from
10 runs for conventional training (i.e., n = 0) and the proposed method. The
empirical upper bound (EUB) is generated by 3-fold cross validation on the
target domain. The experimental details are provided in Section 4.1 and 4.2

〈S,D,W〉 〈S,R,W〉

NSS↑ AUC↑ CC↑ NSS↑ AUC↑ CC↑

FT w/o TR n = 10 0.8252 0.7430 0.3635 0.8846 0.7455 0.3852

TR n = 0 1.3330 0.7796 0.5515 1.2950 0.7749 0.5358

TR−Ref n = 1 1.3621 0.7848 0.5628 1.3569 0.7864 0.5611
FT n = 1 1.4731 0.8005 0.5976 1.3722 0.7923 0.5627
FT|Ref n = 1 1.5077 0.8051 0.6121 1.4272 0.7983 0.5817

TR−Ref n = 5 1.3683 0.7874 0.5659 1.3535 0.7837 0.5593
FT n = 5 1.5803 0.8161 0.6355 1.5043 0.8131 0.6139
FT|Ref n = 5 1.6085 0.8200 0.6468 1.5491 0.8149 0.6281

TR−Ref n = 10 1.3647 0.7839 0.5633 1.3583 0.7857 0.5612
FT n = 10 1.6290 0.8247 0.6531 1.5164 0.8103 0.6200
FT|Ref n = 10 1.6439 0.8276 0.6605 1.5829 0.8143 0.6414

TR−Ref EUB 1.3822 0.7910 0.5708 1.3626 0.7864 0.5645
FT EUB 1.8695 0.8488 0.7389 1.8325 0.8462 0.7275
FT|Ref EUB 1.8831 0.8494 0.7442 1.8500 0.8480 0.7321

〈M,D,W〉 〈S,D,A〉

NSS↑ AUC↑ CC↑ NSS↑ AUC↑ CC↑

FT w/o TR n = 10 0.8252 0.7430 0.3635 1.2183 0.8339 0.5161

TR n = 0 1.3905 0.7991 0.5700 1.5172 0.8225 0.6003

TR−Ref n = 1 1.4405 0.8085 0.5902 1.5651 0.8287 0.6211
FT n = 1 1.4410 0.8023 0.5784 1.6255 0.8324 0.6449
FT|Ref n = 1 1.4575 0.8070 0.5838 1.6523 0.8380 0.6564

TR−Ref n = 5 1.4452 0.8064 0.5908 1.5870 0.8304 0.6274
FT n = 5 1.5795 0.8217 0.6395 1.8049 0.8480 0.7185
FT|Ref n = 5 1.6136 0.8269 0.6515 1.8314 0.8503 0.7274

TR−Ref n = 10 1.4330 0.8060 0.5872 1.5704 0.8288 0.6204
FT n = 10 1.6462 0.8261 0.6660 1.8325 0.8474 0.7288
FT|Ref n = 10 1.6691 0.8283 0.6730 1.8584 0.8503 0.7366

TR−Ref EUB 1.4402 0.8087 0.5905 1.5980 0.8340 0.6331
FT EUB 1.8450 0.8466 0.7330 2.1595 0.8636 0.8464
FT|Ref EUB 1.8507 0.8478 0.7344 2.1874 0.8649 0.8519
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(a) (b)

(c) (d)

Figure 4: The effect of the number of references (a, b) and threshold ε (c, d)
on NSS metric and average cosine similarity within setting 〈S,D,W〉. n = 0
indicates that no reference sample is used. Hence, TR−Ref and FT|Ref turn to
be TR and FT. The results of c and d are generated with n = 1. ε determines
whether the gradient needs to be corrected or not (see Fig. 3). Comparing to TR,
FT, and FT|Ref, only TR−Ref is able to evaluate the cosine similarity between
the samples from the source domain and target domain (see Fig. 2)

of knowledge transfer in saliency prediction, we conduct the experiment where
models are learned using only the target domain samples, i.e., FT w/o TR in
Table 1. We set n = 10 as n = 1, 5 will yield much worse performance. In
all settings, the performance of FT w/o TR significantly drops when compare
to FT|Ref. These results are even lower than TR and FT, which indicate the
importance of efficient initialization with a source domain dataset.

5 Analysis

We study the influences of the number of references, the threshold ε, and the lay-
ers updated by the proposed framework. All analysis are within setting 〈S,D,W〉,
where the mean score and standard deviation from 3 runs are reported.

5.1 Ablation Study

Effect of Number of References. As shown in Fig. 4, as the number of ref-
erences increases, the performance of TR−Ref keeps flat or even slightly drops,
but the performance of FT|Ref is significantly improved. This implies that the
proposed reference process with more reference samples can yield better initial-
ization for fine-tuning. Moreover, the average cosine similarity is increased with
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(a) (b) (c)

Figure 5: Ablation study of downstream layers updated within setting 〈S,D,W〉
with n = 1. Note that when 0 layer is updated, it turns to be TR and FT

more references. This implies that the number of references is helpful to adapt
the training process with source domain data to the target domain data.

Effect of Threshold ε. We experiment with the proposed framework with n =
1, which is more representative and challenging than cases with more references,
with various thresholds. An interesting observation in Fig. 4c is that although
ε = 1 achieves best performance on TR−Ref, it deteriorates the performance of
FT|Ref. This shows that when ε = 1, all the gradients at each iteration need to
be corrected because the cosine similarity between any two gradients is equal or
less than 1. As a result, the reference process enforces the training process to
overfit the reference samples. This can be verified in Fig. 4d where the average
cosine similarity is roughly increased as ε is increasing.

Effect of Updated Layers. To understand the effect of layers updated by the
proposed 1-reference transfer learning, we experiment with various downstream
layers. Consequently, the performance is shown in Fig. 5a, while the number
of parameters and the computational cost are reported in Fig. 5b and Fig. 5c,
respectively. The layers are downstream layers, which are close to the output.
When 0 layer is updated, TR−Ref and FT|Ref are equivalent to TR and FT,
respectively. The baseline model in this experiment is DINet.

Fig. 5a shows that using the last 2 layers achieves slightly better performance
in NSS than using the other numbers of the last layers. However, it takes 69
milliseconds longer in the training process than using the last layers. In light of
the trade-off, we use the last layer of the baseline model in Section 4.

5.2 Qualitative Comparison

Fig. 6 shows the comparison between the predicted saliency maps generated by
TR, TR−Ref, FT, and FT|Ref. It can be observed that with the reference pro-
cess, the proposed framework efficiently leverages the knowledge learned from
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Figure 6: Qualitative results with human fixations and maps generated by the
models trained by the four procedures

Image Fixation 10-Ref FT|Ref FT5-Ref FT|Ref 1-Ref FT|Ref

Figure 7: Qualitative results w.r.t. different n

the source domain, which are based on natural scene images, to subtly identify
salience in the new domain. Taking the example in the first row, FT|Ref pre-
dicts that the people is salient, which takes the learned knowledge into account,
whereas FT predicts that the people is less salient than the text. Fig. 7 shows
more references lead to better prediction.

6 Conclusion

This work studies how to leverage the knowledge learned from a source do-
main that has adequate images and corresponding human fixations and very
few samples (i.e., references) from a new domain (i.e., target domain) to pre-
dict saliency maps in the target domain. We propose an n-reference transfer
learning framework to guide the training process to converge to a local mini-
mum in favor of the target domain. The proposed framework is gradient-based
and model-agnostic. Comprehensive experiments and ablation studies to evalu-
ate the proposed framework are reported. Results show the effectiveness of the
framework with a significant performance improvement.
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