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Abstract— This paper presents a novel nonparametric clus-
tering algorithm, called energy based evolving mean shift
(EMS) clustering. It defines an energy function to characterize
the compactness of the underlying data set and proves the
clustering procedure converges. Through iterations, the data
points collapse into well formed clusters and the associated
energy approaches zero. Although as a general algorithm,
the EMS is designed for resolving neural spikes to individual
sources which is usually called “spike sorting”.

I. INTRODUCTION

Most neurons in the brain communicate by firing action

potential which is a “spike” of positive and negative ionic

discharge that travels along the membrane. The brief voltage

spike can be recorded by microelectrodes and used to decode

the information generated by the recorded neurons. Very

often one electrode is surrounded by multiple firing neu-

rons, and their recorded activities become superimposed. To

correctly understand the information in the biological neural

network, it is a critical step to resolve spikes to individual

neuronal sources [1], [2], which is called spike sorting.

Spike sorting is essentially a high dimensional clustering

problem. Directly classifying the recorded waveforms in

high dimensional space is not preferred partially because

data points in high dimensional space are very sparse, and

clustering algorithms tend to be imprecise. Algorithms which

can reduce the data to a few significant features are normally

applied before further clustering [3], [4].

Clustering the extracted neural features, however, is still

challenging due to the following factors. First, the shapes

of the clusters can be irregular and unpredictable. Second,

the density and size of each cluster varies significantly,

which imposes difficulty for many fixed bandwidth clustering

algorithms [5]. Third, the number of data obtained is limited

due to collecting and processing expenses and the estimated

density distribution is not accurate. In addition, it is likely

that noise is mis-identified as spike events, which contam-

inates the density distribution. Fourth, efficiency is more

of a concern since the algorithm needs to be realized with

hardware subjected to power and size limitations. Algorithms

which need intensive computation and large memory are

less preferred. To approach these challenges, we propose a

novel energy based evolving mean shift (EMS) clustering

algorithm.

Figure 1 depicts the system that the proposed algorithm is

tested on [6]. In this work we employ the recently proposed

Fig. 1. Diagram of spike sorting

spike feature extraction algorithm for the functional blocks

proceeding the clustering block [7], [8].

The rest of paper is organized as follows. Section II

presents the EMS clustering algorithm for spike sorting. Sec-

tion III shows experimental results and section IV concludes

the work.

II. EVOLVING MEAN SHIFT SPIKE CLUSTERING

In this section, we introduce a new clustering algorithm

that is designed to group the extracted spike features. The

algorithm is based on the well-known mean shift algorithm,

which is a tool invented in the 1970s [9], and successfully

applied to areas such as visual tracking, image segmentation

and clustering. For clustering, the mean shift based algorithm

is nonparametric, which does not require prior knowledge of

the number of clusters, and does not constrain the shapes of

the clusters.

The reported clustering algorithm in this work is named

as evolving mean shift (EMS). The main novelty of our

algorithm and the advantages are described as follows. First,

the proposed EMS clustering algorithm inherits the advan-

tages from the mean shift algorithm, e.g., it is nonparametric

and robust to various cluster geometry and density variation.

Compared with the mean shift algorithm, EMS is faster

and more capable of handling dataset with large portion

of plateau regions. Compared with the blurring mean shift

algorithm [10], which is a variant of mean shift and proposed

to accelerate the convergence, EMS has further improved

speed while not requiring a post combining procedure to

perform partition. In addition, EMS is insensitive to noisy

events, as it favorably handles those noisy events at an early

stage so that thy are less likely to mislead the classification

of other events. This feature is important to spike sorting,

where noise and recording artifacts are frequently observed.

In the rest of this section, the EMS clustering algorithm will
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be explained in detail.

A. EMS Energy Function

Here we describe an energy function for EMS to evaluate

the compactness of the underlying dataset. Formally, given

a dataset X = {xi}i=1...N of N points, the energy of X is

defined as the sum of energy from individual point xi|i=1...N

as

E(X) =
∑N

i=1
Exi

, (1)

where

Exi
=

∑N

j=1,j 6=i
(Exj .xi

+ Exi.xj
). (2)

In Eq. 2, Exj .xi
is the energy contributed by point xj to

point xi with kernel K(x) and bandwidth hxi
,

Exj .xi
= f(hxi

)(K(0) − K(
xi − xj

hxi

)), (3)

where K(x) is an arbitrary isotropic kernel with a convex

profile k(x), i.e., it satisfies K(x) = k(|x|2) and k(x1) −
k(x2) ≥ k′(x2)(x1 − x2). Without loss of generality, we

set k(0) = 1 and Eq. 3 reduces to Exj .xi
= f(hxi

)(1 −

K(
xi−xj

hxi

)). The intuition of (1 − K(
xi−xj

hxi

)) is that the

closer the point xj to xi, the less energy it contributes to

xi. f(hxi
) is a shrinking factor that is designed to be a

monotonically increasing function of bandwidth hxi
, as will

be discussed in section II.E. It is worthy mentioning that

after assigning an initial global bandwidth h0, bandwidth

h becomes independent to the user and is trained through

iterations.

Let f(0) = 0 and it is straightforward to verify that the

energy definition satisfies

(1) E(X) ≥ 0;

(2) E(X) = 0 when fully clustered.

B. The Evolving Mean Shift (EMS) Clustering Algorithm

We outline the evolving mean shift clustering algorithm

as follows:

Algorithm 1 The EMS Clustering Algorithm

Input: A set of data points Xk, where k is an iteration index

and is initialized to 0

Output: A clustered set of data points XEMS

• Select one data point xk
i ∈ Xk whose movement could

substantially reduce the energy as defined in Eq. 1. The

point selection scheme is discussed in section II.C.

• Move xk
i according to the EMS vector defined in Eq. 5,

specifically xk+1
i = xk

i +
−−−−→
EMSk

x .

• Compute the updated bandwidth hk+1
xi

for point xk+1
i

according to Algorithm 2, and adjust the EMS vectors

for all points using Eq. 5.

• If E(Xk) satisfies the stopping criterion, stop; other-

wise, set k ← k + 1 and go to the 1st step.

C. Point Selection

Selecting a point with the largest energy reduction for

moving has several important benefits. First, it avoids oper-

ations of data that lead to small energy reduction (e.g. data

points in plateau regions); therefore, requires less iterations

compared with the mean shift or blurring mean shift algo-

rithm. Second, it efficiently pushes loosely distributed points

toward a localized peak, which prevents them being absorbed

into nearby clusters with larger densities. As a result, poorly

separated clusters with different densities could be handled

appropriately.

To select a data point with the largest energy reduction,

at the initialization stage, the EMS vector is computed for

each data point. Each following iteration moves a selected

point to a new location according to the EMS vector, updates

its bandwidth according to Algorithm 2 (section II.E) and

adjusts the EMS vectors for all the data points. Based on

the adjusted EMS vectors, a new point corresponding to the

largest energy reduction is selected for the next iteration.

Besides the speed enhancement, the point selection

scheme offers EMS additional advantages compared with

its competing algorithms. A notorious drawback of blurring

mean shift is that a direction of larger variance converges

more slowly rather than the reverse; as a result, blurring

mean shift frequently collapses a cluster into a “line” by

taking a number of iterations. After that, the blurring mean

shift algorithm converges data slowly to the final state and

may break the “line” into many segments. These segments

are over-partitioned sub-clusters, which have to be post

combined hierarchically. As a result, the final clustering

results from blurring mean shift is heavily influenced by the

post combining procedure, which makes it unsuitable to the

spike sorting applications due to the difficulty of correctly

guessing the number of neurons. Because of incorporating

the point selection scheme and a bandwidth updating scheme

as explained in Section II.E, as a comparison to blurring

mean shift, EMS does not have convergence bias to direc-

tions and avoids over-partitioning a cluster into many small

segments as blurring mean shift does. Consequentially, EMS

can work alone without using a post combining procedure.

A convergence illustration of EMS is presented in Figure 2.

D. EMS Vector and Energy Convergence

The proof of the convergence of the EMS algorithm is

given in this subsection.

The gradient of Exi
with respect to xi can be obtained by

exploring the linearity of kernel K(x) as

∇Exi
(4)

= −2[

∑

j 6=i

(
xjf(hxi

)g(|
xi−xj

hxi
|2)

h2
xi

+
xjf(hxj

)g(|
xj−xi

hxj
|2)

h2
xj

)

∑

j 6=i

(
f(hxi

)g(|
xi−xj

hxi
|2)

h2
xi

+
f(hxj

)g(|
xj−xi

hxj
|2)

h2
xj

)

− xi]

×
∑

j 6=i

[
f(hxi

)

h2
xi

g(|
xi − xj

hxi

|2) +
f(hxj

)

h2
xj

g(|
xj − xi

hxj

|2)].
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The first bracket contains the evolving mean shift vector

−−−−−→
EMSxi

=

∑

j 6=i

(
xjf(hxi

)g(|
xi−xj

hxi
|2)

h2
xi

+
xjf(hxj

)g(|
xj−xi

hxj
|2)

h2
xj

)

∑

j 6=i

(
f(hxi

)g(|
xi−xj

hxi
|2)

h2
xi

+
f(hxj

)g(|
xj−xi

hxj
|2)

h2
xj

)

−xi.

(5)

As will be proven in Theorem 1, moving the data point along

the EMS vector with length no larger than twice of the EMS

vector magnitude, the energy strictly reduces.

Theorem 1 Energy is reduced by moving the selected point

according to the EMS vector.

Proof. After the selected point xi moves to x′
i, the energy

associated with x′
i is

Ex′

i
=

∑

j 6=i
(Ex′

i
.xj

+ Exj .x′

i
). (6)

In this proof, we assume that the bandwidths of all the data

points remain static. The cases with adaptive bandwidth are

validated in section II.E.

Without loss of generality, let xi = 0. Applying the energy

definition (Eq. 2) for x′
i and xi, and considering the convexity

of the kernel profile k(x), the energy change of the dataset

X is

△E(X) = Ex′

i
− Exi

(7)

≤
∑

j 6=i

(
f(hxi

)

h2
xi

g(|
xj

hxi

|2)+
f(hxj

)

h2
xj

g(|
xj

hxj

|2))(|x′
i−xj |

2−|xj |
2)

=
∑

j 6=i

(
f(hxi

)

h2
xi

g(|
xj

hxi

|2)+
f(hxj

)

h2
xj

g(|
xj

hxj

|2))(|x′
i|

2 − 2x′
ixj)

Applying the definition of EMS vector for xi (Eq. 5) and

letting G(xi, xj) =
f(hxi

)

h2
xi

g(|
xj

hxi

|2)+
f(hxj

)

h2
xj

g(|
xj

hxj

|2) results

△E(X) = (
∑

j 6=i
G(xi, xj))(|x

′
i|

2 − 2x′
i

−−−−−→
EMSxi

)

Since
∑

j 6=i G(xi, xj) is strictly positive, to guarantee the

energy reduction, it is required that

|x′
i|

2−2x′
i

−−−−−→
EMSxi

= |x′
i−

−−−−−→
EMSxi

|2−|
−−−−−→
EMSxi

|2 ≤ 0 (8)

Particularly, |x′
i|

2−2x′
i

−−−−−→
EMSxi

achieves the minimal value of

−|
−−−−−→
EMSxi

|2 when x′
i =

−−−−−→
EMSxi

. This completes the proof.

E. Bandwidth Updating

To calculate the local bandwidth, a pilot density estimate

is first calculated as

p(xi) =
1

hd
0

∑

j 6=i
K(

xi − xj

h0
), (9)

where h0 is a manually specified global bandwidth and d is

the dimension of the data space. Based on the pilot density

estimate, local bandwidths are updated as [11]

hxi
= h0[

λ

p(xi)
]0.5, (10)

where p(xi) is the estimated density at point xi, λ is a

constant that is by default assigned to be the mean of

{p(xi)}.

In each EMS iteration, the density estimate associated with

the selected point is updated using a sample point density

with bandwidth estimated from Eq. 10 as

p(x′
i) =

∑

j 6=i

1

hd
xj

K(
x′

i − xj

hxj

). (11)

The procedure of updating the bandwidth is summarized

as follows:

Algorithm 2 Adaptive bandwidth updating using sample

point estimator

Input: The data point xk
i that is selected to move in the kth

iteration and its corresponding bandwidth hk
xi

Output: An updated bandwidth hk+1
xi

for the selected point

• Calculate the updated density estimate p(xk+1
i ) for the

selected point according to Eq. 11.

• Calculate the updated bandwidth hk+1
xi

for the selected

point using Eq. 10 with the updated pilot density

estimate p(xk+1
i ). If hk+1

xi
< hk

xi
, update the bandwidth

with hk+1
xi

; otherwise, set hk+1
xi

← hk
xi

During iterations, the bandwidth of each data point adapts

to the local density. Though Algorithm 2 only updates

bandwidth when it becomes smaller, experiments show that

the bandwidth associated with the selected point frequently

reduces after the movement. This phenomenon is intuitive,

as the EMS iteration compacts a dataset, which leads to a

smaller bandwidth according to Eq. 10. To satisfy that Exj .xi

is a monotonically increasing function of h(x), we have
∂Exj.xi

∂hxi

≥ 0. For both Gaussian and Epanechnikov kernels,

the requirements on f(hx) are the same

f(hx) ∼ O(hα
x), α ≥ 2 (12)

F. Stopping Criterion

In this work, we use a broad truncated kernel with an

adaptive bandwidth, based on which a reliable stopping

criterion using the EMS vector or the total energy can be

given. A broad truncated kernel KB(x) is defined as

KB(x) =

{

K(x), x < Mhx

0, x ≥ Mhx,
(13)

where M is a positive constant satisfying that Mhx can cover

a large portion or the whole feature space. At an early stage

of EMS iterations where a clear configuration of clusters has

not been formed, the kernel KB is similar to a broad kernel.

Through iterations, the bandwidth reduces and converges to

zero. As a result, KB becomes a truncated kernel, which

only covers a small region in the feature space and prevents

the attraction of different clusters.
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Fig. 2. (a) - (g) display the snapshots of EMS at 0, 0.5, 1, ..., 3 iterations per point. The grouping results shown in Figure 2 (h) are obtained through 5

isolated modes in Figure 2 (g). (i) - (o) display the snapshot of BMS at 2, 4, ..., 14 iterations, as a comparison.

TABLE I

ACCURACY EVALUATION OF THE PROPOSED SPIKE SORTING METHOD

Sequence Number 1 2 3 4 5 6 7 8

Informative Samples 97.8% 97.8% 97.8% 97.0% 98.0% 99.2% 96.6% 92.0%

Note: Informative samples are harvested from both spikes and their derivatives. 3000 spikes each
sequence from [3].

III. EXPERIMENTS

A. Spike Clustering with Animal Data

Extracted spike features from animal recordings that can

deliver typical challenges of the application (irregular cluster

geometry, density variation, sparse region, noise events, etc.)

are used to compare the performance of EMS and burring

mean shift. The results are shown in Figure 2. In Figure 2 (a)

- (g), snapshots of EMS iterations at 0, 0.5, 1, ..., 3 iterations

per point are displayed. In Figure 2 (h), the grouping results

based on 5 isolated modes in Figure 2 (g) are plotted.

As a comparison, the snapshots of blurring mean shift at

2, 4, ..., 14 iterations are presented in Figure 2 (i) - (o). The

first 4 - 6 iterations collapse the data into “lines”. Afterwards,

the convergence speed dramatically reduces. Not only that,

collapsed “lines” are clearly broken into many segments

through iterations. As a result, a post processing algorithm

is critical to generate clustering results.

B. Spike Sorting with Synthesized Data

Synthesized spike sequences from waveclus [3] are used

to test the performance our algorithms. Feature extraction

method of using informative samples [7] has been applied.

After the features have been extracted, clustering is done by

the EMS clustering algorithm. The sorting accuracy tests are

listed in Table I. A combination of our recently developed

feature extraction algorithm [7] and EMS clustering algo-

rithm gives high accuracy score when tested on the dataset.

IV. CONCLUSION

This paper presents a nonparametric EMS clustering algo-

rithm for spike sorting application. It defines an energy func-

tion to quantify the compactness of the dataset and iteratively

collapses the data to isolated clusters in a couple of iterations.

The single parameter of bandwidth is initialized based on

sample point estimators and updated to accommodate the

evolving procedure. The main theoretical contributions in

this work are the validations of two theorems stating that

the evolving mean shift procedure converges, and further,

the energy reduction rate. The low computational cost and

good performance makes it suitable to apply in many other

practical tasks or subjects in additional to spike sorting.
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