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Abstract. This paper presents a novel nonparametric clustering algo-
rithm called evolving mean shift (EMS) algorithm. The algorithm iter-
atively shrinks a dataset and generates well formed clusters in just a
couple of iterations. An energy function is defined to characterize the
compactness of a dataset and we prove that the energy converges to zero
at an exponential rate. The EMS is insensitive to noise as it automatically
handles noisy data at an early stage. The single but critical user param-
eter, i.e., the kernel bandwidth, of the mean shift clustering family is
adaptively updated to accommodate the evolving data density and alle-
viate the contradiction between global and local features. The algorithm
has been applied and tested with image segmentation and neural spike
sorting, where the improved accuracy can be obtained at a much faster
performance, as demonstrated both qualitatively and quantitatively.

1 Introduction

Mean shift (MS) and blurring mean shift (BMS) are nonparametric density based
clustering algorithms that have received recent attention [1, 2]. Inspired by the
Parzen window approach to nonparametric density estimation, both algorithms
do not require prior knowledge of cluster numbers, and do not assume a prior
model for the shape of the clusters. The bandwidth parameter, however, is the
single and critical parameter that may significantly affect the clustering results.

Several works [3, 4] have recognized the sensitivity of the mean shift and blur-
ring mean shift algorithms to the kernel bandwidth. When the local characteris-
tics of the feature space differ across data, it is difficult to find an optimal global
bandwidth [2]. Adopting locally estimated bandwidth has theoretical merits of
improving the qualify of density estimate. These methods, however, are heavily
relied on the training algorithms, and could result in poor performance if local
bandwidths are inappropriately assigned. [4] calculates the bandwidth through
a sample point estimate, and the algorithm works well with moderate training
procedures. More sophisticated bandwidth estimation method incorporating the
input data is reported in [5], with an increased computational complexity and
manual efforts from domain experts.

The speed of the mean shift algorithm is heavily dependent on the density
gradient of the data. In case the feature space includes large portions of flat
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plateaus where density gradient is small, the convergence rate of the mean shift
procedure is low [1]. The problem is inherent, as the movements of data points
are proportional to the density gradient. The blurring mean shift algorithm [6]
was proposed to accelerate the convergence rate by moving all data points at
each iteration. A notorious drawback of blurring mean shift is that a direction
of larger variance converges more slowly rather than the reverse; as a result,
blurring mean shift frequently collapses a cluster into a “line” by taking a number
of iterations. After that, the blurring mean shift algorithm converges data slowly
to the final state and may break the “line” into many segments.

In this paper, we present a new clustering algorithm that incorporates the
mean shift principle, but is inherently different from the existing mean shift
based algorithms. The main novelties of our algorithm are described as follows.

First, we use an energy function to describe the data points in terms of
compactness. This offers a quantitative way to measure the clustering status.

Second, unlike the mean shift algorithm [2] where the data points are static,
or the blurring mean shift method [6, 1] where all the data points are updated in
each iteration, the evolving mean shift algorithm moves one selected point with
the largest energy reduction at each iteration. As a result, the evolving mean
shift procedure converges at an exponential rate as discussed in section 3.5.

Third, the evolving mean shift algorithm automatically handles noisy data
early to prevent them misleading the clustering process of other data.

Lastly, the bandwidth estimation from the sample point estimators [3, 4] is
applied for initialization. Unlike blurring mean shift, the bandwidth estimation
in the evolving mean shift algorithm is data-driven and adaptively updated.

2 Energy Function

An energy function is defined to evaluate the compactness of the underlying
dataset. Formally, given a dataset X = {xi}i=1...N of N points, the energy of X
is defined as the sum of energy from individual point xi|i=1...N as

E(X) =
∑N

i=1
Exi

, (1)

where
Exi

=
∑N

j=1,j 6=i
(Exj .xi

+ Exi.xj
). (2)

In this equation, Exj .xi
is the energy contributed by point xj to point xi with

kernel K(x) and bandwidth hxi
,

Exj .xi
= f(hxi

)(K(0)−K(
xi − xj

hxi

)), (3)

where K(x) is an arbitrary isotropic kernel with a convex profile k(x), i.e., it
satisfies K(x) = k(|x|2) and k(x1) − k(x2) ≥ k′(x2)(x1 − x2). Without loss of
generality, we set k(0) = 1 and Eq. 3 reduces to Exj .xi

= f(hxi
)(1−K(xi−xj

hxi
)).

f(hxi) is a shrinking factor that is designed to be a monotonically increasing
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function of bandwidth hxi , as will be discussed in section 3.3. It is worthy men-
tioning that after assigning an initial global bandwidth h0, bandwidth h becomes
independent to the user and is trained by the evolving density estimates.

Let f(0) = 0 and it is straightforward to verify that the energy definition
satisfies (1) E(X) ≥ 0; (2) E(X) = 0 when fully clustered.

3 The Evolving Mean Shift (EMS) Clustering Algorithm

We outline the evolving mean shift clustering algorithm as follows:

Algorithm 1 The EMS Clustering Algorithm

Input: A set of data points Xk, where k is the index and is initialized to 0
Output: A clustered set of data points XEMS

– Select one data point xk
i ∈ Xk whose movement could substantially reduce

the energy as defined in Eq. 1. Point selection is discussed in section 3.1.
– Move xk

i according to the EMS vector, specifically xk+1
i = xk

i +
−−−−→
EMSk

x .
– Compute the updated bandwidth hk+1

xi
for point xk+1

i according to Algo-
rithm 2, and adjust the EMS vectors for all points using Eq. 4.

– If E(Xk) satisfies the stopping criterion, stop; otherwise, set k ← k + 1 and
go to the 1st step.

As will be proven in section 3.2, moving a data point according to the EMS
vector lowers the total energy. After each movement, the bandwidth is updated
as will be described in section 3.3. The iterative procedure stops when the un-
derlying feature space satisfies the criterion given in section 3.4, and section 3.5
proves the exponential convergence rate of the EMS algorithm. In this section,
we use for a moment

∑
j 6=i for

∑N
j=1,j 6=i to keep the formulations concise.

3.1 Point Selection

Selecting a point with the largest energy reduction for moving has several im-
portant benefits. First, it avoids operations of data that lead to small energy
reduction (e.g. data points in plateau regions); therefore, requires less iterations.
Second, it efficiently pushes loosely distributed points toward a localized peak,
which prevents them being absorbed into nearby clusters with larger densities.
Third, noisy data tend to be selected therefore processed at an early stage.

To select a data point with the largest energy reduction, at the initialization
stage, the EMS vector is computed for each data point. Each following iteration
moves a selected point to a new location according to the EMS vector, updates
its bandwidth according to Algorithm 2 (section 3.3) and adjusts the EMS vec-
tors for all the data points. Based on the adjusted EMS vectors, a new point
corresponding to the largest energy reduction is selected for the next iteration.

Because of this point selection scheme and a bandwidth updating scheme as
explained in section 3.3, EMS does not have convergence bias to directions and
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avoids over-partitioning a cluster into many small segments as blurring mean
shift does. Consequentially, EMS can work well without a post combining pro-
cedure. A comparison of blurring mean shift and EMS is presented in Figure 1.

3.2 EMS Vector and Energy Convergence

Recall that the energy associated with a selected point xi is defined in Eq. 2 as

Exi
=

∑

j 6=i

(Exj .xi
+Exi.xj

) =
∑

j 6=i

[f(hxi
)(1−K(

xi − xj

hxi

))+f(hxj
)(1−K(

xj − xi

hxj

))].

The gradient of Exi
with respect to xi can be obtained by exploring the linearity

of kernel K(x) as ∇Exi
= −2[

P
j 6=i

(
xjf(hxi

)g(| xi−xj
hxi

|2)

h2
xi

+
xjf(hxj

)g(| xj−xi
hxj

|2)

h2
xj

)

P
j 6=i

(
f(hxi

)g(| xi−xj
hxi

|2)

h2
xi

+
f(hxj

)g(| xj−xi
hxj

|2)

h2
xj

)

− xi] ×

∑
j 6=i[

f(hxi
)

h2
xi

g(|xi−xj

hxi
|2)+ f(hxj

)

h2
xj

g(|xj−xi

hxj
|2)]. The first bracket contains the sample

evolving mean shift vector

−−−−−→
EMSxi =

∑
j 6=i

(
xjf(hxi

)g(| xi−xj
hxi

|2)
h2

xi

+
xjf(hxj

)g(| xj−xi
hxj

|2)
h2

xj

)

∑
j 6=i

(
f(hxi

)g(| xi−xj
hxi

|2)
h2

xi

+
f(hxj

)g(| xj−xi
hxj

|2)
h2

xj

)

− xi. (4)

As will be proven in Theorem 1, moving the point along the EMS vector with
length no larger than twice of the EMS vector magnitude, the energy reduces.

Theorem 1 Energy is reduced by moving the selected point according to the
EMS vector.

Proof. After the selected point xi moves to x
′
i, the energy associated with x

′
i

is
Ex

′
i
=

∑
j 6=i

(Ex
′
i.xj

+ Exj .x
′
i
). (5)

In this proof, we assume that the bandwidths of all the data points remain static.
The cases with adaptive bandwidth are validated in section 3.3.

Without loss of generality, let xi = 0. Applying the energy definition (Eq. 2)
for x

′
i and xi, and considering the convexity of the kernel profile k(x), the energy

change of the dataset X is

4E(X) = Ex
′
i
− Exi

≤
∑

j 6=i

(
f(hxi

)
h2

xi

g(| xj

hxi

|2) +
f(hxj )

h2
xj

g(| xj

hxj

|2))(|x′i|2 − 2x
′
ixj).

(6)
Applying the definition of EMS vector for xi (Eq. 4) results

4E(X) = (
∑

j 6=i
(
f(hxi

)
h2

xi

g(| xj

hxi

|2) +
f(hxj )

h2
xj

g(| xj

hxj

|2)))(|x′i|2 − 2x
′
i
−−−−−→
EMSxi

)



Evolving Mean Shift with Adaptive Bandwidth 5

Since
∑

j 6=i(
f(hxi

)

h2
xi

g(| xj

hxi
|2) +

f(hxj
)

h2
xj

g(| xj

hxj
|2)) is strictly positive, to guarantee

the energy reduction, it is required that

|x′i|2 − 2x
′
i
−−−−−→
EMSxi = |x′i −−−−−−→EMSxi |2 − |−−−−−→EMSxi |2 ≤ 0 (7)

Particularly, |x′i|2 − 2x
′
i
−−−−−→
EMSxi

achieves the minimal value of −|−−−−−→EMSxi
|2 when

x
′
i = −−−−−→

EMSxi
. This completes the proof.

3.3 Bandwidth Updating

To calculate the local bandwidth, a pilot density estimate is first calculated as

p(xi) =
1
hd

0

∑
j 6=i

K(
xi − xj

h0
), (8)

where h0 is a manually specified global bandwidth and d is the dimension of the
data space. Based on Eq. 8, local bandwidths are updated as [3, 4]

hxi
= h0[

λ

p(xi)
]0.5, (9)

where p(xi) is the estimated density at point xi, λ is a constant which is by
default assigned to be geometric mean of {p(xi)}|i=1...N .

In each iteration, the density estimate associated with the selected point is
updated using a sample point density with bandwidth estimated from Eq. 9 as

p(x
′
i) =

∑
j 6=i

1
hd

xj

K(
x
′
i − xj

hxj

). (10)

The procedure of updating the bandwidth is summarized as follows:

Algorithm 2 Adaptive bandwidth updating using sample point estimator

Input: The data point xk
i that is selected to move in the kth iteration and its

corresponding bandwidth hk
xi

Output: An updated bandwidth hk+1
xi

for the selected point
– Calculate the updated density estimate p(xk+1

i ) for the selected point ac-
cording to Eq. 10.

– Calculate the updated bandwidth hk+1
xi

for the selected point using Eq. 9
with the updated pilot density estimate p(xk+1

i ). If hk+1
xi

< hk
xi

, update the
bandwidth with hk+1

xi
; otherwise, set hk+1

xi
← hk

xi
.

During iterations, the bandwidth of each data point adapts to the local den-
sity. Though Algorithm 2 only updates bandwidth when it becomes smaller,
experiments show that the bandwidth associated with the selected point fre-
quently reduces after the movement. This phenomenon is intuitive, as the EMS
iteration compacts a dataset, which leads to a smaller bandwidth according to
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Eq. 9. To satisfy that Exj .xi is a monotonically increasing function of h(x), we

have
∂Exj.xi

∂hxi
≥ 0. For both Gaussian and Epanechnikov kernels, the requirements

on f(hx) are the same
f(hx) ∼ O(hα

x), α ≥ 2 (11)

3.4 Stopping Criterion

In this work, we use a broad truncated kernel with an adaptive bandwidth, based
on which a reliable stopping criterion using the EMS vector or the total energy
can be given. A broad truncated kernel KB(x) is defined as

KB(x) =
{

K(x), x < Mhx

0, x ≥ Mhx,
(12)

where M is a positive constant satisfying that Mhx can cover a large portion
or the whole feature space. At an early stage of EMS iterations where a clear
configuration of clusters has not been formed, the kernel KB is similar to a broad
kernel. Through iterations, the bandwidth reduces and converges to zero. As a
result, KB becomes a truncated kernel, which only covers a small region in the
feature space and prevents the attraction of different clusters.

3.5 Convergence Rate of the EMS Algorithm with a Broad Kernel

In this section, we use the most widely used broad kernels, i.e., the Gaussian
kernel and Epanechnikov kernel, with global bandwidth as examples to validate
the fast convergence rate of the EMS algorithm.

Theorem 2 The EMS algorithm with a broad kernel converges at an expo-
nential rate.

Proof. According to the energy definition (Eq. 3), the energy from point xj

to xi using a broad kernel with bandwidth h is

Exi.xj
= f(h)(1−K(

xi − xj

h
)). (13)

The EMS vector for point xi in this case is calculated according to Eq. 4 as

−−−−−→
EMSxi

=

∑
j 6=i xjg(|xj−xi

h |2)
∑

j 6=i g(|xj−xi

h |2) − xi. (14)

Theorem 2.1 Convergence rate under a broad Gaussian kernel.
Begin with the Gaussian kernel, the corresponding energy reduction of moving
a point from location xi to x

′
i according to Eq. 6 is

4E(X) = Ex
′
i
− Exi ≥

∑
j 6=i

f(h)
h2

exp−
(xj−xi)

2

h2 (|x′i − xi|2 − 2(x
′
i − xi)

−−−−−→
EMSxi)

(15)
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Substituting x
′
i = xi +−−−−−→

EMSxi into Eq. 15 yields

4E(X) ≥ |−−−−−→EMSxi |2
∑

j 6=i

f(h)
h2

exp−
(xj−xi)

2

h2 . (16)

To obtain a convergence rate of the energy function, we project the points in the
original d-dimensional space Rd onto an 1-dimensional space R1, i.e., ∀xi ∈ X ⊂
Rd is projected to ui ∈ U ⊂ R1. Denoting DX and DU as the maximal distance
between points in Rd and its projected distance in R1, we have DU ≤ DX .
Further denote−−−−−→EMSui as the projection of the EMS vector−−−−−→EMSxi onto U ∈ R1.
Without loss of generality, assume ui − uj ≥ 0 for i ≥ j, we have

|−−−−−→EMSxi
| > |−−−−−→EMSui

| = |
∑

j 6=i ujexp−
(xj−xi)

2

h2

∑
j 6=i exp−

(xj−xi)
2

h2

− ui|. (17)

Particularly, for |−−−−−→EMSu1 | and |−−−−−→EMSuN
|, we have |−−−−−→EMSu1 | > exp−

D2
X

h2

P
j 6=1(uj−u1)

N−1 ,

|−−−−−→EMSuN
| > exp−

D2
X

h2

P
j 6=N (uN−uj)

N−1 . Summing them up gives

max(|−−−−−→EMSu1 |, |−−−−−→EMSuN
|) ≥ exp−

D2
X

h2 DU/2. (18)

Clearly DU can be chosen to be as large as DX . Combining Eq. 18 with Eq. 15,
the energy reduction induced by moving the point corresponding to the largest
energy reduction is

max(4E(X)) ≥ (N − 1)
f(h)

4h2D2
X

exp−2
D2

X
h2 (19)

According to the definition of energy (Eq. 1 and Eq. 13), an upper bound of
the required amount of iterations from E(X) to arbitrary small number ε is

(1− exp−
D2

X
h2 )lnE(X)

ε

D2
X

4h2 exp−2
D2

X
h2

N ∼ O(N) (20)

Theorem 2.2 Convergence rate under a broad Epanechnikov kernel.
A broad Epanechnikov kernel can be approximated as a broad Gaussian kernel
with large bandwidth h À DX ,

KE(x) =

{
1− x2

h2 ≈ exp−
x2

h2 , if |x| < h
0, otherwise.

(21)

Applying Eq. 20 to the broad Epanechnikov kernel (Eq. 21) gives the upper
bound of the number of iterations to converge as

(1− exp−
D2

X
h2 )lnE(X)

ε

D2
X

4h2 exp−
D2

X
h2

N |hÀDX
≈ 4ln

E(X)
ε

N. (22)

This completes the proof. In practice, the total number of iterations is usually
a couple of times the total number of points.
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Fig. 1. Performance comparison of EMS and blurring mean shift. (a) - (d) display the
snapshots of EMS at 0, 1, ..., 3 iterations per point. The grouping results shown in (a)
are obtained through 5 isolated modes in (d). As a comparison, (e) - (t) display the
snapshots of blurring mean shift at 0, 2, 4, ..., 14 iterations per point.

4 Experiments

4.1 Experiments with Toy Dataset

In the first set of experiments we compare the EMS and BMS clustering meth-
ods using a toy dataset (4000 sample points) that delivers typical challenges of
applications (irregular cluster geometry, density variation, sparse region, noise
events, etc.). As shown in Figure 1, the first 4 - 6 iterations of BMS collapse
the data into “lines”. Afterwards, the convergence speed dramatically reduces.
Besides, collapsed “lines” are clearly broken into many segments. As a result, a
post processing algorithm is critical.

4.2 Experiments with Image Segmentation

In the second set of experiments we apply the clustering algorithms to segment
both grayscale and color images. Formally, each pixel in the image is repre-
sented by spatial and range features, i.e., (x, y, I) ∈ R3 for grayscale images and
(x, y, R, G, B) ∈ R5 for color images where (x, y) denotes the image coordinate,
I and (R, G, B) represent the pixel value in a grayscale or color image respec-
tively. Figure 2 (a) - (f) display EMS results for cameraman. When compared
with the MS and BMS algorithms [6] (Figure 2 (q) - (v)), the EMS method (Fig-
ure 2 (m) - (p)) deals better with textured regions with noticeably less noise.
For the experiments on the hand image, the EMS iterative procedure stops after
5 iterations (compared with 20 ∼ 100+ for MS and 10 ∼ 25 for BMS).

4.3 Experiments with Neural Spike Sorting

As a third set of experiment, we conduct quantitative comparisons of the EMS,
MS, and BMS algorithms on neural spike sorting [7], using 12 sequences (500
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Fig. 2. (a) - (f) EMS results for cameraman with initial bandwidth h0 equal to 50%
of the data standard deviation, (a) - (f) correspond to 0, 0.5, 1, 1.5, 2, 3 iterations
per point. (g) The original cameraman image (64× 64 pixels), (h) - (k) segmentation
results using EMS with different h0. (l) The original hand image (93×72 pixels), (m) -
(p) segmentation results with fixed h0 and different cluster numbers C. The clustering
procedures are stopped after 5 iterations. (q) - (v) Segmentation results using MS ((q)
- (s)) and BMS ((t) - (v)) on hand, copied from [6].

spikes per sequence) from a public spike data set [8]. A performance summary
is listed in Table 1. The clustering accuracy is calculated as the total error
subtracting the same spike detection error [7].

We also study the convergence rates of the EMS, MS and BMS algorithms.
Since one necessary condition of the stopping criteria for all algorithms is that
the movements of the data points, i.e., the EMS vectors for the EMS algorithm
and the root mean square of the MS vectors for the MS and BMS algorithms
approach zero, we use the magnitude of the data movement as a quantitative
measure for the compactness of the the clusters. In these experiments, the same
initial bandwidth is assigned. To test the convergence speed of each algorithm,
the EMS/MS vector magnitude is curve fitted with 10−α·N where N is the
number of iterations and α is a parameter describing the convergence speed.
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Algorithm EMS MS BMS

Accuracy 97% 89 % 94%

α 0.99±0.11 0.16 ±0.13 0.3±0.23

Iterations 2 ∼ 6 15 ∼ 50+ 8 ∼ 18

Table 1. Quantitative results over 12 sequences from a public spike data base [8].

5 Conclusions

This paper presents an evolving mean shift algorithm. It defines an energy func-
tion to quantify the compactness of the dataset and iteratively collapses the data
to isolated clusters in a couple of iterations. The single parameter of bandwidth
is initialized based on sample point estimators and updated to accommodate
the evolving procedure. The main theoretical contributions in this work are the
validations of two theorems stating that the evolving mean shift procedure con-
verges, and further, the energy reduces at an exponential rate which guarantees
an extremely efficient convergence. Experiments with different data dimension-
ality demonstrate the advantage of EMS in terms of accuracy, robustness, speed,
and ease of parameter selection. The low computational cost and superior per-
formance makes it suitable to apply in many other practical tasks or subjects in
additional to those mentioned in this paper.
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