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Safe Subspace Screening for Nuclear Norm Regularized Least Squares
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Abstract
Nuclear norm regularization has been shown
very promising for pursing a low rank solution
for matrix variable in various machine learning
problems. Many efforts have been devoted to
develop efficient algorithms for solving the opti-
mization problem in nuclear norm regularization.
Solving the problem for large-scale matrix vari-
ables, however, is still a challenging task since
the complexity grows fast with the size of ma-
trix variable. In this work, we propose a novel
method called safe subspace screening (SSS), to
improve the efficiency of the solver for nuclear
norm regularized least squares problems. Moti-
vated by the fact that the low rank solution can
be represented by a few subspaces, the proposed
method accurately discards a predominant per-
centage of inactive subspaces prior to solving the
problem to reduce problem size. Consequently, a
much smaller problem is required to solve, mak-
ing it more efficient than optimizing the original
problem. The proposed SSS is safe, in that its so-
lution is identical to the solution from the solver.
In addition, the proposed SSS can be used togeth-
er with any existing nuclear norm solver since it
is independent of the solver. We have evaluat-
ed the proposed SSS on several synthetic as well
as real data sets. Extensive results show that the
proposed SSS is very effective in inactive sub-
space screening and significantly improves the
efficiency of existing solvers.

1. Introduction
To obtain a low rank matrix solution, many machine learn-
ing problems are formulated as minimizing nuclear norm
regularized least squares problem (Yuan et al., 2007; Ar-
gyriou et al., 2008; Kang et al., 2011; Favaro et al., 2011).
In the past several years, a number of efficient algorithm-
s have been developed to solve the optimization problem
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raised by this formulation (Ji & Ye, 2009; Toh & Yuan,
2010; Jaggi & Sulovský, 2010; Mazumder et al., 2010;
Shalev-Shwartz et al., 2011; Avron et al., 2012; Mishra
et al., 2013; Hsieh & Olsen, 2014). Solving the problem for
large-scale matrix variables, however, is still a challenging
task since the computational complexity grows fast with the
size of the matrix variable. On the other side, in many real
applications, the size of matrix variable is becoming larger
and larger in the big data era.

In the optimization of Lasso (Tibshirani, 1996), Ghaoui et
al. lay the groundwork on safe screening method to iden-
tify the features that corresponding to zero coefficient in
the solution and discard them prior to solving the optimiza-
tion problem (Ghaoui et al., 2012). Their method has been
further improved by a large body of work on screening per-
formance (Xiang et al., 2011; Tibshirani et al., 2012; Wang
et al., 2013; Liu et al., 2014) and extended to discard fea-
tures for more general `1 norm regularized sparse problems
(Wang et al., 2014b; Wang & Ye, 2014). In addition, the
idea of screening has also been studied for discarding non-
support vectors in the support vector machine (SVM) (O-
gawa et al., 2013; Wang et al., 2014a) since there are only
sparse support vectors used in the solution of SVM. Previ-
ous screening methods can be considered in two categories,
one is safe screening method like (Ghaoui et al., 2012; X-
iang et al., 2011; Wang et al., 2013; Ogawa et al., 2013),
in which the discarded features are guaranteed to have ze-
ro coefficients in the solution, or vectors guaranteed to be
non-support vectors. Another category is heuristic screen-
ing method such as strong rules (Tibshirani et al., 2012),
sure independence screening (SIS) (Fan & Lv, 2008; Fan &
Song, 2010). In these methods, since features are screened
out by several heuristic criteria, some features correspond-
ing to nonzero coefficients may be mistakenly discarded.

In this work, we propose a method called safe subspace
screening (SSS) for discarding subspaces in nuclear norm
regularized least squares problem. Suppose W ∈ Rd×m is
the matrix variable, let us represent W as the sum of rank
one matrices

W =
d∑
i=1

m∑
j=1

Θijuiv
T
j (1)

where Θ ∈ Rd×m, {ui ∈ Rd}di=1 and {vj ∈ Rm}mj=1 are
orthogonal bases in Rd×d and Rm×m, respectively. It is
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easy to verify that any matrix in Rd×m can be represent-
ed in this form as both {ui}di=1 and {vj}mj=1 are orthog-
onal bases. Given ui and vj , we aim to identify inactive
subspaces that {uivTj |Θij = 0} in the solution prior to
solving the problem. This allows to solve an equivalen-
t problem on a lower-dimensional subspace corresponding
to Θij that are likely to be nonzero, thus reducing to a s-
maller problem and can be more efficiently solved.

Although nuclear norm can be considered as the `1 nor-
m of singular values, a number of key differences between
`1 norm and nuclear norm regularization make our work
a nontrivial extension of previous feature screening work-
s. Essentially, the feature screening rules for `1 norm reg-
ularization mainly make use of the Karush-Kuhn-Tucker
(KKT) condition at the optimal solution. Specifically, the
subgradient of `1 norm at zero and nonzero points have d-
ifferent ranges: {−1, 1} at nonzero points, and [−1, 1] at
zero points. Therefore, one component of the solution will
be zero if its subgradient belongs to (−1, 1) and it is a nat-
ural approach in such cases to discard the corresponding
feature. Methods along this line, however, are not applica-
ble for subspace screening because the subgradient of nu-
clear norm at both zero and nonzero Θij are [−1, 1] (Wat-
son, 1992). Therefore, the subgradient at Θij can not be
used to determine whether Θij in the solution is zero or
not. More detailed technical derivation for this is provided
in the Supplementary Materials. To address this problem,
we propose a novel subspace screening rule by making use
of the property of orthogonal subspaces. Specifically, one
subspace will not appear in the solution and can be safely
discarded if the solution is orthogonal to that subspace. In
other words, for each subspace, we can evaluate the cosine
for the angle between the solution and that subspace, and it
can be screened out if the value is 0 meaning the solution
is orthogonal to the subspace.

To utilize the aforementioned feature screening rule for i-
dentifying inactive features, we need to know the solu-
tion, which however is unknown before solving the prob-
lem. Therefore, previous feature screening methods usual-
ly construct a feasible set for the solution by using some
prior knowledge. One common prior knowledge is that, for
`1 norm regularization, there exists a particular regulariza-
tion parameter which is the smallest one such that all ele-
ments of the solution to be zero. Although this also holds
for nuclear norm as shown in Sec. 3.2, it is not surprising
that this prior knowledge does not work well for subspace
screening. In fact, the prior knowledge can not even iden-
tity any inactive subspace. The reason for that is, unlike
the features that are fixed in feature screening, we need to
choose {ui}di=1 and {vj}mj=1 in subspace screening, which
are quite important for the performance of subspace screen-
ing and can be chosen appropriately by utilizing the prior
knowledge. On the other hand, if the same strategy as fea-

ture screening is adopted, the prior knowledge in this case
is a zero matrix solution at that particular regularization pa-
rameter. Then, {ui}di=1 and {vj}mj=1 can be only chosen
as standard basis, which leads to Θ = W. As we know,
it is possible that a low rank W with all its elements be-
ing nonzero, then all elements of Θ are also nonzero. In
the proposed method, to provide more informative {ui}di=1

and {vj}mj=1, we seek to utilize the solution at a very small
regularization parameter, which can be easily obtained by
exploiting a smart initialization strategy and it can provide
a more appropriate choice for {ui}di=1 and {vj}mj=1 as it
has many singular vectors with nonzero singular values.

As the name indicates, the proposed method is safe in the
sense that the discarded subspaces definitely do not appear
in the solution. In addition, it can be used in conjunction
with any existing nuclear norm solver as it is independent
of the solver. To the best of our knowledge, the proposed
method is the first work to identify and discard the sub-
spaces that will not appear in the solution prior to solving
the problem.

Notations: Throughout the paper, vectors and matrices
will be denoted by lower and upper case boldface charac-
ters (e.g. u and U), respectively. We use the notation Aij

to refer to the (i, j)th entry of A. Moreover, the ith row
and jth column of A are denoted by Ai· and A·j . Let ‖ ·‖2
denote the Euclidean norm for a vector. For matrix norm,
the Frobenius norm is denoted by ‖ · ‖F . In addition, ‖ · ‖∗
and ‖ · ‖2 denote the nuclear norm and spectral norm, re-
spectively. The trace of a matrix is denoted by Tr [·]. 0 is
used to denote a zero vector or matrix and its size is deter-
mined by the context. Let I denote an identity matrix with
approximate size.

2. Motivation of Safe Subspace Screening
Specifically, we consider the following nuclear norm regu-
larized least squares problem (Toh & Yuan, 2010)

min
W∈Rd×m

1

2
‖XW −Y‖2F + λ ‖W‖∗ (2)

where X ∈ Rn×d is the input data and Y ∈ Rn×m is the
corresponding output, W ∈ Rd×m is the matrix variable,
and λ is a regularization parameter. Many machine learning
problems can be formulated as this form, e.g. multivariate
learning regression (Lu et al., 2012), multi-task learning
(Argyriou et al., 2008; Kang et al., 2011), subspace clus-
tering (Favaro et al., 2011). Suppose we are given {ui}di=1

and {vj}mj=1, substituting W in Eq. (1) into Eq. (2), we
obtain the following equivalent problem

min
Θ∈Rd×m

1

2

∥∥∥∥∥∥X
d∑
i=1

m∑
j=1

Θijuiv
T
j −Y

∥∥∥∥∥∥
2

F

+λ

∥∥∥∥∥∥
d∑
i=1

m∑
j=1

Θijuiv
T
j

∥∥∥∥∥∥
∗

(3)
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In the following, we use W∗
λ and Θ∗λ to denote the solu-

tions to Eq. (2) and Eq. (3) when the value of regulariza-
tion parameter is λ, respectively. It is easy to verify that
{uivTj }

d,m
i=1,j=1 is orthogonal to each other. Therefore, for

a particular subspace uiv
T
j , the value of (Θ∗λ)ij will be 0

if and only if∣∣∣Tr [(W∗
λ)
T (

uiv
T
j

)]∣∣∣ = ∣∣uTi W∗
λvj
∣∣ = 0 (4)

since
(
uTi W∗

λvj
)
/ ‖W∗

λ‖F is the cosine of the angle be-
tween W∗

λ and uiv
T
j . In other words, uiv

T
j can be safely

discarded in the representation of W∗
λ and (Θ∗λ)ij can be

safely set as 0 even prior to optimizing Eq. (3). We only
need to focus on Θ∗ij such that

uTi W∗
λvj 6= 0 (5)

Let Û = [· · · ,ui, · · · ] and V̂ = [· · · ,vj , · · · ] be all the ui
and vj that satisfy Eq. (5), respectively. Let Û⊥ and V̂⊥

denote the set of ui and vj that do not appear in Û and
V̂, respectively. Based on these definitions, we can form a
column basis Ũ = [Û, Û⊥] ∈ Rd×d and row basis Ṽ =

[V̂, V̂⊥] ∈ Rm×m. Then, W can be re-parameterized as
W = ŨΘṼT . By using this representation, Eq. (3) can be
rewritten as

min
Θ∈Rd×m

1

2

∥∥∥XŨΘṼT −Y
∥∥∥2
F
+ λ

∥∥∥ŨΘṼT
∥∥∥
∗

(6)

Suppose Û and V̂ have d̂ and m̂ columns, respectively.
According to previous discussions, we only need to solve
the d̂ × m̂ leading upper-left corner submatrix of Θ since
all other Θij corresponding to the subspaces can be safely
discarded and their values are zero in the solution.

After applying safe subspace screening, the problem E-
q. (6) reduces to the following equivalent problem

min
Θ̂∈Rd̂×m̂

1

2

∥∥∥XÛΘ̂V̂T −Y
∥∥∥2
F
+ λ

∥∥∥ÛΘ̂V̂T
∥∥∥
∗

(7)

where Θ̂ = Θ1:d̂,1:m̂ ∈ Rd̂×m̂. Since both Û and V̂ are

orthogonal bases, it implies ‖ÛΘ̂V̂T ‖∗ = ‖Θ̂‖∗. Then
the problem in Eq. (7) can be rewritten as

min
Θ̂∈Rd̂×m̂

1

2

∥∥∥XÛΘ̂V̂T −Y
∥∥∥2
F
+ λ‖Θ̂‖∗ (8)

In Eq. (8), we only need to solve the optimization prob-
lem with a d̂ × m̂ matrix variable instead of d × m as in
Eq. (2), leading to potentially substantial improvement in
efficiency.

3. The Proposed Safe Subspace Screening
In this section, we present the details of the proposed safe
subspace screening rule for the problem in Eq. (3).

3.1. Overview of the Proposed Method

To utilize the rule developed in Eq. (4) to identify inactive
subspaces, we need the solution W∗

λ, which is unknown
prior to solving the Eq. (2). Therefore, we seek to con-
struct a feasible set for W∗

λ and estimate the upper bound
for
∣∣uTi W∗

λvj
∣∣. In particular, the technique used to con-

struct the feasible set is the so called variational inequality,
which is a necessary condition for the optimal solution of
a constrained optimization problem (Güler, 2010). There-
fore, in Sec. 3.2, we first introduce the dual problem of
Eq. (2) to obtain a constrained optimization problem. By
using the relationship between primal and dual optimal so-
lutions, the upper bound problem can be reformulated as
a function of the dual optimal solution. Then, in Sec. 3.3,
a feasible set is constructed for the dual optimal solution.
For each pair of ui and vj , Sec. 3.4 discusses how to es-
timate the upper bound over the feasible set. In fact, as
we shall see, the upper bound problem has a closed form
solution due to special structure of the objective function
and constraints. The proposed safe subspace screening rule
for Eq. (3) based on Eq. (4) is presented in Sec. 3.5. Due
to space limitation, all technical derivations and proofs are
provided in the Supplementary Materials.

3.2. The Dual Problem

The dual problem of Eq. (2) can be written as

min
1

2

∥∥∥∥P− Y

λ

∥∥∥∥2
F

s.t.
∥∥XTP

∥∥
2
≤ 1 (9)

where P ∈ Rn×m is the dual variable. Similarly, let P∗λ
denote the solution to Eq. (9) when the value of regulariza-
tion parameter is λ. By using the KKT condition, we can
establish the following relationship for the primal solution
W∗

λ and the dual solution P∗λ

λP∗λ = Y −XW∗
λ (10)

According to this relationship,
∣∣uTi W∗

λvj
∣∣ can be reformu-

lated as ∣∣∣ui ((XTX
)−1 (

XTY − λXTP∗λ
))

vj

∣∣∣ (11)

In addition, it is easy to verify that there exists a specif-
ic parameter value λmax such that the primal optimal so-
lution W∗

λ is 0 for any λ ≥ λmax. According to Eq. (9)
and Eq. (10), the λmax can be analytically computed and
λmax =

∥∥XTY
∥∥
2

which is the largest singular value (a.k.a.
spectral norm) of XTY.

3.3. The Feasible Set of Dual Optimal Solution

In the following, we will make use of the variational in-
equality as in Lemma 1 to construct a feasible the dual op-
timal solution P∗λ.
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Lemma 1. (Güler, 2010) Let G ∈ Rd×m be a convex set
and let f be a Gâteaux differentiable function on an open
set containing G. If Z∗ is a local minimizer of f on G, then

Tr[∇f(Z∗)T (Z− Z∗)] ≥ 0, ∀Z ∈ G (12)

As we can seen, to construct a feasible set for Z∗ by E-
q. (12), we need to find a known Z from G. Therefore,
to construct the feasible set for P∗λ with λ ∈ (0, λmax),
we assume that there exists another parameter λ0 with
λ0 ∈ (0, λ) and its dual solution P∗λ0

is known. To make
this assumption reasonable, we need to find an appropri-
ate λ0 such that its solution can be obtained trivially. In-
deed, when λ0 is close to zero, the solution W∗

λ0
can be

easily obtained by using W =
(
XTX

)−1
XTY as initial-

ization, which is the solution at λ = 0. In addition, in
many scenarios, the solution at λ0 can be freely obtained.
For instance, an appropriate value of λ for Eq. (2) needs
to be determined since the optimal value of λ is generally
unknown in real applications. Therefore, we usually need
to solve Eq. (2) over a grid of regularization parameters
λ1 < λ2 < · · · < λk and choose the optimal λ under cer-
tain criterion. After obtaining the solution W∗

λt−1
at λt−1,

it can be freely used to screen out inactive subspaces for
Eq. (2) at λt.

Now, we describe how to construct a feasible set for the d-
ual optimal solution P∗λ by using the variational inequality.
Since P∗λ0

and P∗λ are the solutions to Eq. (9) at λ0 and λ,
respectively, we can apply Lemma 1 to Eq. (9) and obtain

Tr

[(
P∗λ0
− Y

λ0

)T (
P−P∗λ0

)]
≥ 0 (13)

Tr

[(
P∗λ −

Y

λ

)T
(P−P∗λ)

]
≥ 0 (14)

which holds for ∀P :
∥∥XTP

∥∥
2
≤ 1. Since P = P∗λ

and P = P∗λ0
are also feasible for Eq. (13) and Eq. (14),

respectively, substituting them into Eq. (13) and Eq. (14)
leads to

Tr

[(
P∗λ0
− Y

λ0

)T (
P∗λ −P∗λ0

)]
≥ 0 (15)

Tr

[(
P∗λ −

Y

λ

)T (
P∗λ0
−P∗λ

)]
≥ 0 (16)

From inequalities in Eq. (15) and Eq. (16), we obtain the
feasible set for P∗λ

F(P∗λ) =

{
P : Tr

[(
P∗λ0
− Y

λ0

)T (
P−P∗λ0

)]
≥ 0,

Tr

[(
P− Y

λ

)T (
P∗λ0
−P

)]
≥ 0

}
(17)

3.4. Estimating the Upper Bound

Given the feasible set F(P∗λ), we seek to estimate the up-
per bound of Eq. (11) over the feasible set for each pair of
ui and vj . Formally, we need to solve the following opti-
mization problem

max
∣∣∣uTi ((XTX

)−1 (
XTY − λXTP

))
vj

∣∣∣ (18)

s.t. P ∈ F(P∗λ)

As mentioned before, the performance of subspace screen-
ing also relies on the choice of ui and vj . In the proposed
method, ui and vj are chosen as the singular vectors of
Wλ0 . Specifically, suppose the singular value decomposi-
tion (SVD) of W∗

λ0
is

W∗
λ0

= UΣVT (19)

Then, we let ui = U·i and vj = V·j .

For reformulating the upper bound estimation problem in
Eq. (18), we first introduce three variables

A =
Y

λ0
−P∗λ0

=
XW∗

λ0

λ0
(20)

B =
Y

λ
−P∗λ0

= A +

(
Y

λ
− Y

λ0

)
(21)

R = 2P−
(

P∗λ0
+

Y

λ

)
(22)

where A can be considered as the scaled prediction based
on W∗

λ0
by λ0, and B is obtained by translating A with the

difference between the scaled Y by λ0 and λ. The follow-
ing lemma shows that both A and B are nonzero matrices.

Lemma 2. For any λ0 and λ such that 0 < λ0 < λ <∥∥XTY
∥∥
2
, and Y 6= 0, we have both A 6= 0 and B 6= 0.

Next, we reformulate the upper bound problem in Eq. (18)
by using the variables defined in Eq. (20), Eq. (21) and E-
q. (22) and obtain the following equivalent problem

max
λ

2

∣∣∣uTi (XTX
)−1

XTBvj − uTi
(
XTX

)−1
XTRvj

∣∣∣
s.t. Tr

[
AT (R + B)

]
≤ 0, ‖R‖2F ≤ ‖B‖

2
F (23)

Let us define SC ∈ Rd×m and SR ∈ Rd×m such that

USCVT =
(
XTX

)−1
XTB,USRVT =

(
XTX

)−1
XTR
(24)

Then, the objective function in Eq. (23) can be further re-
formulated as

λ

2

∣∣uTi USCVTvj − uTi USRVTvj
∣∣

=
λ

2

∣∣∣(SC)ij − (SR)ij

∣∣∣
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=
λ

2
max

(
(SC)ij − (SR)ij ,− (SC)ij + (SR)ij

)
(25)

which means we can solve the optimization problem by
maximizing − (SR)ij and (SR)ij over the constraint set.
They are further equivalent to minimizing (SR)ij and
− (SR)ij over the constraint set, which can be unified as
the following problem

min e (SR)ij s.t. Tr
[
AT (R + B)

]
≤ 0, ‖R‖2F ≤ ‖B‖

2
F

(26)
where e = ±1. For convenience, we introduce a new
matrix variable D defined as D = X

(
XTX

)−1
U. Ac-

cording to Eq. (24), (SR)ij can be represented as (SR)ij =

(D·i)
T

RV·j .

Eq. (26) should admit a closed form solution since the ob-
jective function is linear and the constrain set is the inter-
section of a linear and quadratic function (Bertsimas & T-
sitsiklis, 1997). The following theorem provides the opti-
mal solution for Eq. (26).

Theorem 1. For any λ0 and λ such that 0 < λ0 < λ <∥∥XTY
∥∥
2
, and both X and Y are not equal to 0. The opti-

mal solution to Eq. (26) is

(SR)ij = −e ‖D·i‖2 ‖B‖F (27)

if the following holds

λ0 Tr
[
ATB

]
‖D·i‖2 ≤ e ‖B‖F Σij (28)

otherwise

(SR)ij =
−eGij − Tr

[
ATB

]
Σij

λ0 ‖A‖2F
(29)

where Gij is defined as√(
‖A‖2F ‖B‖

2
F − (Tr [ATB])

2
)(

λ20 ‖A‖
2
F ‖D·i‖

2
2 −Σ2

ij

)
Since we have obtained the optimal value of Eq. (26), the
upper bound of

∣∣uTi W∗
λvj
∣∣ is also ready to obtain. Here,

we use Φ ∈ Rd×m and Ψ ∈ Rd×m to represent the upper
bounds for all subspaces. Specifically, Φij and Ψij denote
the upper bounds of−uTi W∗

λvj and uTi W∗
λvj , respective-

ly. The values of Φ and Ψ are summarized in the following
corollary.

Corollary 1. For any λ0 and λ such that 0 < λ0 < λ <∥∥XTY
∥∥
2
, and Y 6= 0. We have

Φij =



0.5λ
(
‖B‖F ‖D·i‖2 − (SC)ij

)
if ‖B‖F Σij ≤ −λ0 Tr

[
ATB

]
‖D·i‖2

0.5λ

(
Gij−Tr[AT B]Σij

λ0‖A‖2F
− (SC)ij

)
otherwise

Ψij =



0.5λ
(
‖B‖F ‖D·i‖2 + SCij

)
if ‖B‖F Σij ≥ λ0 Tr

[
ATB

]
‖D·i‖2

0.5λ

(
Gij+Tr[AT B]Σij

λ0‖A‖2F
+ SCij

)
otherwise

3.5. Safe Subspace Screening Rule

In view of Eq. (4), we are now ready to construct the
safe subspace screening rule for Eq. (3). Let us introduce
a new matrix Ω ∈ Rd×m with its (i, j)th entry denot-
ing the upper bound of

∣∣uTi W∗
λvj
∣∣ meaning the value of

Ωij is max(Φij ,Ψij). If Ωij = 0, it implies that both
−uTi W∗

λvj and uTi W∗
λvj are equal to zero, then the val-

ue of (Θ∗λ)ij must be zero and the subspace uiv
T
j can be

discarded prior to solving Eq. (3). Formally, the proposed
subspace screening method can be summarized in the fol-
lowing theorem.

Theorem 2. For nuclear norm regularized least squares
problem, suppose the solution W∗

λ0
is known and the SVD

of W∗
λ0

as represented in Eq. (19). Let Û = U, V̂ = V,
ui = U·i and vj = V·j . For any λ > λ0
1. If λ ≥ λmax, then W∗

λ = 0.
2. If λ < λmax, for 1 ≤ i ≤ d, if ‖Ωi·‖∞ = 0, then
(Θ∗λ)i· = 0 and Û·i can be removed from Û. Similarly,
for 1 ≤ j ≤ m, if ‖Ω·j‖∞ = 0, then (Θ∗λ)·j = 0 and V̂·j

can be removed from V̂. Then, solving Eq. (8) will get the
identical result as optimizing Eq. (3).

4. Experiments
In this section, we perform experiments on several syn-
thetic and real data sets to evaluate the performance of the
proposed SSS. Since there is no existing method on safe
subspace screening prior to solving the problem, we eval-
uate the proposed SSS by comparing the performance of
the nuclear norm solver with SSS and without SSS. For the
nuclear norm solver, we use the popular accelerated proxi-
mal gradient (APG) algorithm (Toh & Yuan, 2010; Ji & Ye,
2009). On each data set, we run the solver without and with
SSS to optimize Eq. (2) along a sequence of 100 values of
λ equally spaced on the logarithmic scale of λ/λmax from
0.001 to 0.95. To reduce statistical variability, all reported
results are averaged over 10 trials. All experiments are per-
formed on a workstation with Intel(R) Core(TM) i7-4930K
3.40 GHz CPU and 64G RAM

Suppose the 100 values of λ are indexed by λt, 1 ≤ t ≤
100 in ascending order of value. In our experiments, the
warm-start strategy is used for the solver. Specifically, for
solving the optimization problem at λt with t ≥ 2, the so-
lution W∗

λt−1
at λt−1 will be used as the initialization. To

solve the problem for the smallest regularization parameter
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(a) Synthetic Set 1 (b) Synthetic Set 2 (c) Synthetic Set 3

Figure 1. The subspace rejection ratio of the proposed SSS on three synthetic data sets.

λ1, we use the solution at λ = 0 that is
(
XTX

)−1
XTY

as initialization. In order to apply the proposed SSS for λ1,
we first solve the problem for a very small regularization
parameter λ0 = (1e−6)λmax by using

(
XTX

)−1
XTY as

initialization.

Since the proposed SSS is safe, the solution obtained by the
solver with SSS is the same as the solution directly from
the solver. In other words, their predictive performances
are the same to each other. To quantify the performance of
the proposed method, similarly to (Wang et al., 2013), two
measures are used in our experiments: (a) subspace rejec-
tion ratio: the ratio of the number of subspaces discarded
by the proposed SSS to the total number of subspaces that
can be safely discarded in the ground truth. More precisely,
suppose the rank of ground truth is r, by using the notation
in Sec. 2, we have

subspace rejection ratio =
d×m− d̂× m̂
d×m− r2

(b) speedup: this value is the ratio of the computational
time of the solver without the proposed SSS to the compu-
tational time of the solver with the proposed SSS.

4.1. Synthetic Data Sets

In this subsection, we evaluate the proposed method in the
problem of multivariate linear regression on three synthetic
data sets. Suppose the input X ∈ Rn×d is n samples with
d-dimensional features for each and the output Y ∈ Rn×m
is m responses for all samples, then it can be formulated as

Y = XW∗ + E

where W∗ ∈ Rd×m is the model coefficient matrix and
E ∈ Rn×m is the regression noise. To generate the
synthetic data sets, we use a similar procedure as report-
ed in (Jacob et al., 2008). Specifically, the ith observa-
tion is generated from a multivariate normal distribution
Xi· ∼ N (0, I) and the output of the jth response is ob-

Table 1. Computational time (in minutes) for solving nuclear nor-
m regularized least squares problem along a sequence of 100 pa-
rameter values of λ equally spaced on the logarithmic scale of
λ/λmax from 0.001 to 0.95 on the three synthetic data sets by (a)
“Solver” (solver without subspace screening); (b) “Solver with
SSS” (solver in conjunction with the proposed SSS). “Prep.” is
the running time for solving the problem at λ0. “SSS” is the
total computational time used to perform the proposed subspace
screening.

Data Set Set 1 Set 2 Set 3
Solver 659.12 212.79 182.38

Solver with SSS
Prep. 2.27 0.60 0.64
SSS 13.39 4.37 8.63
Total 28.81 19.73 12.86

Speedup (times) 22.88 10.78 14.18

tained by Yij = Xi·W·j + N (0, 16). 200 samples are
generated for each data set.

In data set 1, all m = 5000 models are assumed from 100
clusters each consisting of 50 models. All d = 5000 di-
mensions are randomly divided into 100 disjoint groups
and each group is assigned to only one cluster. The coef-
ficients for each model from a particular cluster are nonze-
ro only for corresponding dimensions, and are zero for all
other dimensions. For each cluster, a specific model coef-
ficient is the cluster mean plus a model specific component
N (0, 4I). Data set 2 and data set 3 are the same as data set
1 except we change d = 2500 and m = 2500 for data set 2
and data set 3, respectively.

Fig. 1 shows the subspace rejection ratio of the proposed
SSS on the three synthetic data sets. As observed, the
proposed method consistently discards more than 90% i-
nactive subspaces on all three data sets. Table 1 reports
the computational time of the solver without or with the
proposed SSS for solving the 100 nuclear norm regular-
ized least squares problems, as well as the computational
time used to perform the proposed SSS. Since most inac-
tive subspaces have been screened out prior to solving the
problem, the proposed SSS significantly improves the effi-
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(a) PIE (b) MNIST (c) Yahoo Stock

Figure 2. The subspace rejection ratio of the proposed SSS on three real data sets.

ciency of the solver. The lowest speedup achieved by the
proposed SSS on the three data sets is still up to 10.78.
Moreover, as shown in the table, more significant improve-
ment can be achieved for larger problem size. Especially,
on the synthetic data set 1, the size of matrix variable is
5000×5000 and the solver spends 659.12 minutes to solve
the 100 problems. In contrast, by enhancing the solver with
the proposed SSS, only 28.81 minutes is used for the 100
problems, which leads to substantial saving in the compu-
tational time. The proposed SSS is not only effective in
identifying inactive subsapces as shown in Fig. 1, but also
efficient. As observed in Table 1, on the three data sets, the
computational times of performing the proposed SSS are
only 2.03%, 2.05% and 4.73% that of the solver without
subspace screening. In addition, compared with the com-
putational time of solver without subspace screening, the
preparation procedure of the proposed SSS is also very ef-
ficient since it only occupies 0.34%, 0.28% and 0.35% on
the three data sets, respectively.

4.2. Real Data Sets

In this subsection, we perform experiments on three real
data sets to evaluate the performance of the proposed SSS.
The details of the three data sets as follows.

PIE Face Image Data Set This data set used in this ex-
periment consist of 11554 gray face images from 68 peo-
ple, which were captured under various poses, illumina-
tion conditions and expressions (Sim et al., 2003; Cai et al.,
2007). The size of each image is 32×32 pixels. We consid-
er the subspace clustering task on it. Specifically, in each
trial, we first randomly pick 70 images from each people
and put them together as the dictionary X. Then, another
70 images are picked from each people used as the target
clustering subspace Y. The feature dimension is reduced
to 80 by performing PCA on the vectorized raw features.
Then, then we get the dictionary X ∈ R80×4760 and target-
ed clustering subspace Y ∈ R80×4760. Therefore, we have
W ∈ R4760×4760.

MNIST Handwritten Digit Data Set This data set con-
sists of 70, 000 grey images of scanned handwritten digits
(LeCun et al., 1998). The sample sizes of training and test-
ing are 60, 000 and 10, 000 respectively. We still consider a
subspace clustering task. Specifically, in each trial, we ran-
domly pick 600 images from training and testing for each
digit to form the dictionary X and the target clustering sub-
space Y, respectively. The feature dimension is reduced to
100 by performing PCA on the vectorized raw features. Fi-
nally, we obtain a dictionary X ∈ R100×6000 and a target
clustering subspace Y ∈ R100×6000. Then, the problem is
to learn W ∈ R6000×6000.

Yahoo Stock Data In this data set, we consider the applica-
tion of multivariate linear regression on the financial econo-
metrics. Specifically, we aim to predict the future return of
stock via multivariate linear regression by using the daily
closing price. Let yt−1 ∈ Rd and yt ∈ Rd denote the stock
prices at day (t− 1) and t, respectively. Then, the problem
can be formulated as yTt = yTt−1W, where W ∈ Rd×d
and we have d = m in this case. To perform the experi-
ment, in each trial, we download the daily closing prices for
m = 4676 stocks during 101 days in 2013 form Yahoo Fi-
ance. Then X and Y are formed as X = [y1 · · ·y100]

T ∈
R100×4676 and X = [y2 · · ·y101]

T ∈ R100×4676, which
implies W ∈ R4676×4676.

The subspace rejection ratios of the proposed SSS on the
three real data sets are shown in Fig. 2. As observed, the
proposed method is very effective on screening out inactive
subspaces on real data sets in the sense that it successfully i-
dentifies more than 97% inactive subspaces on all three real
data sets. As can be seen in Table 2, compared with result-
s on synthetic data sets, the proposed SSS achieves better
performance on real data sets in terms of speedup. Specif-
ically, even the lowest speedup is up to 53.57 on the M-
NIST data set while it achieves around 80 speedup on both
other two data sets. In addition, the computational time
of performing the proposed SSS and running the prepara-
tion procedure are also much less than that of synthetic data
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Table 2. Computational time (in minutes) for solving nuclear nor-
m regularized least squares problem along a sequence of 100 pa-
rameter values of λ equally spaced on the logarithmic scale of
λ/λmax from 0.001 to 0.95 on the three real data sets by (a)
“Solver” (solver without subspace screening); (b) “Solver with
SSS” (solver in conjunction with the proposed SSS). “Prep.” is
the running time for solving the problem at λ0. “SSS” is the
total computational time used to perform the proposed subspace
screening.

Data Set PIE MNIST Yahoo Stock
Solver 2395.54 2968.87 3075.09

Solver with SSS
Prep. 1.88 3.69 2.24
SSS 11.21 22.04 10.93
Total 31.22 55.42 37.26

Speedup (times) 76.72 53.57 82.53

sets. In particular, the percentage of computational time of
the preparation procedure over that of the solver without
subspace screening is 0.08%, 0.12% and 0.07% on three
real data sets, respectively. Thus the time for preparation
is quite negligible. Moreover, the largest value of percent-
age of performing the proposed SSS is 0.74% which shows
that the proposed SSS is very efficient. One reason for the
better performance of the proposed SSS on real data sets
is that they are generally more complicated thus requiring
more time for the solver to convergence. On the other hand,
the proposed SSS only goes through the data once, whose
computational time depends solely on the size of the matrix
variable.

4.3. Comparison on Forward and Backward Solution
Paths for the Solver

As mentioned at the beginning of this section, we can make
use of the warm-start strategy to efficiently obtain the so-
lutions for a sequence of value of λ. In our experimen-
t, for a given λt, 1 ≤ t ≤ 100 in ascending ordering of
value, we obtain the solution path by solving the problem
from λ1 to λ100. We call this method as a forward solution
path for solver. In contrast, there is an alternative method
called backward solution path method, in which we solve
the problem from λ100 to λ1. In this method, we can only
use 0 that is the solution of λmax as initialization for λ100.
Intuitively, there is no clear theoretical proof as of which
one is more efficient since the result should depend on the
choice of λt. Here, we experimentally compare the perfor-
mances of forward and backward solution paths. Specifi-
cally, we run the solver on the three synthetic data sets by
using both the forward and backward methods and com-
pare their computational time. The results are reported in
Table 3 and they are averaged over 10 trials. As observed,
the computational time of two paths on synthetic set 1 and
set 3 are almost the same to each other, and the forward
path is a little faster than the backward path.

Table 3. Computational time (in minutes) of forward and back-
ward solution path for the solver on three synthetic data sets.

Data Set Set 1 Set 2 Set 3
Forward 659.12 212.79 182.38

Backward 660.16 230.12 185.22

Table 4. Computational time (in minutes) for solving nuclear nor-
m regularized least squares problem along a sequence of 100 pa-
rameter values of λ equally spaced on the logarithmic scale of
λ/λmax from 0.001 to 0.95 on the three synthetic data sets by
(a) “ADMM” (ADMM without subspace screening); (b) “ADM-
M with SSS” (ADMM in conjunction with the proposed SSS).
“Prep.” is the running time for solving the problem at λ0. “SSS”
is the total computational time used to perform the proposed sub-
space screening.

Data Set Set 1 Set 2 Set 3
ADMM 590.63 221.12 227.68

ADMM with SSS
Prep. 1.97 0.60 0.63
SSS 13.40 4.43 9.74
Total 26.05 16.93 14.58

Speedup (times) 22.67 13.06 15.61

4.4. Results of Safe Subspace Screening for ADMM

Further as we mentioned before, the proposed SSS can be
used in conjunction with any nuclear norm solver. In this
subsection, we evaluate the performance of the proposed
SSS for another popular nuclear norm solver, i.e. the al-
ternating direction method of multipliers (ADMM) (Boyd
et al., 2011). Specifically, we perform experiments on the
three synthetic data sets with the same setting as previous
experiments except using ADMM as the solver here. The
results are shown in Table 4. Compared with Table 1, the
proposed SSS has shown similar improvements for ADMM
as APG. This shows that the proposed SSS can extensive-
ly used to improve the efficiency of existing nuclear norm
solvers.

5. Conclusions
In this work, we present a safe subspace screening method
to improve the efficiency of the solver for nuclear norm
regularized least squares problems. Essentially, the idea
of subspace screening is to identify the subspaces that are
orthogonal to the solution by using the convex optimiza-
tion methods. The proposed method is able to effectively
and efficiently discard inactive subspaces prior to solving
the problem, thus greatly reducing the size of the optimiza-
tion problem. Moreover, the proposed method can be used
in conjunction with any nuclear norm solver since the it
is independent of solver. Extensive experiments on three
synthetic and three real data sets have shown that the pro-
posed method significantly improves the efficiency of ex-
isting solvers.
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