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Abstract

Traditionally, DBMSs are shipped with hundreds of
configuration parameters. Since the database performance
highly depends on the appropriate settings of the config-
uration parameters, DBAs spend a lot of their time and
effort to find the best parameter values for tuning the
performance of the application of interest. In many cases,
they rely on their experience and some rules of thumbs.
However, time and effort may be wasted by tuning those
parameters which may have no or marginal effects. More-
over, tuning effects also vary depending on the expertise
of the DBAs, but skilled DBAs are increasingly becoming
rare and expensive to employ. To address these problems,
we present a Statistical Approach for Ranking Database
parameters (SARD), which is based on the Plackett & Bur-
man statistical design methodology. SARD takes the query
workload and the number of configuration parameters as
inputs, and using only a linear number of experiments,
generates a ranking of database parameters based on their
relative impacts on the DBMS performance. Preliminary
experimental results using TPC-H and PostgreSQL show
that SARD generated ranking can correctly identify critical
configuration parameters.

I. Introduction

Businesses are increasingly building larger databases to
cope with the rapid current growth of data. Consistent
performance of the underlying database system is a key
to success of a business. A typical database management

system (DBMS) has hundreds of configuration parameters
and the appropriate setting of these parameters play a
critical role in performance. DBMSs are shipped with
default values for all configuration parameters targeting a
wide range of applications. Although some utilities exist
(for example, DB2’s autoconfigure) to recommend
values of the some configuration parameters, but the sug-
gested values are not always accurate as the recommenda-
tion is based on query workload’s generic characteristics.
Database administrators (DBAs) are expected to tune the
performance of the shipped DBMSs to the application of
their interest. The success of tuning depends on many
factors including the query workload, relational schemas,
as well as the expertise of the DBAs [1]. However, skilled
DBAs are becoming increasingly rare and expensive [2].
A recent study on information technology versus DBA
costs showed that personnel cost is the largest category
of the total cost, estimated at 47% of the total cost of
ownership [3]. Many DBAs spend nearly a quarter of their
time on tuning activities [1]. To reduce the total cost of
ownership, it is of essence that DBAs focus only on tuning
those configuration parameters which have the most impact
on system performance.

A sound statistical methodology for quantifying the
impact of each configuration parameter and the interactions
among those parameters on a DBMS performance is to
perform a full factorial design, where every combina-
tion of input values of the configuration parameters are
considered. However, the major problem in applying a
full factorial design in a DBMS is the large number of
configuration parameters. For example, PostgreSQL [4]
has approximately 100 configuration parameters and all
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parameters have multiple possible values. Given a query
workload, even if each configuration parameter assumes
only two values, we have to perform 2100 experiments to
apply a full factorial design for each query of the workload,
which is not feasible in terms of time and effort. To avoid
this problem, in many cases DBAs rely on their experience
and rules of thumb to select the appropriate configuration
parameters for tuning. Nonetheless, as heuristics out of
experiences and intuition are often used, time and effort
may be wasted to enhance the performance by tuning those
parameters which may have no or marginal effects on
overall performance. Misdirected tuning efforts increase
the total cost of ownership [5]–[8]. A ranking of the pa-
rameters based on their impact on system performance will
greatly help DBAs to prioritize their tuning tasks. To the
best of our knowledge, there is no study which statistically
provides a ranking of the configuration parameters based
on their impact on DBMS performance.

In this paper, using a design of experiments-based
PLACKETT & BURMAN (P&B) methodology [9], we
present a Statistical Approach for Ranking Database con-
figuration parameters (SARD) based on their impact on
the DBMS performance. In particular, SARD addresses the
following problem: Given a DBMS, a set of configuration
parameters, a range of values for all parameters, and a
query workload; find a relative ranking of the parameters
based on their impact on performance. A workload can
be a set of benchmark queries, for example, TPC queries,
or can be a set of data manipulation language (DML)
statements collected over a fixed amount of time using
profiling tools. SARD can be used to discard unimportant
tuning parameters which have marginal or no impact on
DBMS performance. Our objective is to find a solution
which is feasible in terms of time and effort.

The main idea of SARD is to conduct a set of experi-
ments that provide an approximate sampling of the entire
search space. In each experiment, parameter values are var-
ied systematically over a specified range of acceptable val-
ues. Each experiment indicates what will be the response
time a query, if a specific combination of configuration
parameter values are used to set up a database server.
Subsequent analysis of the collected experimental data are
used to estimate the effects of configuration parameters on
system performance. To reduce the exponential number of
experiments required for applying a full factorial design,
SARD uses the P&B two-level factorial design method-
ology based on the following assumptions: 1) stimulating
the system with monotonically non-decreasing parameters
at their extreme values will provoke the greatest response
for each parameter; and 2) only single and two-factor pa-
rameters interactions need to be considered. Adopting P&B

design method helps us to reduce the required number of
experiments from exponential to linear.

Our contribution in this paper is mainly a methodology
for ranking database configuration parameters based on
their impact on DBMS performance for a given query
workload. Preliminary experimental evaluation shows that
SARD is able to find performance bottleneck parameters
using the PostgreSQL [4] and the TPC-H benchmark [10].

The remainder of the paper is organized as follows:
Section II describes our design of experiments-based
methodology and a brief overview of the statistical P&B
design. Section III describes the phases of SARD in detail.
Section IV describes the experimental setup. Section V
explains our results. Section VI describes the related
work on DBMS performance tuning. Finally, Section VII
concludes the discussion and lists some future extensions.

II. Design of Experiments Based Methodol-
ogy

SARD is a design of experiments-based approach. The
major goal of the design of experiments is to gather
the maximum information about a system with minimum
effort [11]. Experiments are conducted based on a given
specification to collect information about system perfor-
mance. The subsequent analysis of resulting experimental
data is used to identify the important factors (i.e, pa-
rameters), and the presence of interactions between the
factors. The simplest design strategy to quantify the impact
of all factors and interactions is to apply a full factorial
design, for example ANOVA, in which system response
is measured for all possible input combinations [11].
However, it requires an exponential number of experiments
in the number of parameters.

To reduce the number of experiments, SARD makes
a few assumptions. First, for each parameter SARD con-
siders only two values: minimum and maximum. The
intuition behind this is that stimulating the system with
inputs at their extreme values will provoke the maximum
range of output responses for each input. A second related
assumption is that the provoked response, such as the total
execution time, is a monotonic function of the input pa-
rameter values. The third assumption is based on sparsity
of effects principle: system response is largely dominated
by a few main factors and low-order interactions; the effect
of higher order interactions on response is not statistically
significant. As a consequence, we can safely ignore the
effects of higher order interactions.

Based on these assumptions, SARD uses a two-level
factorial design named Plackett & Burman (P&B) de-
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sign [9], which requires only linear number of experiments
compared to the exponential number of experiments re-
quired by the full-factorial design. For each experiment
of the P&B design, the value of each parameter is given
by prescribed design matrix. Table I gives an example
of the design matrix, depicted by the columns 2-8. Each
row of the matrix corresponds to one experiment. Each
cell in the matrix indicates the value to be used for a
parameter in the corresponding experiment. Entry in the
matrix is either “+1” or “-1”. “+1” corresponds to a value
slightly higher than the normal range of values for that
parameter and “-1” corresponds to a value slightly lower
than the normal range of that parameter. The “+1” and
“-1” values are not restricted to only numeric values. For
example, for the buffer page replacement algorithm, the
“-1” value can be “RANDOM” and “+1” value can be
“CLOCK”. Experiments are conducted by setting up the
values according to the design matrix, and query execution
times are recorded, as in the last column of Table I. The
net effect of each parameter is estimated by multiplying
the response value with the corresponding “+1” or “-1”
for each row and summing the values across all rows. The
absolute value of net effect is used to determine the relative
importance of that parameter.

III. SARD: a P&B Design for DBMS

SARD uses P&B design methodology to estimate the
effects of configuration parameters on DBMS performance.
SARD has three major phases. In the first phase, SARD
estimates the P&B effect of each configuration parameter
on the DBMS performance for each query of the workload.
In the second phase, for each query, the configuration
parameters are ranked based on the relative magnitude
of the P&B effect. In the third phase, the rankings of
the configuration parameters for all individual queries are
combined to determine the final ranking of the parameters
for the entire query workload. For illustration, we will use
Table I as a running example, where seven configuration
parameters A, B, C, D, E, F, and G need to be ranked. The
workload consists of three queries: Q1, Q2, and Q3. The
last three columns correspond to the execution times of
the query Q1, Q2, and Q3. Now, we will discuss the three
phases of SARD in detail in the following subsections.

A. Phase I: Parameter Effect Estimation

At first, a P&B design matrix is constructed, which
gives the specification of values used for each parameter in
each experiment. The dimension of design matrix depends

A B C D E F G Execution Time
Q1 Q2 Q3

R1 +1 +1 +1 -1 +1 -1 -1 34 110 10.2
R2 -1 +1 +1 +1 -1 +1 -1 19 72 10.1
R3 -1 -1 +1 +1 +1 -1 +1 111 89 10.3
R4 +1 -1 -1 +1 +1 +1 -1 37 41 10.3
R5 -1 +1 -1 -1 +1 +1 +1 61 96 10.2
R6 +1 -1 +1 -1 -1 +1 +1 29 57 10.2
R7 +1 +1 -1 +1 -1 -1 +1 79 131 10.3
R8 -1 -1 -1 -1 -1 -1 -1 19 47 10.1

R9 -1 -1 -1 +1 -1 +1 +1 135 107 10.3
R10 +1 -1 -1 -1 +1 -1 +1 56 74 10.3
R11 +1 +1 -1 -1 -1 +1 -1 112 48 10.1
R12 -1 +1 +1 -1 -1 -1 +1 74 91 10.1
R13 +1 -1 +1 +1 -1 -1 -1 55 99 10.3
R14 -1 +1 -1 +1 +1 -1 -1 117 123 10.1
R15 -1 -1 +1 -1 +1 +1 -1 51 77 10.3
R16 +1 +1 +1 +1 +1 +1 +1 76 81 10.2

TABLE I. Columns 2-8 and rows R1-R16 form the P&B
design matrix for the seven parameters A, B, C, D, E,
F, and G. Last three columns contain the execution time
of the queries Q1, Q2, and Q3. Rows R1-R8 contain the
base P&B design matrix, and rows R9-R16 are needed if
foldover is used.

on the number of configuration parameters, N . The base
design matrix has X rows and X − 1 columns, where
X is the next multiple of 4 greater than N , i.e., X =

(floor(N/4)+1)∗4. For example, if N = 5, then X = 8,
while if N = 8, then X = 12. The value of X indicates
the number of experiments that need to be conducted in
SARD to collect data for estimating the P&B effect. In
the design of optimal multifactorial experiments work [9],
Plackett and Burman recommended the parameter values
setting,“+1” or “-1”, for X = 8, 12, 16, . . . , 96, 100 exper-
iments. SARD sets the first row of the P&B design matrix
based on that recommendations according to the value of
X . Rest of the (X − 1) rows of the P&B design matrix
are constructed by right cyclic shifting of the immediate
preceding row. All entries of the X-th row of the P&B
design matrix are set to “-1”. The columns 2-8 in the first
eight rows (R1-R8) of the Table I gives a base P&B design
matrix for N = 7.

An improvement that increases the accuracy of the base
P&B design is the P&B design with foldover [12], which
requires additional X experiments. These additional rows
are constructed by reversing the sign of the top X rows
entries. The (X + i)-th row is formed by reversing the
sign of the i-th row. The columns 2-8 in the last eight
rows (R9-R16) of Table I gives additional design matrix
entries for the foldover for N = 7. If N < (X − 1),
means that number of columns in the P&B design matrix
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is more than the number of configuration parameters. In
this case, the additional (X − N − 1) last columns of
the P&B matrix are considered as dummies, are simply
ignored. For each query of the workload, the i-th experi-
ment is conducted by setting the parameters values of the
configuration parameters according to the i-th row of the
P&B design matrix. The effect of the each configuration
parameter is calculated by multiplying the corresponding
“+1” or “-1” of that parameter in the i-th row of the P&B
matrix with the query execution time, and summing up the
products across all rows of the design matrix.

For the illustrative example, in Table I, N is seven and
the value of X is eight. For the base case, we need to
conduct eight experiments. If foldover is used, we need
to conduct 16 experiments. In this paper, we assume that
foldover is used. The specification of the parameter values
need to be used in all 16 experiments are given in the
columns 2-8 and rows R1-R16 of Table I. The first row
(R1) of the P&B design matrix in Table I, is copied
from [9] according to the value of X = 8. For query Q1, 16
experiments are conducted and execution time is recorded,
as shown in the ninth column of Table I. Similarly, the
execution time of the queries Q2 and Q3 are recorded in
the 10-th and 11-th column. Now, the net effect of the first
parameter A for the query Q1 is calculated by multiplying
the entries in the second column with entries in the ninth
column and summing up across all 16 rows (R1-R16). For
query Q1, the net effect of the parameter A is estimated
as:

EffectA = abs((+1 ∗ 34) + (−1 ∗ 19) + . . . + (−1 ∗

51) + (+1 ∗ 76)) = abs(−109) = 109.
Similarly, the net effect of the second parameter B for

query Q1 is calculated by multiplying the entries in the
third column with the entries in the ninth column and
summing across all 16 rows (R1-R16). The net effect of
A for query Q2 is calculated by multiplying the entries in
the second column with entries in the tenth column and
summing across all 16 rows (R1-R16), and so on. The net
P&B effects of all seven parameters for the queries Q1,
Q2, and Q3 are shown in Table II.

SARD can also determine the sensitivity of a query
to parameter tuning. For each query, SARD calculates
the standard deviation of the net effects for the all
configuration parameters. No matter how large the P&B
effects are, if the standard deviation of the effects is very
low, this means that all effects are virtually similar, the
query performance will not be affected by the change
in configuration parameter settings. In this case, SARD
ignores the ranking. The standard deviation of net P&B
effects of the parameters for queries Q1, Q2, and Q3 are
136.4, 123.3, and 0.44, respectively as listed in the last

A B C D E F G stdev
Q1 109 79 167 193 21 25 177 136.4
Q2 61 161 9 143 39 185 109 123.3
Q3 0.40 0.80 0.00 0.40 0.40 0.00 0.40 0.44

TABLE II. The P&B effects for the queries Q1, Q2, and
Q3.

A B C D E F G
Q1 0.6 0.4 0.9 1 0.1 0.1 0.9
Q2 0.3 0.9 0.0 0.8 0.2 1.0 0.6

TABLE III. The P&B normalized effects with respect to
the maximum effect for the queries Q1 and Q2.

column of Table II. However, as the standard deviation
of the P&B effects of the configuration parameters for
query Q3 is very small, SARD ignores the rankings of
the parameters for query Q3.

1) Some Discussions: SARD assumes that query ex-
ecution time is a monotonic function of values for a
parameter, therefore the high and low values of a parameter
must be picked carefully. To find out (a) whether the
execution time is a monotonic function of values for a
parameter, and (b) the high and low values, such that
execution time is a monotonic function of values in that
range, either experience or expertise is required, or more
experiments must be conducted. Given the large number
of parameters, and the large number of possible values for
each parameter, this is a non-trivial problem. Therefore
like others tool, the SARD system most likely needs to be
provided by the DBMS vendor, and cannot be used as a
standalone third-party tool that can be easily adapted for
different DBMSs. This is one of our future work, to make
SARD a standalone tool.

SARD assumes that there is little interaction among the
parameters. Right now, SARD can correctly take care of
first and second order interactions using P&B design with
foldover. For a DBMS, where there are a large number
of parameters, however, this assumption does not always
hold. So still DBAs’ expertise are needed to justify the
SARD results. Quantifying the impact of this assumption
is an item for future work on SARD.

B. Phase II: Parameter Ranking for a

Query

Once the effects of all configuration parameters and the
sensitivity of a query is determined, the next step is to
rank parameters. If it is insensitive to parameter changes,
the ranking can safely be ignored; the performance of
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Normalized to Max Effect
A B C D E F G

Q1 4 5 3 1 7 7 3
Q2 5 2 7 3 6 1 4

TABLE IV. Ranking of the configuration parameters for
the queries Q1 and Q2. Query Q3 is not included as it is
not sensitive to tuning.

an insensitive query is unaffected by parameter values
changes.

To rank the configuration parameters, we can simply
order them based on the descending order of magnitude
of the P&B effects. However, problems can arise if some
effects are very close to each other. Intuitively, this sit-
uation means that the corresponding parameters’ effects
are virtually all the same, but the sorting method assigned
them to a different ranking order. For example, there are
four parameters P, Q, R, and S and P&B effects are
1500, 50.6, 51.4, and 3000, respectively. The ranking due
to sorting method will be 2, 4, 3, and 1. However, the
effects of parameters Q and R are very close. Since the
effects are similar, they should be assigned to the same
rank. To avoid this problem of the simple sorting method,
effects are normalized with respect to the maximum effect,
rounded to the first decimal point, and sorted in descending
order. All the parameters with the same normalized effect
are assigned the same rank. For example, in the previous
example the normalized effects of parameters P, Q, R, and
S are 0.5, 0.0, 0.0, and 1.0, respectively. According to the
rounding method the ranks are 2, 4, 4, and 1, respectively.
In the continuing example, the normalized P&B effect for
the queries Q1 and Q2 is listed in Table III and ranking
due to rounding is listed in Table IV.

C. Phase III: Parameter Ranking for the

Workload

After determining the ranking of the parameters for
each individual query, next step is to estimate the ranking
of parameters for the entire workload. The queries which
are insensitive to parameter tuning, are not included in
workload ranking calculation.

To estimate the rank of the configuration parameters
for the the entire workload, ranks are summed across all
queries, averaged and sorted in ascending order. The most
important parameters will have the lowest cumulative rank.
For example, in Table IV, for the entire workload, the
average rankings of the parameters A, B, C, D, E, F, and
G are 4.5, 3.5, 5.0, 2.0, 6.5, 4.0, and 3.5, respectively. The
final ranking for the parameters of the workload in Table I

will be 5, 3, 6, 1, 7, 4, and 3, respectively. The ranking
indicates that P4 is the most important parameter, P2 and
P7 are the second most important parameters, followed by
P6, P1, P3, and P5 in order.

IV. Experimental Setup

In this section, we will give an overview of the DBMS
parameters, workload, and the machine setup used for
collecting experimental data. We have conducted all ex-
periments in a machine with two Intel XEON 2.0 GHz
w/HT CPUs, 2 GB RAM, and 74 GB 10,000 RPM disk.

A. Workload

For demonstration, we have used a workload consist-
ing of five TPC-H queries, {Q1, Q8, Q9, Q13, Q16}.
TPC-H database is populated by data generation program
dbgen with scaling factor (SF) of 1 (i.e., data size is
1GB). Queries are generated by qgen program supplied
with TPC-H benchmark. For collecting data, queries are
modified by adding EXPLAIN ANALYZE. Queries are
executed one at a time. More detail experimental results
using a different workload and full TPC-H queries can be
found in [13].

B. Parameters Considered

For demonstration, we have used the PostgreSql8.2,
which has approximately 100 configuration parameters [4].
As our queries are read-only, many of the parame-
ters are not relevant. We have considered only those
parameters which seem to be relevant to read only
queries. We have also deliberately selected parameters
checkpoint timeout and fsync which do not have
any effect on read only queries. Intuitively the relative
impact of this type of parameters should be low or zero for
read only queries. Including them, will help us to validate
our methodology. The high and low P&B values for the
parameters used in this demonstration are given in Table V.
All values are selected according to the recommendations
made in PosgreSQL documentation [4]. For demonstration,
we choose the high and low values for each parameter in
a range such that it will act as monotonic.

V. Results

Table VI gives the SARD’s estimated P&B effects
and ranking of the configuration parameters for the
queries of the workload consisting of TPC-H , {Q1,
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Parameter P&B Effects Ranking
Q1 Q8 Q9 Q13 Q16 Q1 Q8 Q9 Q13 Q16

Checkpoint timeout 63139 8910 602068 4130 1590 15 15 5 15 15
cpu index tuple cost 10651 42106 149179 2460 1697 15 12 13 15 15
cpu operator cost 81071 46111 349389 480 1714 15 12 11 15 15
cpu tuple cost 58019 74791 48262 5808 1836 15 6 15 15 15
deadlock timeout 11923 64500 54715 5214 1546 15 6 15 15 15
effective cache size 75846 11954 304263 238544 979 15 15 11 1 15
fsync 59809 4534 274194 3424 1329 15 15 11 15 15
geqo 3858 82480 529011 853 1679 15 6 7 15 15
maintenance work mem 75774 127031 780976 1351 1048 15 2 3 15 15
max connections 97626 77876 628112 3678 1792 15 6 5 15 15
random page cost 8693 43699 1694532 3447 2145 15 12 1 15 15
shared buffers 162386 34787 770430 132957 5997 15 12 3 2 2
stats start collector 71420 25181 328104 4278 2122 15 12 11 15 15
temp buffers 101473 31217 571133 2713 1238 15 12 7 15 15
work mem 5523703 359544 142035 24839 63760 1 1 13 3 1

TABLE VI. P&B effects of the configuration parameters for a workload consists of the TPC-H queries {Q1, Q8, Q9, Q13,
Q16}.

Parameter High Low
Value Value

effective cache size (pages) 81920 8192
maintenance work mem (pages) 8192 1024

shared buffers (pages) 16384 1024
temp buffers (pages) 8192 1024

work mem (KB) 8192 1024

random page cost∗ 2.0 5.0
cpu tuple cost∗ 0.01 0.03

cpu index tuple cost∗ 0.001 0.003
cpu operator cost∗ 0.0025 0.0075

Checkpoint timeout (seconds) 1800 60
deadlock timeout (milliseconds) 60000 100

max connections 5 100
fsync true false
geqo true false

stats start collector false true

TABLE V. PostgreSQL configuration parameters and
their P&B values used in the experimental setting. The
symbol ∗ indicates that the values are relative to the single
sequential page fetch cost.

Q8, Q9, Q13, Q16}.The results indicates that for Q1,
work mem is the most important parameter; for Q8,
work mem and maintenance work mem are the most
important parameters; for Q9 random page cost,
shared buffers, maintenance work mem
are the most important parameters; for Q13,
effective cache size, shared buffers are
most important parameters; and for Q16, work mem
and shared buffers are important parameters.
work mem is ranked first in Q1, Q8, and Q9.

Rank Parameter
1 work mem
2 shared buffers
3 maintenance work mem
4 max connections
5 effective cache size
6 geqo
7 random page cost
8 Checkpoint timeout
9 temp buffers
10 cpu tuple cost
11 deadlock timeout
12 cpu operator cost
13 stats start collector
14 cpu index tuple cost
15 fsync

TABLE VII. The final ranking of the configuration pa-
rameters for a workload consists of the TPC-H queries
{Q1, Q8, Q9, Q13, Q16}.

maintenance work mem is ranked second and
third respectively for Q8 and Q9. shared buffer is
ranked third, second, and second respectively in Q9, Q13,
and Q16. effective cache size is ranked one in
Q3.

In this paper, we assume that all queries have same
importance in the workload. So intuitively it appears
that work mem is one of the most important config-
urations for tuning to improve the performance of the
entire workload, as it appears as ranked first for three
queries out of five. shared buffers also looks very
important for tuning as it ranked second for two queries
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and third for another query. effective cache size
and random page cost also looks promising as they
ranked first for one query. Table VII listed the overall rank-
ing of the all configuration parameters for the workload
generated by SARD. From the result, it is interesting to
note that overall ranking of the configuration parameters
for the workload, are different from their rankings for the
individual queries of the workload. For example, although
random page cost ranked first for query Q9, but it
does not appear in the topmost five important parameters
for the workload considered.

Another interesting observation is that fsync and
checkpoint timeout never appear most important for
the individual queries as well as the entire query workload.
As the queries we considered here are read only, intuitively
these two parameters should have marginal impact to
improve the performance of the overall query workload.
Experimental results match with intuition. The low ranking
of these two parameters helps to validate that SARD is
working correctly.

VI. Related Work

Recent research on database tuning can be classified
into three broad categories: tuning the physical design,
identifying performance bottlenecks, and tuning the con-
figuration parameters. SARD falls into both the second
and third categories.

Tuning the Physical Design: Major database vendors
offer tools for automating database physical design. For
example, Oracle 10g provides tools for selection of in-
dexes, materialized views, for identifying the root causes
of performance bottlenecks, and for estimating the ben-
efit of eliminating a performance bottleneck [6], [14]–
[16]. Microsoft SQL Server provides tools that allow
for integrated selection of indexes, indexed views, and
horizontal partitions [17]–[23]. IBM’s DB2 recommends
indexes, materialized views, shared nothing partitions, and
multidimensional clustering of tables [2], [24]–[29].

Identifying Performance Bottlenecks: Rule-based de-
cision trees are used to identify the potential sources of per-
formance bottleneck [30]. A decision tree is formed based
on a set of rules for finding the bottlenecks. ADDM uses a
common performance metric ‘database time’ [6]. ADDM
posses a holistic view of the database, identifies root
causes of the performance bottlenecks, and estimates the
benefits of eliminating performance bottlenecks. However,
ADDM ignores system configuration parameters settings.
A design of experiments based approach is used to evaluate
the statistical significance of configurable parameters, the

interaction effects between each parameter, web function
types, and to rank key configurable system parameters
that significantly impact overall system performance for
E-Commerce systems [31], [32]. The drawback is that this
an ad-hoc approach, lacking sound statistical methodology.
Also, there is no upper bound on numbers of experiments
needed to collect necessary data for determining rank.

Selecting Configuration Parameters: IBM DB2 UDB
provides a wizard for automatically selecting the initial
values for the configuration parameters [33]. Configuration
choices are made by modeling each database configura-
tion setting as a mathematical expression consisting of
user specification of the database environments, automat-
ically sensed system characteristics, and expert heuris-
tics. Nonetheless, this feature suffers from the following
problems: as the user specified inputs can have very
different characteristics than the built-in workload models,
the recommended values can be inaccurate; due to the
use of heuristics, there is no statistical evidence that these
values are correct; and no ranking is provided. In this work,
we will address all these problems. As our conclusions
are based on the real workloads, the first problem will not
occur at all. The third problem is solved using a sound
statistical methodology, which will indirectly take care of
the second problem.

SARD uses P&B design for estimating the impact of a
configuration parameter on DBMS performance for a par-
ticular workload. The P&B design has been used in various
applications, such as improving the simulation methodol-
ogy of micro architecture research [34]; identifying the
most significant processor parameters, selecting a subset
of benchmarks, analyzing the effect of an enhancement on
processor performance [34]; characterizing and comparing
existing computer architecture simulation techniques [35];
to systematically stressing statistical simulation by creating
different performance bottlenecks [36]; and identifying the
performance critical buses of a micro architecture [37].
To the best of our knowledge, SARD is the first to apply
the statistical design of experiments based P&B design
approach to study a DBMS.

VII. Conclusions and Future Work

SARD provides a methodology for ranking the con-
figuration parameters based on their relative impact on
DBMS performance. SARD is a generic methodology and
can be applied to the non-database systems as well. A
ranking based on statistical data will be a great aid for
the DBAs to direct the tuning efforts. SARD can greatly
serve this purpose. From our experience in this work, we
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have come to the following two conclusions. First, when
tuning individual queries, DBAs can use the ranking by
rounding normalized effects method. Second, since the
ranking of parameters for individual queries and the entire
workload are different, DBAs must examine both to have
a better idea of what parameters are important to consider
for improving DBMS performance.

In the future, we are planning to perform the following
extensions: 1) exploring more alternatives for ranking
parameters for the individual queries as well as for the
query workloads, 2) using SARD’s estimated P&B effect
to suggest the appropriate values of the configuration
parameters, and 3) making SARD adaptable to the dynamic
changes of the parameters and query workloads.
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