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Abstract—This paper presents RECATHON; a context-aware
recommender system built entirely inside a database system.
Unlike traditional recommender systems that are context-free
where they support the general query of Recommend movies for
a certain user, RECATHON users can request recommendations
based on their age, location, gender, or any other contex-
tual/demographical/preferential user attribute. A main challenge
of supporting such kind of recommenders is the difficulty of
deciding what attributes to build recommenders on. RECATHON

addresses this challenge as it supports building recommenders
in database systems in an analogous way to building index
structures. Users can decide to create recommenders on selected
attributes, e.g., age and/or gender, and then entertain efficient
support of multidimensional recommenders on the selected at-
tributes. RECATHON employs a multi-dimensional index struc-
ture for each built recommender that can be accessed using
novel query execution algorithms to support efficient retrieval
for recommender queries. Experimental results based on an
actual prototype of RECATHON, built inside PostgreSQL, using
real MovieLens and Foursquare data show that RECATHON

exhibits real time performance for large-scale multidimensional
recommendation.

I. INTRODUCTION

Recently, recommender systems have grabbed researchers’

attention in both industry [2], [7], [9], [19] and academia [14],

[13], [24], [28], [29]. The main goal of a recommender system

is to suggest new and interesting items to users from a

large pool of items. Recommender systems are implicitly em-

ployed on a daily basis to recommend movies (e.g., Netflix),

books/products (e.g., Amazon), friends (e.g., Facebook), and

news articles (e.g., Google News). A recommender system

exploits the users’ opinions (e.g., movie ratings) and/or pur-

chasing (e.g., watching, reading) history in order to extract

a set of interesting items for each user. In technical terms,

a recommendation algorithm takes as input a set of users

U , items I , and ratings (history of users’ opinions) R and

estimates a utility function RecScore(u, i) that predicts how

much a certain user u ∈ U would like an item i ∈ I such that

i has not been already seen (or watched, consumed, etc) by

u [4]. To estimate such a utility function, many recommenda-

tion algorithms have been proposed in the literature [4], [11]

(e.g., Collaborative Filtering).

Classical recommender systems answer the traditional

context-free recommendation query like, Recommend me 10

movies, where we estimate the recommendation utility func-

tion based on the whole users’ opinions history and hence

generates recommendation to the querying user regardless of

the user attributes (e.g., user age, job, and gender). On the

other side, a multidimensional recommender would be able

to estimate the recommendation utility function based on a

subset of the users’ opinions data that corresponds to specific

attributes’ range and hence would be able to support context-

aware, preference-aware, or user demographic-aware recom-

mendations queries such as: Recommend me 10 movies that

people in my age would like, Recommend me 10 restaurants

that are located in Tempe, Arizona, or Recommend me 5

movies that people of my gender would like. From a modeling

perspective, it has been shown that such queries would exhibit

higher accuracy than context-free recommendations [3], [6].

Building a multidimensional (context-aware) recommender

poses the following challenges: (1) Challenge I: Deciding

the contextual attributes to build a recommender on and the

recommendation algorithm to estimate the utility function. For

example, if a user has two attributes, age and gender, then

there is a possibility of four recommenders, a context-free,

an age-aware, a gender-aware, and an (age, gender)-aware

recommender. Also, each recommender may have different

versions based on the employed recommendation algorithm.

(2) Challenge II: For a multidimensional recommender, how

to efficiently store and maintain the underlying recommen-

dation models. A basic solution would be to materialize

all recommendation models that correspond to all attributes

combinations. Nonetheless, this approach incurs tremendous

storage and maintenance overhead. (3) Challenge III: How

to execute context-aware recommendation queries expressed

by users over a recommender. A straightforward solution

implements the recommendation functionality on-top of a

database system. However, this approach does not harness the

full power of the database engine.

In this paper, we introduce RECATHON : a middleware

for building context-aware recommendation applications in a

database management system. RECATHON tackles Challenge I

by providing a declarative interface for users to build custom-

made multidimensional recommenders. The main idea is to

deal with building recommenders inside the database engine

in an analogous way to creating indexes (or views). Database

users can build indexes on tables, based on the query workload.

Similarly, if there is a significant number of recommendation



queries that use age and salary, a RECATHON designer might

decide to build a recommender over the fields 〈age, salary〉.
To achieve that, RECATHON extends SQL with new state-

ments to create/drop multidimensional recommenders, namely

CREATE/DROP RECOMMENDER. When creating a context-aware

recommender, the user specifies the recommender name, the

sets of users, items, and ratings that will be used to build the

recommender. In addition, the user specifies the set of contex-

tual attributes that the recommender will support and selects

one of RECATHON built-in recommendation algorithms.

To address Challenge II, we initialize and maintain a multi-

dimensional grid data structure for each recommender created

using the CREATE RECOMMENDER statement, where each di-

mension corresponds to one of the attributes. Each grid cell

includes a recommendation model that is used to efficiently

generate recommendations to users. Materializing a large

number of grid cells incurs more recommendation models

being stored and maintained, which may preclude system scal-

ability. To remedy this issue, RECATHON adaptively decides,

based upon the query/update workload, which recommender

cells to maintain in order to reduce the overall recommender

storage and maintenance overheard without largely compro-

mising the query execution performance. To query an existing

multidimensional recommender (Challenge III), RECATHON

users specify the recommender in the FROM clause and the

user identifier as a predicate to the WHERE clause of a SQL

query. RECATHON executes the query and produces the set

of recommended items, along with their scores with respect

to the querying user. To reduce query latency, RECATHON

optimizes incoming recommendation queries through a set of

query execution algorithms that embed the recommendation

functionality within other database operations, namely, select,

join, and ranking.

Experiments, based on actual system implementation inside

PostgreSQL, using real data extracted from MovieLens [20]

and Foursquare [27], show that RECATHON exhibits high per-

formance for large-scale multidimensional recommendation.

The rest of the paper is organized as follows: Preliminaries

are given in Section II. Challenges I to III are addressed in

Sections III to V. Experiments are presented in Section VI.

Related work is outlined in Section VII. Finally, Section VIII

concludes the paper.

II. PRELIMINARIES

Data Model. RECATHON assumes the following input data:

(1) Users: a set of users and their attributes. (2) Items: a set of

items and their attributes. (3) Ratings: users expressing their

opinions over items. Opinions can be a numeric rating (e.g.,

one to five stars), or unary (e.g., Facebook “check-ins”). Also,

ratings may represent purchasing behavior (e.g., Amazon).

Figure 1 gives an example of movie recommendation data.

Recommendation Algorithms. Most recommendation algo-

rithms produce recommendations in two steps, as follows:

Step I: Recommendation Model Building: This step consists

of building a recommendation model RecModel using the

(c) Ratings Table 

uid

1

2

1

3

4

iid Rating

1 3.5

2 4.5

2 2.0

1 5.0

1 1.5

3 2 3.0

5 2 3.0

6 1 5.0

7 1 3.5

uid age gender city

1 20 Female Minneapolis

2 22 Female

3 18 Female

4 19 Female Minneapolis

5 34 Male

Minneapolis

Minneapolis

Minneapolis

6 40 Male St. Paul

7 65 Female Edina

(a) Users Table (Users Data)

6 2 1.0

7 2 1.5

5 1 2.5

(b) Movies Table (Items Data)

iid

1

2

name

'The Lord of the Rings'

'I Love New Work'

name

Alice

Carol

Eve

Erin

Bob

Dan

Frank

Fig. 1. Recommender Input Data.

input data. The format of the model depends on the under-

lying recommendation algorithm. For example, a recommen-

dation model for the item-item cosine-similarity model (Item-

CosCF) [4] is a similarity list of the tuples 〈ip, iq, SimScore〉,
where SimScore is the similarity score between items ip and

iq. To compute SimScore(ip, iq), we represent each item as a

vector in the user-rating space of the user/item ratings matrix.

The Cosine similarity is then calculated as follows:

SimScore(ip, iq) =
~ip · ~iq

‖~ip‖‖~iq‖
(1)

Step II: Recommendation Generation: This step utilizes

the RecModel (e.g., items similarity list) created in Step I

to predict a recommendation score, RecScore(u, i), for each

user/item pair. RecScore(u, i) reflects how much each user u

likes the unseen item i. The recommendation score RecScore

depends on the recommendation algorithm defined for the

underlying recommender. For the ItemCosCF recommendation

algorithm, RecScore(u, i) for each item i not rated by u is

calculated as follows:

RecScore(u, i) =

∑
l∈L

sim(i, l) ∗ ru,l
∑

l∈L
|sim(i, l)|

(2)

Before this computation, we reduce each similarity list L to

contain only items rated by user u. The recommendation score

is the sum of ru,l, a user u’s rating for a related item l ∈ L
weighted by sim(i,l), the similarity of l to candidate item i,

then normalized by the sum of similarity between i and l.

III. MULTI-DIMENSIONAL RECOMMENDER

Figure 2 depicts RECATHON architecture. To support multi-

dimensional recommenders, the first challenge (Challenge I)

is to provide a tool to the system users to freely decide which

attributes and recommendation algorithm to be used in build-

ing the recommender. RECATHON addresses this challenge by

allowing users to use a SQL-like clause to define new mul-

tidimensional recommenders by specifying the recommender

data and attributes (i.e., dimensions). RECATHON exposes the

newly created recommender to its users as a virtual schema,

where users can issue SQL queries to obtain a set of recom-

mended items (e.g., movies) based on the specified attributes
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Fig. 2. Recathon Architecture.

(e.g., age and city). This section focuses on how users interact

with the system. In particular, Section III-A explains the SQL

clause for creating a new recommender, while Section III-B

explains the SQL for querying a recommender.

A. Creating a New Recommender

To allow creating a new recommender-aware system, RE-
CATHON employs a new SQL statement, called CREATE
RECOMMENDER, as follows:

CREATE RECOMMENDER [Recommender Name]

USERS FROM [Users Table]

ITEMS FROM [Items Table]

RATINGS FROM [Ratings Table]

ATTRIBUTES [Attributes Set]

USING [Recommendation algorithm]

The recommender creation SQL, presented above, has the fol-

lowing parameters: (1) Recommender name is a unique name

assigned to the created Recommender. (2) Users Table,

Items Table, and Ratings Table are the names of rela-

tional tables containing the users, items, and ratings input data

(e.g., the tables in Figure 1). (3) Attributes Set is a set

of dimensions that the recommender will be built on (e.g.,

age). (4) Recommendation algorithm is the algorithm used

to build the recommender. Currently, RECATHON supports

three main recommendation algorithms (with their variants):

(a) Item-Item Collaborative Filtering with Cosine (abbr. Item-

CosCF) or Pearson Correlation (abbr. ItemPearCF) similarity

functions, (b) User-User Collaborative filtering (abbr. User-

CosCF / UserPearCF), and (c) Regularized Gradient Descent

Singular Value Decomposition (abbr. SVD). If no recommen-

dation algorithm is specified, RECATHON employs by default

the ItemCosCF algorithm. Examples are given below:

Example 1: AgeRec: an age-aware recommender created on

the input data stored in the Users, Movies, and Ratings tables

of Figure 1, using the ItemCosCF recommendation algorithm:
CREATE RECOMMENDER AgeRec USERS FROM Users U

ITEMS FROM Movies RATINGS FROM Ratings

ATTRIBUTES U.age USING ItemCosCF

With this SQL, a new recommender, named AgeRec, is

added to the database system, and can be queried later to

return a set of recommended movies based on the user age,

e.g., recommend me five movies that people in my age like.

Example 2: AgeCityGenderRec: an (age, city, gender)-

aware recommender created on the input in Figure 1, using

the SVD recommendation algorithm:
CREATE RECOMMENDER AgeCityGenderRec

USERS FROM Users U ITEMS FROM Movies

RATINGS FROM Ratings

ATTRIBUTES U.age, U.city, U.gender USING SVD

With this SQL clause, a new recommender, named AgeCity-

GenderRec, is added to the database system, and can be

queried later to return to a querying users a set of recom-

mended movies based on the user age, city, and gender, e.g.,

recommend me five movies that people in my age, living in my

city, and of my gender, would like.

Notice that in the above two examples, if we had no

ATTRIBUTES clause, we would create a traditional recom-

mender that can be queried to recommend a set of movies for a

certain user, regardless of the user attributes, e.g., recommend

me five movies.

B. Querying a Recommender

Once a recommender is created using the CREATE

RECOMMENDER statement, it is exposed to querying users as

a virtual table with the schema: (uid,iid,RecScore), where

uid is a user identifier, iid is an item identifier, and RecScore

is the recommendation score that predicts how much the user

uid would like the item iid according to the underlying

recommender function, specified in the USING clause of the

CREATE RECOMMENDER statement. Then, RECATHON users

can issue SQL queries over the created multidimensional

recommender schema as follows:

SELECT [Select Clause]

FROM [Recommender], [Tables]

WHERE [Where Clause]



Query 1 Select * From AgeCityGenderRec R Where R.uid=2

Query 2 Select R.iid From AgeCityGenderRec R Where R.uid=1

Order By R.RecScore Desc Limit 10

Query 3 Select R.iid, R.RecScore From AgeRec R Where R.uid=1

AND R.iid IN (1,2,3,4,5)

Query 4 Select M.name, R.RecScore From AgeRec R, Movies M

Where R.uid=1 AND M.iid = R.iid AND M.genre=’Action’

Query 5 Select R.iid, R.RecScore From AgeRec R, Movies M Where

R.uid AND R.iid = M.iid AND M.genre = ’Action’ Order By

R.RecScore Desc Limit 5

TABLE I
RECOMMENDATION QUERY EXAMPLES

The SELECT and WHERE clauses are typical as in any SQL

query. The FROM clause may accept, in addition to relational

tables, a [Recommender] schema, which is created by a

CREATE RECOMMENDER statement. In the WHERE clause, the

querying user may specify the UserID, the user identifier for

whom the recommendation needs to be generated. RECATHON

then returns a set of tuples 〈ItemID,RecScore〉 that repre-

sents the predicted recommendation score RecScore for each

item ItemID based on the recommender specified in the FROM

clause. Examples are given in table I. For instance, Query 2
returns the top-10 recommended items to user with ID 1, based

on the user age, city, and gender. In this case, the query uses

the AgeCityGenderRec, which was created before using a

CREATE RECOMMENDER. Since this recommender was created

based on the age, city, and gender attributes, it will return an

answer to the user based on the values of these attributes in

the USERS table for user ID 1.

IV. RECATHON INDEXING

After creating a recommender, a main challenge (chal-

lenge II) is how to internally represent, store, and maintain the

underlying recommendation models in a scalable manner. To

address this issue, we introduce the following data structures

to represent user-created multidimensional recommenders:

(1) We maintain one global structure, namely RecCatalog,

for all created recommenders (section IV-A). (2) For each

recommender, we maintain one multidimensional grid and we

explain how we reduce both storage and maintenance overhead

to achieve scalability (section IV-B).

A. Recommender Catalog

RECATHON maintains a relational table, termed RecCata-

log, that includes metadata about all created recommenders,

and is stored as part of the main database catalog that

includes information about tables, index structures, etc. A

row in RecCatalog has seven attributes: (1) RecName; the

recommender name, (2) Users; the input users table, (3) Items;

the input items table, (4) Ratings; the input ratings table,

(5) Attributes; a vector where each element corresponds to

an attribute in the users table that contributes to the recom-

mender model, (6) Algorithm; the algorithm used to generate

predicted scores, and (7) RecIndex; a pointer to the multi-

dimensional grid index for this particular recommender. A new

row is added/deleted to/from RecCatalog with each successful

CREATE RECOMMENDER / DROP RECOMMENDER SQL statement.

Male

Female

18-24 25-34 35-60

Minneapolis

St. Paul

Edina

age

c
it

y
ge

nd
er

RecName

AgeRec

AgeGenderRec

RecIndex

GeneralRec

Attributes
Input Data Tables

Users Items Ratings

AgeCityGenderRec

AgeCityGenderRec Grid

RecModel

RecCatalog

RecModel

.

.

.

age

18-24

25-34

35-60

RecModel

RecModel

RecModel

AgeRec Grid

Users Movies

Users Movies Ratings

Ratings

✔

{age}

{age, gender}

{age, gender, city}

*

Algorithm

ItemCosCF

SVD

UserPearCF

ItemPearCF

Fig. 3. Recathon data structure.

Figure 3 gives an example of RecCatalog, where it has

four entries for four recommenders, AgeRec, AgeGenderRec,

AgeCityGenderRec, and GeneralRec. With each recommender,

the corresponding attributes are listed. Notice that in the case

of GeneralRec, Attributes is empty, which corresponds to a

general recommender system regardless of any attributes.

B. Multi-dimensional Grid

For each created recommender, RECATHON maintains a

Multi-dimensional Grid G, where each dimension corresponds

to one of the recommender attributes. A grid cell C in G

represents a subdomain of the space created by the multiple

attributes. The subdomain could be a certain value for cat-

egorical attributes or range of values for continuous domain

attributes. For example, as AgeRec recommender in Figure 3

is defined based on only one attribute (age), its index is a one-

dimensional grid based on the age attribute. As this is a con-

tinuous domain attribute, each cell represents a range of age

values, i.e., [18-24], [25-34], and [35-60]. In the meantime, the

AgeCityGenderRec recommender index is a three-dimensional

grid based on three attributes (age, city, and gender). The age

dimension is divided into three categories based on range of

values. The city attribute has three values as {Minneapolis, St.

Paul, Edina}, while the gender attribute is divided into two

categorical values as {Male, Female}. The top left outer cell

(check marked in Figure 3) in AgeCityGenderRec represents

the values 〈18-24, Minneapolis, Female〉 that correspond to its

values of the 〈age, city, gender〉 dimensions.

Each cell in the multi-dimensional grid points to a table,

RecModel, that maintains auxiliary precomputed information

to speed up the generation of the recommendation query result.

The precomputed information may have different schema

based on the underlying recommendation algorithm. For ex-

ample, for the Item-Item collaborative filtering algorithm,

RecModel represents an items similarity list with the schema

(ItemID1, ItemID2, SimScore), where SimScore is computed

per equation 1 (Section II).

Initialization. The multi-dimensional grid G is initialized

upon issuing a CREATE RECOMMENDER statement, through two

main steps: (1) Grid Construction, where we allocate the mem-

ory space for the grid, and decide on each cell size in terms of



the values it represents. In case of categorical attributes (e.g.,

Gender, Job, and City), we allocate one cell per attribute. For

continuous domain attributes (e.g., age and salary), we divide

the space into N parts, where parts have almost equal number

of ratings. More sophisticated techniques can be used to divide

the space. Yet, we opt for a simple division here as a proof of

concept for RECATHON functionality. (2) RecModel Building,

where the RecModel table for each cell C in G is built by

running the specified recommender algorithm in the CREATE

RECOMMENDER statement on the set of users U whose attributes

correspond to the subdomain covered by C. For instance, in

case of ItemCosCF recommendation algorithm, we scan the

ratings table and run a nested loop algorithm over all items to

calculate the cosine similarity score between every item pair in

each cell C using equation 1. After the initialization procedure

terminates, a pointer to the newly created grid structure G is

added to the RecIndex field corresponding to the appropriate

recommender entry in RecCatalog.

Maintenance. To get the most accurate result, the RecModel

at each cell C should be updated with every single new rating

for a user u whose attributes correspond to the subdomain

covered by C. However, this is infeasible as most recommen-

dation algorithms employ complex computational techniques

that are very costly to update. The update maintenance proce-

dure differs based on the underlying recommender algorithm,

specified in the CREATE RECOMMENDER statement. Yet, most

of the algorithms may call for a complete model rebuilding to

incorporate any new update. To avoid such prohibitive cost,

we decide to update the RecModel in a cell C only if the

number of new updates in C reaches to a certain percentage

ratio α (a system parameter) from the number of entries used

to build the current model in C. We do so because an appealing

quality of most supported recommendation algorithms is that

as RecModel matures (i.e., more data is used to build it),

more updates are needed to significantly change the recom-

mendations produced from it. The smaller the value of α, the

more up-to-date is the RecModel, yet, the larger the cost in

frequently updating RecModel. A typical value of α is 0.5.

To realize this maintenance procedure, we maintain two

counters in each cell C: (1) Ctotal as the number of entries

used to build the current RecModel in C, and (2) Cnew as

the number of updates received in C since the last build of

RecModel. Any update for a user u located in C will increase

Cnew by one, yet it would not affect Ctotal. Once Cnew

Ctotal

> α,

we rebuild the model in C, reset Cnew to 0 and update Ctotal

to be the current number of entries located in C.

Storage and Maintenance Optimization. Since storing

and maintaining a recommendation model for every cell is

quite expensive and may preclude system scalability, RE-

CATHON automatically determines which recommender cells

to materialize based on (per-cell) statistics. RECATHON only

materializes RecModel only for hot cells to mitigate the

recommendation query latency as well as reduce both the

overall maintenance cost and the storage overhead occupied

by the multidimensional grid. A hot cell is defined as the cell

that receives more recommendation queries than data updates.

Algorithm 1 Cell Maintenance

1: Function Maintenance (Cell C)
2: if Cnew/Ctotal > α then
3: UpdateRate ← UC/(TSU − TSinit)
4: QueryRate ← QC/(TSQ − TSinit)
5: if (1− β)×QueryRate ≥ ( β× UpdateRate ) then
6: Create RecModel on disk if not already maintained
7: Train RecModel using data lying within C
8: else

9: Delete RecModel from disk if already maintained
10: Cnew ← 0
11: Ctotal ← the current number of entries located in C

To take the materialization decision, RECATHON maintains the

following statistics for each grid cell C: (1) Queries Count

QC: represents the number of issued recommendation queries

over the recommendation model RecModel in cell C since

the cell was created. (2) Updates Count UC: keeps track of

the number of updates performed over the user/item/ratings

data lying within cell C since the cell was created. (3) Query

TimeStamp TSQ: time stamp of the last query issued over cell

C. (4) Update TimeStamp TSU : time stamp of the last update

transaction performed over cell C.

Algorithm 1 gives the pseudocode of the maintenance

process. Using cell C statistics, the algorithm (pseudocode

omitted for brevity) determines whether to keep and train

the underlying (already existing) RecModel or drop it to

save storage and maintenance overhead. The algorithm first

leverages the maintained statistics to calculate the update rate

UpdateRate and query rate QueryRate in cell C. If (1− β)×
QueryRate is larger than or equal β× UpdateRate, that means

cell C is hot, such that β denotes a system parameter specified

by the user. In such case, the algorithm creates a recommen-

dation model entry RecModel for cell C on disk and train

RecModel using up-to-date data lying within C. Otherwise,

we delete RecModel from disk and all incoming queries over

C will have to first train RecModel on-the-fly.

Note that the value of β exhibits a tradeoff between (1) scal-

ability measured in terms of storage and maintenance overhead

on one hand and (2) query processing performance on the

other hand. The larger the value of β the less the number of

recommendation models maintained in the multidimensional

grid and hence the higher the system scalability and the lower

the query execution performance. On the contrary, a low β

leads to more models being maintained and hence higher query

execution performance for the price of less scalability.

V. QUERY PROCESSING

Giving an initialized multidimensional recommender, a

main challenge (Challenge III) is how to efficiently execute

recommendation queries over such recommender. The rec-

ommendation query takes two input parameters, a created

recommender R as a virtual table and a querying user id uid.

The algorithm then returns a set of tuples S such that each

tuple s ∈ S; s = 〈i, RecScore〉 represents for each item i

(unseen by uid), a recommendation score RecScore using R.

Query 1 in Table I is a very simple example of a recommen-

dation SQL query. Query 1 lists all items that are not rated



Algorithm 2 RECOMMEND (uid, R)

1: Cat ← RecCatalog entry that corresponds to recommender R
2: G ← Cat.RecIndex (The Multi-dimensional Grid Index)
3: Attr ← The set of attributes in Cat.Attributes
4: AttrV ← Values of attributes Attr in table Cat.Users for uid
5: C ← The cell in G that corresponds to AttrV
6: I ← Set of items in table Cat.Ratings that are not rated by user uid
7: AnswerSet ← φ
8: for each item i ∈ I do

9: RecScore ← Cat.Algorithm.GetRecScore(uid, i,
Cat.Ratings,C.RecModel)

10: AnswerSet ← AnswerSet ∪ 〈i.iid, RecScore〉

11: return AnswerSet

by users uid = 2 along with their predicted recommendation

score, based on the user age, city, and gender. By specifying

the AgeCityGenderRec recommender in the FROM clause, the

RECOMMEND algorithm will look at the recommender catalog

RecCatalog to find out that this recommender needs to know

the age, city, and gender of user u with uid=2, and is built

for the users table, depicted in Figure 1. Retrieving data from

this table, the RECOMMEND algorithm finds that this query is

for user Carol; a 22 year old female, living in ’Minneapolis’.

With this data, we follow the index pointer of the RecCatalog

entry to the three-dimensional grid index, and retrieve the

RecModel stored in the grid cell that corresponds to the entry:

〈22, Minneapolis, Female〉. As the recommender functionality

aims to provide a predicted score for those items that are not

rated by the querying user, we need to scan the ratings table

(obtained from the RecCatalog) to find those items I that are

not rated by uid, but have some ratings from other users.

For each of these items, we compute its predicted score using

the underlying recommendation algorithm, also obtained from

RecCatalog. Finally, the RECOMMEND algorithm returns all

items in I along with their computed scores as the result.

Algorithm 2 gives the pseudocode of RECOMMEND. Given

a user ID uid and a recommender R, the algorithm starts

by retrieving the catalog entry Cat that corresponds to the

recommender R. Following the information on the Cat entry,

we get pointers to the corresponding multi-dimensional grid

index G. Then, we retrieve the values for the attributes

specified in R for the querying user uid. Based on these

values, we locate the cell C in G that represents the user

attributes. Since we need to compute the recommender score

for only those items that are not rated by the user uid, yet

are rated by others, we scan the table of ratings to get the set

of such items I . For each of these items, we call the underly-

ing recommendation algorithm Cat.Algorithm.GetRecScore,

which is specific to R, as specified in the USING clause in the

CREATE RECOMMENDER statement. Finally, the final answer set

is composed of all the items in T , with the score of each item

computed from the GetRecScore function.

For example, the GetRecScore function (Pseudocode omit-

ted for space constraints) for the Item-Item Collaborative

Filtering takes four parameters: the user u, item i, the table

of ratings, and the RecModel table that is maintained at the

corresponding grid cell of user u in the multi-dimensional grid

index. Then, for each tuple t in the rating table that includes

the user u, we retrieve the similarity score between the item i

we want to score and the rated item t.iid, based on the table

RecModel. We accumulate such scores, each weighted by the

user rating t.rating. The final score ends up to be the average

total weighted score divided by the total similarity score, as

was described earlier in Section II.

A. Selection

In many cases, a user may want to only know the recom-

mendation score for a specific item (e.g., a movie in Netflix)

or a set of few items (e.g., a set of few books in Amazon). A

straightforward execution of such queries would perform the

recommendation generation algorithm first and then filter out

the unneeded items. This plan performs well only if the pre-

dictive selectivity is very low. For highly selective predicates,

the RECOMMEND algorithm performs lots of unnecessary

work fetching all items data from disk and calculating their

recommendation scores, while only few items are needed.

Since in many cases, the predicate selectivity is very high

(it is common to select only one item), RECATHON employs

a variant of RECOMMEND, called FILTERRECOMMEND. In-

stead of calculating the recommendation scores for all items

lying within cell C, FILTERRECOMMEND takes the filtering

predicate as input and prunes the predicted recommendation

score calculation for those items that do not satisfy the filtering

predicate. To achieve that, we modify the loop (lines 8 to 10)

in Algorithm 2 to iterate and calculate the recommendation

only for items that satisfy the iid selection predicate.

B. Join

Query 4 in Table I gives an example of a recommendation

query, where the output of the recommender generation algo-

rithm needs to be joined with another table to get the movie

names instead of their identifiers. This is a very common query

in any recommender system. For example, Netflix and Amazon

always return the item information, not the item identifiers. As

the RECOMMEND algorithm only returns the item identifier,

the result has to be joined with the item table to return the

item information details, e.g., name, price, specs, etc. The

straightforward plan for executing such join queries may be

acceptable only if there is no filter over the items table, or

the filter has very low selectivity. Otherwise, if the filter is

highly selective, RECOMMEND ends up doing redundant work

computing the scores for all items, while only few of them are

needed. It is very common to have a very selective filter over

the items table, e.g., only Action movies.

To efficiently support such queries, RECATHON employs

the JOINRECOMMEND algorithm. Besides the user u and a

recommender R, JOINRECOMMEND takes a joined database

relation rel (e.g., Movies) as input, combines their tuples,

and returns the joined result. Analogous to index nested loop

join, JOINRECOMMEND employs the input relation rel as

the outer relation. For each retrieved tuple tup ∈ rel, the

algorithm calculates the score for item i with iid equal to



tup.iid in the same way it was calculated in the RECOM-

MEND algorithm (Algorithm 2). The algorithm then concate-

nates (iid,RecScore) and tup and the resulting joined tuple

(tup,iid,Recscore) is finally added to the join answer S. The

algorithm terminates when there are no more tuples left in rel.

C. Ranking (Top-k)

Query 2 in Table I gives an example of a ranking query

where we need to return only the top-10 recommended items.

This is a very important query as it is very common to return

to the user a limited number of recommended items rather than

all items with their scores. The straightforward query plan for

this query would incur too much overhead in computing the

score for all items, and then return only the top 10 ones.

Since top-k recommendation is by far the most commonly

used query in existing commercial applications (e.g., Ama-

zon and Netflix), we further optimize its query execution

performance by pre-computing a set of top-|L| items for

each user u and caching these items in a sorted list, named

Lu. When a querying user u issues a top-k recommendation

query, RECATHON just needs to fetch the first k items in Lu

(k << |L|). Note that this approach functions correctly only

for pure top-k recommendation. If the recommendation query

consists of a top-k operation accompanied with selection or

join, using the pre-computed list will not necessarily return a

correct answer. For example, consider Query 5 in Table I. This

query recommends the top 5 Action movies to user uid = 1,

based on the user age (i.e., use the AgeRec recommender).

Query 5 needs to join the AgeRec recommender with the

Movies table to only select Action movies and then return the

top-5 Action movies to user 1. In that case, Lu may not contain

any Action movie whereas the Movies table might contain

some. Hence, RECATHON would apply JOINRECOMMEND

first on recommender AgeRec and table Movies and then

perform a traditional top-k operation on the join result.

VI. EXPERIMENTAL EVALUATION

This section presents a comprehensive experimental evalu-

ation of RECATHON based on an actual system implemen-

tation inside RecDB [26] integrated with PostgreSQL 9.2.

All proposed techniques are implemented using the iterator

model adopted by PostgreSQL for operator implementations.

We evaluate RECATHON using two real datasets described

as follows: (1) MovieLens: a real movie recommendation

dataset [20] that consists of 6040 users, 3883 movies, and

one million (1M) ratings. Each user has gender, age, and job

attributes. The user gender attribute consists of two values

{Female, Male}, the age attribute is partitioned into seven

ranges, and the job attribute has 21 job categories. Each

movie has name and genre attributes. The ratings data contains

historical ratings (in a scale from 1 to 5) that users have

assigned to movies. (2) Foursquare: a real venue (e.g., restau-

rant) recommendation dataset extracted [27] from Foursquare

website, and consists of 150K users, 90K venues, and 1M
ratings. Each user has a spatial location attribute that represents
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Fig. 4. Initialization Time and Storage Overhead.

where that user lives. Each item is also assigned a spatial

location that represents where this item is located.

Section VI-A studies the storage and initialization overhead

while Section VI-B studies queries performance. All experi-

ments were performed on a machine with 3.6 Ghz Quad-Core

processor, 16 GB RAM, 500 GB storage, and running Ubuntu

Linux 12.04. The default dataset is MovieLens.

A. Recommender Creation

We evaluate the context-aware recommender creation and

initialization process performance using the following two

metrics: (1) Recommender Initialization Time: the total run-

time (in seconds) taken by the system to process a CREATE

RECOMMENDER statement, and (2) Recommender Storage Over-

head: the amount of storage (in Gbytes) occupied by the

multidimensional grid and recommendation models created

upon recommender creation. We run our experiments for

the following five popular recommendation algorithms, all

supported and built into RECATHON:

1) ItemCosCF: Item-Item collaborative filtering with co-

sine distance used to measure similarity among items

(explained before in section II).

2) ItemPearCF: Item-Item Collaborative filtering with

Pearson correlation used to measure similarity among

items.

3) UserCosCF: User-User Collaborative Filtering with co-

sine distance used to measure similarity among users.

4) UserPearCF: User-User Collaborative Filtering with

Pearson correlation used to measure similarity among

users.

5) SVD: Regularized Gradient Descent Singular Value De-

composition.

Figure 4 gives the effect of varying the number of grid cells

for the multi-dimensional grid structure on the context-aware

recommender initialization time and storage overhead. Since

we have three contextual attributes, age, gender, and job, we

have the possibility of eight context-aware recommenders with

1, 2, 7, 14, 21, 42, 147, and 294 three-dimensional grid cells.

A context-aware recommender with one grid cell corresponds

to context-free recommenders that do not take care of any

attributes. On the other side, a context-aware recommender of

294 cells corresponds to the combination of three attributes:

age, gender, and job. The number 294 is the product of 21,

7, and 2, as the number of categories of job, age, and gender
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Fig. 5. iid Selection Predicate: Varying Data Size (MovieLens)

attributes, respectively. Similarly, 147 grid cells correspond to

an 〈age, job〉-aware recommender, and so on.

Figure 4 shows that the higher the number of grid cells,

the higher the initialization time and storage overhead for

the ItemCosCF, ItemPearCF, and SVD recommendation al-

gorithms. The main reason is that more grid cells lead to

building more recommendation models, as we build one

recommendation model per grid cell. This consumes both

storage and computation time. However, the opposite sce-

nario happens for UserCosCF and UserPearCF algorithms.

This counter intuitive behavior is mainly because these two

recommender algorithms partition the user ratings based on

the user attributes and hence, the number of users is small in

each cell and building a user similarity list for several small

cells is faster (and requires less storage) than building the user

similarity list for one fat cell. Overall, for all recommender

algorithms and number of grid cells, RECATHON is able to

provide a reasonable computational and storage overhead.

Comparing various recommender algorithms to each other

shows that UserCosCF and UserPearCF are mostly faster and

occupy less storage on disk than ItemCosCF and ItemPearCF.

That happens due to the fact that the number of ratings per user

in the dataset is less than the number of ratings per item. For

all created recommenders, SVD consistently takes more time

than other algorithms since SVD is an iterative algorithm that

takes several iterations to build the recommendation model.

B. Recommender Queries

In this section, we evaluate the query execution performance

in terms of the query response time. We consider the following

four different approaches for query execution: (1) Rec: a

query plan that only relies on the RECOMMEND algorithm

to execute recommendation queries. (2) FiltRec: a query plan

that leverages the FILTERRECOMMEND algorithm to optimize

recommendation queries with a predicate over iid. (3) IndRec:

a plan that exploits the pre-computed sorted list of recom-

mended items to execute a ranking (Top-k) query. (4) JoinRec:

a plan that employs the JOINRECOMMEND algorithm to join a

recommendation with a database table. For space constraints,

we plot only the results of three recommendation algorithms,

namely, ItemCosCF, UserPearCF, and SVD. Experiments run

for the 〈age, gender〉-aware recommender.

1) Selection Predicate: In this section, we study the per-

formance of recommendation queries with selection predicate

applied the item. Unless mentioned otherwise, the query

selectivity is set to 25% and the data size is 1M ratings.
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Varying data size. Figure 5 studies the impact of data size

on the query execution performance. We vary the data size

from 100K to 1M ratings, executing a set of 100 synthetically

generated queries using ItemCosCF and SVD recommendation

algorithms. For all recommender algorithms, FiltRec outper-

forms Rec by at least an order of magnitude. This is obvious

since FiltRec applies the iid filtering predicate before calcu-

lating the predicted recommendation score for an item, which

saves a huge amount of effort wasted by Rec in applying the

RECOMMEND algorithm first on all items and then performing

the predicate filtering step. In the meantime, the response time

increases as the data size gets bigger since we need to retrieve

more recommendation models in ItemCosCF. In the SVD case,

the response time remains unchanged.

Varying Selectivity. Figure 6 gives the impact of iid predicate

selectivity on the average query response time. As it turns out

from the figure, as we increase the percentage of reported

items (decrease selectivity), the average query response time

in Rec remains constant since the RECOMMEND algorithm

predicts the recommendation score for all items anyway before

applying the iid predicate. On the other hand, FiltRec query re-

sponse time increases linearly with the percentage of reported

items until it reaches the same performance as Rec when 100%

of items are reported. That happens because FiltRec, when

100% of items are returned, performs the same amount of

recommendation score calculation as Rec. However, for higher

selectivity (i.e., lower % of results), FiltRec outperforms Rec

by more than an order of magnitude. With iid selection, a

typical selectivity would be very high, i.e., less than 1%, which

shows better performance for FiltRec over Rec.

2) Ranking (Top-k): This section studies the performance

of top-k recommendation queries. Unless mentioned other-

wise, k is set to 1000 and the data size is 1M ratings.

Varying data size. Figure 7 depicts the effect of data size

on top-k recommendation query performance. As given in

the figure, IndRec exhibits more than an order of magnitude

performance over Rec. That is justified by the fact that IndRec
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Fig. 9. Join: Varying Joined Recommender Data Size (Foursquare).

leverages the pre-computed recommendation scores, created

for active users, in the RecScore Index to retrieve items in

sorted order. Hence, the limit operator terminates early when

the required number of items is retrieved. On the other hand,

Rec has to first calculate recommendation scores, then sort

items based on their score, and finally pick the top-k items.

Note that the query response time in Rec increases as the

data gets bigger (except for SVD) because Rec takes more

time accessing bigger models. However, the response time in

IndRec slightly increases since IndRec retrieve pre-computed

recommendation scored in sorted order.

Varying k. Figure 8 gives the impact of k on top-k recom-

mendation query performance. We vary k from 100 to 1000,

generate a workload of 100 top-k recommendation queries,

and measure the response time for ItemCosCF and SVD

algorithms. In all algorithms, IndRec achieves more than an

order of magnitude better performance than Rec for all values

of k. Moreover, Rec performance is constant for different k

values, which is explained by the fact that sorting in Rec is

dominating the query execution performance. On the other

side, the response time in IndRec slightly increases for larger

k values as more items are accessed in RecScore Index.

3) Join: This section studies the performance of recommen-

dation queries that involve joining the recommendation answer

with other database tables in the Foursquare dataset. The

joined table has a selection predicate that filters out unwanted

items. Unless mentioned otherwise, the predicate selectivity is

set to 25% and the data size is 1M ratings.

Varying data size. In this experiment, we build recommenders

with different data sizes (100K to 1M ratings), and we

generate a workload of 100 join queries that join the created

recommender and the movies table. Figure 9 shows that

JoinRec scales about an order of magnitude better than Join

for all recommendation algorithms. The main reason is that

JOINRECOMMEND efficiently calculates the predicted score

only for filtered items. In the meantime, the bigger the data

size, the worse the query execution performance for both Join
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and JoinRec, since more data are joined. That happens for

all recommendation algorithms, except for SVD.

Varying Selectivity. In these experiments, we vary the se-

lectivity of the joined table with the input recommender. We

generate a workload of 100 random join queries of the same

selectivity, and execute such queries for each recommendation

algorithm. We simulate the selectivity change in terms of the

ratio of output tuples (filtered by a selection predicate) over

the original number of tuples in the joined table rel. Figure 10

shows that JoinRec exhibits more than an order of magnitude

better performance than Join for high selectivity (small %

of rel). However, when the selectivity decreases (% of rel

increases), JoinRec performance becomes closer to Join since

JoinRec has to compute the predicted score for more items.

VII. RELATED WORK

Recommendation Algorithms. A Recommendation algo-

rithm speculates how much a user would like an item she

has never seen (bought, watched) before. Collaborative Filter-

ing [23] is considered the most popular amongst several rec-

ommendation algorithms proposed in the literature [4], [23].

There are several methods to perform collaborative filtering

including item-item [25], user-user [23], regression-based [25],

or approaches that use more sophisticated probabilistic models

(e.g., Bayesian Networks [8]). Collaborative filtering tech-

niques analyze past community opinions to find similar users

(or items) to suggest k personalized items (e.g., movies) to

a querying user u. RECATHON does not come up with a

novel recommendation algorithm. However, it adapts existing

algorithms to generate multidimensional recommendation.

Recommender systems in databases. Few, and recent,

works have studied the problem of integrating the recom-

mender system functionality with database systems. This in-

cludes a framework for expressing flexible recommendation

by separating the logical representation of a recommender

system from its physical execution [15], [16], algorithms

for answering recommendation requests with complex con-

straints [21], [22], a query language for recommendation [5],

and extensible frameworks to define new recommendation

algorithms [11], [18], leveraging recommendation for database

exploration [10]. Unlike RECATHON, the aforementioned work

lacks one or more of the following features: (1) Producing

multidimensional recommendation to users, (2) Executing

online recommendation queries in a near real time manner,

(3) Efficiently initializing and maintaining multiple recommen-

dation algorithms.



Context-Aware Recommendation. Existing context-aware

recommendation algorithms [6] focus on leveraging contex-

tual information to improve recommendation accuracy over

classical recommendation techniques. Conceptual models for

context-aware recommendation have also been proposed for

better representation of multidimensional attributes in rec-

ommender systems [6]. Several frameworks have proposed

defining context-aware recommendation services over the

web using either client/server architecture [1], or by mim-

icking successful web development paradigms [12]. Such

techniques, though they provide support for context-aware

recommendation, do not consider system performance issues

(e.g., efficiency and scalability). Location-aware recommender

systems [17], [27] present a special case of context-aware

recommender systems, where efficiency and scalability are

main concerns. However, the proposed techniques for location-

aware recommender systems are strongly geared towards the

spatial attribute, with no direct applicability to other attributes.

VIII. CONCLUSION

We have presented RECATHON; a multidimensional recom-

mender system. In an analogous way to creating indexes on

table attributes that are most likely to appear in incoming

queries, RECATHON users can create a recommender over a

certain set of attributes. The created recommender can be then

queried to provide recommended items based on a certain

set of attributes. Examples of recommender queries include

“Recommend me 10 movies that people in my age and gender

would like”. In this case, we issue an 〈age, gender〉-aware

recommender. If such recommender is created a-priori, this

query will entertain a real-time response. RECATHON employs

a multi-dimensional index for each built recommender to

support efficient recommender queries. The system is able

to seamlessly integrate the recommendation functionality with

traditional database operations to execute a variety of context-

aware recommendation queries. Extensive experiments show

that RECATHON exhibits real time performance for large-scale

context-aware recommendation scenarios.
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