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Abstract—In a business setting, the customer value is crucial
as it determines how much it is worth spending to acquire
a particular customer. Viral marketing techniques leverages
social ties among users to help advertising a particular product.
Recently, as mobile devices (e.g., smart phones, GPS devices) be-
came ubiquitous, location-based social networking websites (e.g.,
Gowalla, BrightKite, Foursquare) are getting more and more
popular. Along with location-based social networking services
being prominent, new kind of data came into play besides the
traditional social networking data: (1) Spatial data: represents
the users geo-locations, venues geo-locations and information
about users visiting different venues. (2) Users Opinions data:
represents how much a user likes the venues she visits (e.g.,
Alice visited restaurant A and gave it a rating of five over five).
In this paper, we present PLUTUS; a framework that assists
venues (e.g., restaurant, gym, shopping mall) owners in growing
their business. To recommend the best set of customers, PLUTUS
takes three main aspects into consideration: (1) Social aspect,
(2) Spatial aspect, and (3) Users opinions aspect. To this end,
PLUTUS proposes two main algorithms: (1) Profit Calculation: It
is responsible of calculating the total profit that a user u may
add to a venue v taking into account the social, spatial, and
user opinions aspects. (2) Profit Maximization: This algorithm is
used to maximize the total profit of a given venue. We evaluated
PLUTUS using real data set extracted from an existing Location-
based Social Networking website, Foursquare. The results show
that Plutus achieves higher estimated profit and more efficient
profit calculation than naive marketing algorithms.

I. INTRODUCTION

In a business setting, the customer value is crucial as
it determines how much it is worth spending to acquire a
particular customer [1]. Past work [2], [3], [4] has proposed
using social ties to help advertising a particular product; a
technique also known as viral marketing. By using social
ties, the customer value is not only determined by how much
dollars this particular customer is willing to spend to buy
the advertised product. However, the customer value is also
determined by how much influence s/he has on his/her friends
(i.e., network value), as a more influential customer might
influence his/her friends to buy the product, as well.

Recently, as mobile devices (e.g., smart phones, GPS
devices) became ubiquitous, location-based social networking

services (e.g., BrightKite 1, Foursquare 2, Gowalla 3, and
Facebook Places) are getting more and more popular. For
instance, as of September, 2012, Foursquare claims to have
over 25 million people worldwide, and over billions of check-
ins with millions more every day [5]. Users, in a location-based
social networking website, can select their friend list as well
as getting listed as friends to other users in a same way like
traditional social networking systems. In addition, users are
associated with a geo-location, and might alert friends when
visiting a venue (e.g., restaurant, bar) by checking-in on their
mobile phones (e.g., iPhone, Android).

Along with location-based social networking services being
ubiquitous, new kind of data came into play besides the
traditional social networking (i.e., friendship) data: (1) Spa-
tial data: represents the users geo-locations, venues (e.g.,
restaurant, gym, shopping mall) geo-locations and information
about users visiting different venues. (2) Users Opinions data:
represents how much a user likes the venues she visits (e.g.,
Alice visited restaurant A and gave it a rating of five over
five). The combination of social, spatial, and opinions data
extracted from location-based social networking services can
be leveraged to help venues grow their business. This can be
achieved by recommending a set of users U to a venue v who
are expected to influence other users that are: (a) socially close
to users in U , (b) nearby venue v geo-location, and (c) are
expected to like venue v.

In this paper, we present PLUTUS; a framework that assists
venues owners in growing their business. The framework helps
marketers efficiently spending their budget in a way that
maximizes the expected venue’s profit. For instance, if the
business owner has to distribute K coupons, PLUTUS helps
her selecting the best K customers that maximizes the expected
profit. For simplicity, we measure the expected profit in terms
of the number of people visiting the venue per a period of
time. For example, If venue A is visited by 1000 users in 10
days and venue B is visited by 600 users in the same 10 days,
implying that venue A has higher profit than B.

To recommend the set of users that leads to achieving
higher profit, PLUTUS takes into account three main aspects:

1BrightKite: http://brightkite.com
2Foursquare: http://foursquare.com
3Gowalla: http://gowalla.com.



Survey Item Mean Stdev

Would you consider visiting a restaurant, if you know that
a friend of yours likes and visits this restaurant

0.96 0.2

If you know that your favorite celebrity likes and visits a
particular restaurant, will this encourage you to visit this
restaurant

0.81 0.43

If you know that a professional food critique gave a high
rating to some restaurant, will this encourage you to visit
this restaurant

0.74 0.39

Do you use the ”check-in” (location sharing) option in any
social networking website

0.62 0.48

TABLE I. MECHANICAL TURK SURVEY

(1) Social Network: The framework leverages the social ties
among users drawn from the social graph, and hence acquires
the most influential users in the social graph. In other words,
PLUTUS keeps track of how each user influences each of his
friends in the social graph and uses that in recommending the
best users. (2) Spatial: PLUTUS considers the venue location
(i.e., address), the user location, and user’s check-ins (i.e.,
visits) at different venues to retrieve users that are spatially
relevant to the business. (3) Users Opinions: The framework
takes into account the user ratings to different venues to acquire
the users that are expected to like the venue.

To this end, PLUTUS proposes two main algorithms:
(1) Profit Calculation: It is responsible for calculating the
total profit that a user u may add to a venue v taking into
account the social, spatial, and user opinions aspects. (2) Profit
Maximization: This algorithm has two versions (Celebrity-
based and Coupon-based profit maximization) and each of
them is used to maximize the total profit of a given venue.
Each version, more or less, serves the same purpose, i.e.,
maximizing the expected venue profit (i.e., increase the number
of people visiting the place). However, they differ based upon
the user requirements and expectations; A PLUTUS user may
select one of the following versions of the profit maximization
algorithm: (a) Celebrity-based Profit Maximization: Given a
total marketing budget (e.g., total amount of dollars dedicated
for the marketing campaign), PLUTUS recommends any num-
ber of users that maximizes the total profit of the designated
venue. (b) Coupon-based Profit Maximization: Given a maxi-
mum marketing budget per user (e.g., coupon price), PLUTUS
recommends K users that maximizes the expected total profit
of the designated venue.

In the rest of the paper, we first present an initial study
in section II to motivate the problem. we then give an
overview of PLUTUS in section III. We then describe the
profit calculation algorithm in section IV. Both versions of the
Profit maximization algorithm are then explained in section V.
Section VI evaluate the performance of PLUTUS. Related
works are highlighted in section VII. Finally, Section VIII
summarizes PLUTUS contributions and concludes the paper.

II. INITIAL STUDY

Mechanical Turk Study. To motivate our work, we ran a
user study on Amazon Mechanical Turk [6]. We conducted
a survey on a hundred users through Amazon Mechanical
Turk. The main aim of the survey was to quantitatively
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Fig. 1. Foursquare Users Travel Distance

measure whether users are influenced by their social ties (i.e.,
friends, favorite celebrities, and experts) when it comes to
visiting venues (e.g., restaurants). We have asked the users
the questions shown in table I. In the survey, 62 participants
claims that they use the check-in option provided by some
social networking services (e.g., Facebook, Foursquare). More
importantly, 96 participants admit they would go to a restaurant
if they know their friends likes and visits this restaurant. On
the other hand, 81 of participants said they would consider
visiting a restaurant if they knew their favorite celebrity prefers
and visits that restaurant. Finally, 74 mentioned they would
visit a restaurant if they knew that an expert food critique
gave a high rating to that restaurant. The take-away from
the study is that users are substantially influenced by the
opinions of their acquaintances, celebrities, and experts when
visiting restaurants. Moreover, the numbers in Table I show
that users are influenced by their friends more than experts
and celebrities. A more profound user study is performed by
Lindqvist et.al in [7].

Foursquare Data Analysis. We analyzed data from the
Foursquare location-based social network containing user visits
data for 1M users to 643K venues across the United States.
Figure 1 gives the travel distance histogram of the examined
Foursquare users. We figured out that users tend to travel a
limited distance when visiting these venues. We refer to this
property as travel locality. In our analysis of Foursquare data,
we observed that 45% of users travel 10 miles or less, while
75% travel 50 miles or less. The results are similar to the
results of location-based social network data analysis given
in [8]. This observation suggests that customers closer in travel
distance to a venue are expected to bring higher profit to that
venue. In other words, the farther a customer is from a venue,
the more that customer loses her added value to that venue.

III. PLUTUS OVERVIEW

Figure 2 gives an overview of PLUTUS. As presented in the
figure, PLUTUS takes three kinds of data, as input: (1) Social
Network Data, (2) Spatial Data, and (3) Users Opinions data,
described as follows.

A. Social Networking Data

The social networking data model is a typical directed
social graph in which nodes represent the set of users U = {u1,
u2, ..., un}, and a set of edges E = {e1, e2, ..., em} represents
the friendship relationship between users. In the rest of the



Fig. 2. PLUTUS framework overview

paper, we use the notions user and node interchangeably to
represent a social graph node. Each user ui is associated with
a static profit Sui,vj which represents the expected static profit
gained when Customer (i.e., user) ui visits the venue vj . For
example, when Alice visits restaurant R, she may have a 12
dollars meal, so SAlice,R is equal to $12. Each user has a
cost Cui,vj defined as the amount of dollars needed to attract
a Customer (i.e., user) ui to visit the venue vj . For instance,
the cost to make Justin Bieber visit Gym X , CJustinBieber,X
is one million dollars. Each directed edge e ∈ E between two
users u1 and u2 is annotated with the influence that u1 has on
u2, denoted as Iui,ul

, and formally defined as follows:

Definition 1. Given a user u1 and another user u2, Iu1,u2 is
defined as the influence of user u1 on u2. It is the probability
that user u2 visits a place given that user u1 already visited
the same place. Notice that Iu1,u2

is not a symmetric relation.
In other words, the value of Iu1,u2

may be different from the
value of Iu2,u1

.

For instance in Figure 3, IEva,Joe is equal to 0.3 and
IJoe,Eva is equal to 0.7. That means that Joe has higher
influence on Eva than Eva has on him.

B. Spatial Data

The spatial data gives information on the user location,
venue location and the visits of different users to different
venues. Each User ui ∈ U is associated with a geo-location
(i.e., Longitude and Latitude) Lui

. For instance, if the address
of user ui

is 〈x1,y1〉, then Lui
=〈x1,y1〉. Similarly, each venue

vi ∈ V has a geo-location Lvi referring to its spatial address.
For instance, if the address of restaurant R is 〈x1,y1〉, then
LR=〈x1,y1〉. Each user might have visited different venues at
different times, by means of the check-in function available
in location-based social networks. We have a set of check-
ins C = {〈u1,v1,t1〉, 〈u2,v2,t2〉, ..., 〈ui,vj ,tl〉}. A check-in c
= 〈ui,vj ,tl〉, which means that user ui has visited venue vj at
time tl.

C. Users Opinions Data

The opinions data define how much a user u likes a
venue v. The users opinions can be extracted from the ratings
they gave to different venues they visited before. However,
in case the user did not visit the venue before, we employ a
rating prediction technique to predict how the user might have
rated that particular venue. A well-know method for rating
prediction is collaborative filtering [9], [10]. Collaborative

U1 U2 Inuence
Eva Joe 0.3

Joe Eva 0.7

Eva Mary 0.1
Eva John 0.3

Mary Eva 0.2
Mary Bob 0.3
Bob Mary 0.4
Bob John 0.1
John Bob 0.4
John Eva 0.2
John Mo 0.7

.

.

.

User C S R Location
Eva 5 100 1.8 New York
Mary 9 30 4.2 New York
Joe 1 80 5.0 New York
John 5 10 4.0 St. Paul
Bob 50 1 2.5 Minneapolis
Mo 100 6 1.0 Minneapolis
Allen 10 5 3.5 San Diego
Mike 100 60 3.3 Minneapolis
Alice 5 8 5.0 San Francisco

Eva John

BobMary

Joe

Alice Mike

AllenMo

Fig. 3. PLUTUS Data Model

filtering assumes a set of n users U = {u1, ..., un} and a
set of m venues V = {v1, ..., vm}. Each user uj expresses
opinions about a set of venues Vuj

⊆ V . For a venue v,
PLUTUS calculates the predicted rating that u would give to
venue v using item-based collaborative filtering technique (see
section IV-A for details).

D. Plutus Functionality

Input and Output Parameters. PLUTUS takes up to three
input parameters from its users, as shown in Figure 2. These
parameter are as follows:

1) Venue V : It is the venue for which PLUTUS will
recommend a set of potential customers that are
expected to increase the profit of that venue.

2) Budget/Coupon price: It is a mandatory parameter
used to determine the amount of dollars dedicated to
the marketing campaign. This amount may represent
a full budget or a single coupon price; PLUTUS deals
with both scenarios.

3) Number of customers (i.e.,) K: It is an optional pa-
rameter used to determine the numbers of customers
to be recommended to the designated venue V to
increase its expected profit.

The output of PLUTUS is a set of customers (i.e., social
network users) that are expected to increase the profit of the
input venue V . The framework may return a set of customers
with aribitrary size, unless K is given as input. In this case,
PLUTUS returns a number of customers m such that m ≤ K.

PLUTUS Algorithms. PLUTUS has two main algorithms:
(1) Profit Calculation Algorithm: It is used to calculate the
profit of recommending a user u to a venue v, and (2) Profit
Maximization algorithm: Given the calculated profit, this al-
gorithm determines what customers (i.e, users) should be
recommended to venue V to increase its profit. The profit
maximization algorithm has two versions: (a) Celebrity-based
Profit Maximization: Given a total marketing budget (e.g.,
total amount of dollars dedicated for the marketing campaign)



Algorithm 1 Network Profit Calculation
1: Function CalculateNetworkProfit(Customer ui, Venue v)
2: NetworkProfit ← 0.0
3: for each User Fj

ui in User ui Friends List do
4: NetworkProfit ← NetworkProfit +

CalculateTotalProfit(P
Fj
ui

,v) × I
ui,F

j
ui

5: end for
6: return NetworkProfit

provided by venue V , recommend a set of users that maximize
the total profit. In this case, the Budget/Coupon price input
parameter represents the whole budget. (b) Coupon-based
Profit Maximization: Given a maximum marketing budget per
user (e.g., coupon cost) provided by venue V , recommend K
users that maximize the expected total profit. In such case, the
Budget/Coupon price input parameter represents the coupon
price. Moreover, the Number of customers parameter must be
specified in the input. In the rest of the paper, we will describe
each algorithm in details.

IV. PROFIT CALCULATION

The profit calculation algorithm estimates the profit of
recommending customer ui to venue v. ∀ ui ∈ U , ∃ Pui,v

(Pui,v≥ 0) such that Pui,v represents the total profit user ui
brings to venue v:

Pui,v = Nui,v + Sui,v − Cui,v (1)

Both static profit Sui,v and Cost Cui,v has been explained
before in section III. Nui,v represents the network profit which
is formally defined as follows:

Definition 2. The Network Profit Nui,v ≥ 0 is defined as
the expected network profit gained when user ui visits the
venue v. It is dynamic in the sense that it depends on the
social ties of user ui. Nui,v is dependent on how ui influences
his/her friends, and how that influence spreads through the
entire social graph. The network profit that venue v gains by
acquiring user ui is calculated as follows:

Nui,v =

fui∑
j=0

PFj
ui,v
× Iui,Fj

ui
(2)

Such that fui
represents the total number of friends of user ui.

F jui denotes the jth friend of user ui and PFj
ui,v

represents
the total profit user F jui brings to venue v.

Algorithm 1 gives the pseudocode of the network profit
calculation algorithm that takes a customer ui and a venue v as
input, and returns the total expected network profit that venue
v gains by acquiring customer ui. The network profit Nui,v is
calculated by running a breadth first search traversal over the
social graph starting from user (node) ui (lines 2 to 5). For
each friend F jui of user ui, we calculate the total profit of F jui
by invoking the CalculateTotalProfit algorithm (explained
later in section IV-C) and then multiplying it by Iui,Fj

ui
; the

influence of user ui on his friend Fjui. The algorithm goes
for all social graph descendants of ui, recursively calculate
the network profit of each descendant, and adds its share
in the network profit to the final network profit of user ui;
NetworkProfit.

A. Profit Calculation with Users Opinions

Notice that the total profit presented in equation 1 does not
take the user rating (i.e., opinion) into account. The user rating
to venue Rui,v is necessary to be included in the equation, as
the user interest in the venue v incurs a high effect on the total
profit. In other words, the total profit should be higher in the
case of high user rating than that of low rating. The user ui
rating to venue v is incorporated in the equation, as follows:

P
′

ui,v = Rui,v × (Nui,v + Sui,v − Cui,v) (3)

As Rui,v takes a value from 0 to 1, it acts as a damping factor
for the calculated profit. In other words, if Rui,v is equal to
zero that means the user ui does not like the venue v, and hence
the profit that user ui brings to venue v is equal to zero. On
the hand, in case Rui,v is equal to one which means the user
ui likes the venue v, which affects the total profit positively.
If a user u did not visit (rate) venue v before, PLUTUS thus
predicts the value of Rui,v based on the history of available
user opinions.

To this end, we build an item-based collaborative filtering
model by analyzing the entire user/venue rating space, and
using statistical techniques to find correlated venues. There
are several methods to perform collaborative filtering including
item-based [11], user-based [12], regression-based [11], or ap-
proaches that use more sophisticated probabilistic models (e.g.,
Bayesian Networks [13]). These correlations are measured by
a score, or weight, that defines the strength of the relation.
The item-item model builds, for each of the m venues V in
the database, a list L of similar venues. Given two venues
vp and vq , we can derive their similarity score sim(vp, vq)
by representing each as a vector in the user-rating space, and
then use a similarity function over the two vectors to compute
a numeric value representing the strength of their relationship.

The similarity function, sim(vp, vq), computes the similar-
ity of vectors vp and vq using only their co-rated dimensions.
Finally, we store vp, vq , and sim(ip, iq) in the model. The
similarity measure need not be symmetric, i.e., it is possible
that sim(ip, iq) 6= sim(vq, vp). Many similarity measures
have been proposed in the literature [14], [11], among which
we have selected Pearson Correlation similarity measure as
it is one of the most widely used in literature. it measures
the similarity between venues using their Pearson correlation
coefficient as follows:

sim(vp, vq) =

∑
u∈Uc(ru,vp − rvp)(ru,vq − rvq )

σvpσvq
(4)

Uc represents users who co-rated items vp and vq , ru,vp and
ru,vq represent a user’s ratings, and rvp and rvq represent the
average rating for venues vp and vq , respectively. σvp and σvq
are the standard deviations for vp and vq

We then use the model to predict ratings for venues that
a user ua has not rated. Rating predictions are produced
by performing aggregation over the generated collaborative
filtering model. Using the item-based collaborative filtering
technique, we compute the predicted rating Rui,v for venue v
and user ui as a weighted sum [11]:

Rui,v =

∑
l∈L sim(v, l) ∗ rui,l∑

l∈L sim(v, l)
(5)



The prediction is the sum of the user’s rating for a related
venue l, rui,l, weighted by the similarity to the candidate item
v. The prediction is normalized by the sum of scores between
v and l.

B. Profit Calculation with Travel Penalty

The idea is to exploit the observation that users limit their
choice of spatial venues based on travel distance (mentioned
in section II). Travel penalty is a value that penalizes the total
profit of a user based on her distance from the designated
venue. Travel penalty may incur expensive computational
overhead by calculating travel distance to each user. Thus,
we employ an efficient query processing technique capable
of early termination to the total profit without calculating the
travel distance to all users. The total profit, after incorporating
the spatial effect, is expressed as follows:

P
′′

ui,v = Tui,v ×Rui,v × (Nui,v + Sui,v − Cui,v) (6)

Tui,v is the travel penalty applied due to the euclidean distance
between user ui and venue v. Notive that Tui,v takes a value
between zero and one. When (Tui,v = 0), this means that the
distance between ui and v is too high, and (Tui,v = 1) means
that ui is too close to v. To add the geo-spatial effect, we
multiply the travel penalty Tui,v by the total profit value in
equation 3. The final expected total profit that user ui brings
to venue v is given in equation 6.

C. Profit Calculation Algorithm

From equations 1 to 6, the total profit in PLUTUS is
calculated as follows:

P
′′

ui,v = Tui,v×Rui,v× (

fui∑
j=0

PFj
ui,v
×Iui,Fj

ui
+Sui,v−Cui,v)

Algorithm 2 provides the pseudocode for the total profit
calculation algorithm. The algorithm takes a customer ui and
a venue v as input, and returns the total expected profit that
venue v gains by acquiring customer ui. First, the algorithm
retrieves the user static profit Sui,v and Static cost Cui,v

necessary for user ui to visit venue v. Notice that both Sui,v

and Cui,v are saved for each user in the social graph (see
section III-A). The algorithm then retrieves the rating score
that user ui gave to venue v. If user ui did not rate venue
v before, then equation 5 is applied to predict the value of
Rui,v . The algorithm also calculates the travel penalty Tui,v

based on the distance of ui from v. Then, we calculate the
total profit by subtracting Cui,v from Sui,v and then adding the
network profit calculated using the CalculateNetworkProfit
algorithm. Finally, the returned value is multiplied by both
Tui,v and Rui,v to incorporate both the spatial effect and the
user opinions effect in the profit calculation. The final returned
value TotalProfit is the expected profit P ′′

ui,v that user ui
brings to venue v.

V. PROFIT MAXIMIZATION

The profit maximization algorithm retrieves the set of
customers that are expected to maximize the total venue profit.
PLUTUS supports two versions of the profit maximization algo-
rithm: (1) Celebrity-based profit maximization (section V-A),

Algorithm 2 Plutus Profit Calculation
1: Function CalculateTotalProfit(Customer ui, Venue v)
2: CurrentNode ← Retrieve the graph node that represents ui

3: Sui,v
← GetStaticProfit(ui,v)

4: Cui,v
← GetStaticCost(ui,v)

5: Rui,v
← GetRating(ui,v) /* using equation 5 */

6: Tui,v
← GetTravelPenaly(ui,v)

7: if CurrentNode.isVisited equals true then
8: TotalProfit ← 0.0
9: else

10: CurrentNode.isVisited ← true
11: TotalProfit ← Tui,v

×Rui,v
×(Sui,v

−Cui,v
+

CalculateNetworkProfit(ui,v))
12: end if
13: return TotalProfit

and (2) Coupon-based profit maximization (section V-B). In
the rest of this section, we explain both versions in details.

A. Celebrity-based Profit Maximization

The celebrity-based profit maximization algorithm allows
the venue (e.g., restaurant) owners to specify a total budget
they are planning to spend on the marketing campaign. In
this case, PLUTUS retrieves a set of customers (i.e., users in
the social graph) that are expected to increase the profit for
the designated venue. The celebrity-based profit maximization
problem can be formulated as an integer linear program, as
follows:

max
∑n
i=0 xi × P

′′

ui,v

s.t.
∑n
i=0 xi × Cui,v ≤ Bv

xi ∈ {0, 1}.

Assume the social graph described in section III such that
n is the total number of nodes (i.e., customers) in the graph.
Let P ′′

ui,v denote the total profit that results from incorporating
customer ui in the result set of venue v (calculated using
Algorithm 2) and let Bv represent the total budget specified
by venue v owner. Let xi be set to 1 if user ui is selected and
reset to 0 otherwise. We need to maximize the total profit, such
that the total cost of all selected customers does not exceed
the total budget Bv .

The celebrity-based profit maximization problem is NP-
Complete; 0/1 knapsack problem can be reduced to our prob-
lem (proof omitted for brevity). The problem is even harder
than the 0/1 knapsack problem; as the value P ′′

ui,v is not
constant. The order in which we pick customers leads to
different profit values, P ′′

ui,v . Moreover, the problem at hand
may be so hard that it is likely that a c-approximation solution
does not exist. Hence, we resort to a simple strategy such as
greedy, which at least has the desirable property that it is fast
to execute and intuitive to understand.

Algorithm. The greedy hill climbing algorithm at each
iteration first computes a set of m candidate Customers A
⊆ U , such that the cost of adding each customer ai, Cai,v ,
to the result set does not exceed the total venue budget Bv .
Therefore, we will pick the customer that leads to the highest
profit value P ′′

ui,v , exclude it from being picked in the future,
and update the capacity usage of the total venue budget Bv .
The algorithm terminates when the remaining budget in the
total venue budget Bv is less than or equal zero or there is
no customers in the candidate set A. The pseudocode for the
celebrity-based hill climbing algorithm is omitted for brevity.



Limited Customers. An extension of the celebrity-based
profit maximization problem is to limit the number of cus-
tomers to allow the framework users to specify a total budget
and a fixed number of required customers K. In this case,
PLUTUS retrieves a set of K customers (i.e., users in the social
graph) that are expected to increase the venue profit. In such
case, the problem can be formulated similarly to the celebrity-
based profit maximization problem, with an extra constraint as
follows:

max
∑n
i=0 xi × P

′′

ui,v

s.t.
∑n
i=0 xi × Cui,v ≤ Bv∑n
i=0 xi <= K

xi ∈ {0, 1}.

The additional constraint is necessary so that we ensure that
only K Customers are returned in the result set. The algorithm
to solve that problem is similar to the celebrity-based hill
climbing algorithm, except that the termination condition is
extended to incorporate the the number of customers limit.

B. Coupon-based Profit Maximization

The coupon-based profit maximization version allows
venues owners to specify a set of K coupons and a fixed price
Bv for each coupon. The framework will then fetch the venue
a set of customers (i.e., users in the social graph) that are
expected to increase the profit. The Coupon scheme can be
formulated as follows:

max
∑n
i=0 xi × P

′′

ui,v

s.t. xi × Cui,v ≤ Bv∑n
i=0 xi <= K

xi ∈ {0, 1}.

Example. A restaurant owner is willing to distribute 10
coupons, each worth a 100 dollars value of meals purchases.
Hence, the restaurant owner specifies K=10 and Bv=100.
PLUTUS therefore selects a set of m (i.e., m ≤ K) users that
are expected to maximize the total restaurant profit.

Similar to the celebrity-based hill profit maximization,
we use a greedy strategy to select m customers, such that
m ≤ K. The algorithm follows the same steps as in the
celebrity scheme algorithm, except that at each iteration it
picks a customer ai that leads to the highest profit value
P ′′

ui,v for venue v whereas the cost Cai,v does not exceed the
coupon price Bv . The algorithm terminates when the remaining
number of coupons reaches zero, which means all coupons are
taken.

PLUTUS Coupon-based Algorithm. In the algorithm, we
aim to avoid calculating P ′′

ui,v in Equation 6 for all customers
in the social graph to find the k customers to offer them
coupons, which can become quite expensive given the need
to compute the network profit Nui,v for each customer. To
avoid such computation, we evaluate customers in monotoni-
cally increasing order of travel penalty (mentioned earlier in
section IV-B), enabling us to use early termination principles
from top-k query processing [15], [16], [17].

Algorithm 3 provides the pseudocode of the PLUTUS
coupon-based profit maximization algorithm that takes a venue
v, a coupon price Bv , and coupons count K as input, and
returns the list R of m (m ≤ K) customers that are expected

Algorithm 3 Coupon-based Profit Maximization
1: Function Geo Coupons(v, L, Bv , K)
2: /* Populate a list R with a set of K customers*/
3: R ← φ
4: while R size ≤ K do
5: ui ← Retrieve the customer with the next lowest travel penalty
6: /*Customer Cost must be ≤ Coupon Price */
7: if Cui,v

≤ Bv then
8: Compute P

′
ui,v

by Equation 3

9: Insert ui into R ordered by P
′
ui,v

10: end if
11: end while
12: LowestProfit ← Profit of the kth object in R
13: /*Get customers one by one in order of their penalty value */
14: while there are more customers to process do
15: ui ← Retrieve the next customer in order of penalty score
16: MaxPossibleProfit ← P

′
MAX × Tui,v

17: if MaxPossibleProfit ≤ LowestProfit then
18: return R /* early termination - end query processing */
19: end if
20: P

′′
ui,v

← P
′
ui,v

× Tui,v
/* Equation 6 */

21: if P
′′
ui,v

> LowestProfit then

22: Insert i into R ordered by P
′′
ui,v

23: LowestProfit ← Profit of the kth object in R
24: end if
25: end while
26: return R

to maximize the total profit. The algorithm starts by running
a k-nearest-neighbor algorithm to populate the list R with k
customers with lowest travel penalty while the cost to acquire
each of these customer Cui,v is less than or equal to the
coupon price Bv . The list R is sorted by the the total computed
profit P ′

ui,v using Equation 3. This initial part is concluded by
setting the lowest profit value (LowestProfit) as the Profit of
the kth customer in R (Lines 3 to 12). Then, the algorithm
starts to retrieve customers one by one in the order of their
travel penalty score. This can be done using an incremental k-
nearest-neighbor algorithm. For each customer ui, we calculate
the maximum possible profit that i can have by multiplying the
travel penalty of ui Tui,v by P

′

MAX , the maximum possible
profit value in the system. If ui cannot make it into the list of
top-k customers with this maximum possible profit value, we
immediately terminate the algorithm by returning R as the top-
k customers without computing the profit (and travel distance)
for more customers in the social graph (Lines 17 to 19). The
rationale here is that since we are retrieving customers in
increasing order of their penalty and calculating the maximum
profit that any remaining customer can have, then there is no
way that any unprocessed customer can beat the lowest profit
value in R. If the early termination case does not arise, the
algorithm continues to compute the profit for each customer
ui using Equation 3, insert ui into R sorted by its profit value
(removing the kth customer if necessary), and adjust the lowest
profit value accordingly (Lines 20 to 24).

To calculate an exact travel penalty for a customer ui to
venue v, we employ an incremental k-nearest-neighbor (KNN)
technique [18], [19]. Given a venue v location Lv , incremental
KNN algorithms return, on each invocation, the next customer
ui nearest to v with regard to travel distance d. In our case,
we normalize distance d to take a value from zero and one to
get the travel penalty Tui,v in Equation 6. Incremental KNN
techniques exist for both Euclidean distance [18] and (road)
network distance [19]. The advantage of using Incremental
KNN techniques is that they provide an exact travel distance



Fig. 4. Foursquare mobile application

value between a venue’s location and each customer in the
social graph. The runtime complexity of retrieving a single
customer using incremental KNN in Euclidean space is [18]:
O(k+logN ), where N and k are the number of total customers
and customers retrieved so far, respectively.

VI. EXPERIMENTAL EVALUATION

This section provides experimental evaluation of PLUTUS
based on an actual implementation using JAVA 6.

Data Set. All of our experiments are based on a real
dataset obtained from Foursquare. Foursquare [20] is a mobile
location-based social network application (see figure 4 4). We
use the publicly available APIs provided by Foursquare to run
a crawler that collected results for 4,392 users and 36,963
venues. Users are associated with a home city, and alert friends
when visiting a venue (e.g., restaurant) by “checking-in” on
their mobile phones. During a “check-in”, users can also leave
“tips”, which are free text notes describing what they liked
about the venue. Any other user can add the “tip” to her “to-
do list” if interested in visiting the venue. Once a user visits a
venue in the “to-do list” , she marks it as “done”. Also, users
who check into a venue the most are considered the “mayor”
of that venue.

Extracting user opinions. Foursquare does not give the
functionality to a user to give an explicit rating for a place. To
extract user opinions for different venues from the Foursquare
data, we map each user visit to a single rating. The user and
venue attributes are represented by the unique Foursquare user
and venue identifier, respectively. We use a numeric rating
value range of [1, 4], translated as follows: (a) 4 represents
the user is the “mayor” of the venue, (b) 3 represents that the
user left a “tip” at the venue, and (c) 2 represents the user
marked a tip left in the venue as “done”. (d) 1 represents the
user only visited (check-in) the venue.

Building the social graph. Using Foursquare data, we
build a social graph of these users and annotate it with
influence, cost and profit to allow our algorithm to work. In
the generated social graph, each user is represented by a node.
Location of each node is assigned to the location of the home
city of the associated user. A static cost is assigned to each
user according to the total number of friends of this user and
her distance to the chosen venue. The cost increases with the
user popularity (number of friends). Profit is assigned to a user

4The screenshot in Figure 4 taken from: http://foursquare.tumblr.com/

according to the activity of the user (total number of checkins
in the system). The intuition is that a user with higher activity
is likely to visit to the designated venue that another user with
lower activity. An edge is added to the social graph between
two friends or between a brand and a follower. For each pair
of friends (ui, ul), we add a pair of directed edges, (ui, ul)
and (ul, ui). The influence of a user ui on his friend ul is
calculated by counting the number of checkins by user ui to
any venue vj followed by a checkin of ul to the same venue
vj . We assume here that the ui visited this place first and tells
ul about this place who was convinced (influenced) to visit the
same place later.

In the experiments, we measure quality, processing time
and expected profit for the following algorithms:

• Celeb: a basic celebrity-based algorithm that selects
the most popular users in the social graph that covers
the budget.

• Plutus-Celeb: represents the celebrity-based profit
maximization algorithm presented in section V-A.

• Coup: a basic coupon-based algorithm that selects the
top-k most popular users in the social graph and assign
a coupon to each of them.

• Plutus-Coup: represents the coupon-based profit max-
imization algorithm presented in section V-B (Algo-
rithm 3).

All experiments were performed on an Intel Core2 8400 at
3Ghz with 4GB of RAM machine running Ubuntu Linux 10.04
operating system.

Quality Metric. To measure the quality of our algorithm,
we choose a venue and retrieve all checkins on this venue.
Then, we find a time point such that 80% of the checkins are
before this time (training set) and only 20% are beyond this
time (test set). We build the social graph around this venue
using the training set. We then pass this social graph to the
algorithm and let it choose the best users to attract to the venue.
We increment our quality measure by one for each chosen user
who actually visited the venue (according to the test set). We
further check the friends of each of those users who actually
visited the venue, we increment the quality measure by one
for each friend who visited the venue after user visit. In other
words, we start a breadth first search from the chosen users
who visited the venue. For each user in the search, we only
traverse his friends who went to the same venue after her visit.
The total number of users traversed in this search is the quality
measure we use.

A. Plutus-Celeb versus Celeb

In this section, we compare the quality, gained profit, and
processing of both the Celeb and Plutus-Celeb algorithms.

1) Effect of budget on Quality: Figure 5 shows the quality
measure for both Celeb and Plutus-Celeb. We measure the
quality while varying the budget to take the values $5000,
$10000, $20000 , $50000, and $100000. As it turns out from
the figure, Plutus-Celeb consistently achieves higher quality
than Celeb. That is explained by the fact that Plutus-Celeb
takes into account the social ties, the spatial distance, and the
user ratings as opposed to Celeb. More specifically, the gap
between Plutus-Celeb and Celeb is higher for smaller budget
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values. These results manifest that Plutus-Celeb is efficient in
spending the budget even with tight budget values.

2) Effect of budget on profit: Figure 6 compares the pro-
cessing time for running both Celeb and Plutus-Celeb. The
processing time is measured in terms of CPU time taken by
each algorithm to return the set of recommended customers.
We measure the processing for budget values $5000, $10000,
$20000 , $50000, and $100000. As it turns out from figure 7,
Plutus-Celeb takes more time to run thatn celeb for all budget
values. That behavior is explained by the fact that Celeb incurs
no processing overhead as it uniformly selects customers that
match the budget. On the other hand, Plutus-Celeb needs to
calculate the total profit P ′′

ui,v of all users while running the
hill climbing algorithm. However, Plutus-Celeb takes order of
seconds to run which is acceptable especially that the algorithm
is expected to be performed offline.

3) Effect of budget on processing time: Figure 7 measures
the total expected profit gained using both Celeb and Plutus-
Celeb. We measure the total profit in dollars for the whole
budget values $5000, $10000, $20000 , $50000, and $100000.
As presented in the figure, Plutus-Celeb incurs 40× to 180×
higher estimated profit than Celeb for all budget values. That
behavior is explained by the fact that Celeb might select users
that are not relevant to the designated venue. On the other hand,
Plutus-Celeb recommends those user that are socially, spatially
relevant to the designated venue while taking the users interest
in that venue into account.

B. Plutus-Coup versus Coup

In this section, we compare the quality, gained profit, and
processing of both the Coup and Plutus-Coup algorithms.

1) Effect of coupon price / number of coupons on quality:
In figure 8, we measure the quality of both the Plutus-Coup and
Coup algorithms. The quality of each algorithm is measured
for coupon price values $1, $2, $3, $4, $5, and $10. As
shown in Figure 8, increasing the coupon price while keeping
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total number of coupons fixed, increases total quality of the
algorithm for both approaches. The intuition behind this is that
as the coupon price increases, both algorithms has a wider
choice when selecting people to give coupons and hence there
is a high possibility that both algorithms to return high quality
answer.

However, Plutus-Coup shows consistently higher quality
than Coup for all coupon price values. This phenomenon
is explained by the fact that Plutus-Coup efficiently assigns
coupons to users based on their social, spatial, and their interest
in the designated venue. For coupon price value , the quality
of Coup jumped closer to Plutus-Coup as in this case many
users in the system including low cost users accept higher value
coupons. That increased the possibility that Coup achieves a
high quality.

Figure 11 presents the quality of both algorithms while
setting the number of coupons (K) to 1, 5, 10, 50, and 100.
The figure shows that for small number of coupons Plutus-
Coup achieves higher quality than Coup because Plutus-Coup
efficiently distributes the small number of coupons on the user
with the highest potential. For larger number of coupons, Coup
quality comes close to Plutus-Coup. This happens because
with higher number of coupons, the possibility for Coup to
get high potential users increases.

2) Effect of coupon price / number of coupons on profit:
Figure 9 calculates the total estimated profit for both Plutus-
Coup and Coup algorithms. We measure the estimated profit
for coupon price values $1, $2, $3, $4, $5, and $10. As it turns
out from the figure, Plutus-Coup achieves up to 9× higher
estimated profit than Coup. That happened due to the fact
that Plutus-Coup picked the most relevant customers to the
designated venue.

Figure 12 measures the profit for both algorithms while
setting the number of coupons (K) to 1, 5, 10, 50, and 100.
As given in the figure, Plutus-Coup consistently outperforms
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Coup for the estimated profit as Plutus-Coup is expected to
recommend customers with higher value than that of Coup.

3) Effect of coupon price / number of coupons on process-
ing time: Figure 10 measures the total processing time of both
Plutus-Coup and Coup algorithms while setting the coupon
price values to $1, $2, $3, $4, $5, and $10 . As presented in
the figure, Plutus-Coup incurs more processing overhead than
Coup. That is explained by the fact that Plutus-Coup needs
to calculate the total profit calculation for each distantly close
user which leads to more processing time. However, Plutus-
Coup still terminates only in order of seconds as the algorithm
employs an early termination strategy using the travel penalty.

Figure 13 compares both processing time of both Plutus-
Coup and Coup algorithms. As it turns out from the figure,
increasing the number of coupons (K) leads an increase in
the total processing time of Plutus-Coup. This is explained by
the fact that Plutus-Coup needs to calculate the total profit for
more users in the social graph for higher value of K.

VII. RELATED WORK

Informational social influence [2], [21], [22], [23], [24]
is the psychological phenomenon that describes the positive
influence created when someone finds out that others are doing
something, also known as Social Proof. Kempe, Kleinberg
and Tardos in [2] build the theoretical foundation behind the
optimization problem of selecting the most inuential nodes in
a social network. Their work aims at maximizing the spread
of influence in the social graph. They have shown the problem
to be NP-hard, but can be approximated within 63% of the
optimal using a a natural greedy search strategy. Zhang et. al
studies the geo-social influence of spatial events in location-
based social networks [24].

Viral Marketing [3], [4], [25], [26], [27] use social
networks as a word of mouth tool that helps achieving
marketing objectives through self-replicating viral processes.
For instance, a publisher in the phase of new book release,
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might pre-select a set of Twitter users and give them free
copies of the book. These Twitter users, if well selected,
might substantially help in advertising that new book, by word
of mouth, and hence increasing the book sales. Domingos
in [25] discusses the importance of viral marketing in non-
spatial products (e.g., movies, books) marketing. He argued
that using traditional direct marketing may lead to suboptimal
marketing decisions. Domingos proposed the idea that online
social networks can be leveraged to calculate the network
value of customers, and hence making more precise marketing
decisions. Richardson and Domingos in [3] views the market
as a social network instead of independent customers. They
mined a recommender system database to retrieve the social
influence among users. The authors in [26], [27] also leverages
the social influence to increase profit and maximize a product
adoption in online social networks. PLUTUS extends the viral
marketing techniques to incorporate both the spatial and users
opinions effects.

Location-based Social Networks [28], [29], [30], [31]
have been exploited to study the spatial behavior of users and
how that behavior is associated with the users social ties [7],
[32]. Cho, Myers and Leskovec in [32] have applied extensive
data analysis on two data sets from real location-based social
networking websites (i.e., Gowalla and BrightKite). They also
derived a user mobility model taking into account three sub-
models: (a) Model for spatial locations that a user regularly
visits, (b) A model for temporal movement between these
locations, and (c) A model for movement that is influenced
by the social network ties. The authors in [31] proposed a
novel method to recommend items to users in location-based
social networks. They proposed a taxonomy of location-based
ratings that aims at incorporating the geo-location of venues
and users in building the recommendation model, resulting
into more relevant recommendation results. PLUTUS leverages
data generated from existing location-based social networking
systems to retrieve the set of users that are expected to
maximize the total venue profit.
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Recommender Systems. A Recommender systems speculates
how much a user would like an item she has never seen
(bought, watched, ...) before. Collaborative Filtering [12] is
considered the most popular technique among several rec-
ommendation techniques proposed in the literature [12], [9],
[33], [34]. There are several methods to perform collaborative
filtering including item-item [11], user-user [12], regression-
based [11], or approaches that use more sophisticated proba-
bilistic models (e.g., Bayesian Networks [13]). Collaborative
filtering techniques analyze past community opinions to find
correlations of similar users (or items) to suggest k person-
alized items (e.g., movies) to a querying user u. Community
opinions are usually expressed through explicit ratings rep-
resented by the triple (user, item, rating) that represents a
user providing a numeric rating for an item. PLUTUS employs
the item-based collaborative filtering technique to predict the
rating that a user would give to an unseen item.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented PLUTUS, a marketing frame-
work that aims at recommending customers to grow the
business of a particular venue. To this end, PLUTUS leverages
social data, spatial data, and user opinions data provided by
location-based social networks, and uses them in concert to
retrieve those customers that are expected to maximize the
total venue profit. We tested the performance of PLUTUS using
real data from Frousquare location-based social network. In the
future, we plan to deploy our framework in a real life setup to
test PLUTUS with real venues (e.g., restaurants).
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