
GARNET: A Holistic System Approach for Trending

Queries in Microblogs∗

Christopher Jonathan Amr Magdy Mohamed F. Mokbel Albert Jonathan

Department of Computer Science and Engineering,

University of Minnesota, MN, USA

{cjonathan,amr,mokbel,albert}@cs.umn.edu

Abstract—The recent wide popularity of microblogs (e.g.,
tweets, online comments) has empowered various important
applications, including, news delivery, event detection, market
analysis, and target advertising. A core module in all these
applications is a frequent/trending query processor that aims to
find out those topics that are highly frequent or trending in the
social media through posted microblogs. Unfortunately current
attempts for such core module suffer from several drawbacks.
Most importantly, their narrow scope, as they focus only on
solving trending queries for a very special case of localized and
very recent microblogs. This paper presents GARNET; a holistic
system equipped with one-stop efficient and scalable solution
for supporting a generic form of context-aware frequent and
trending queries on microblogs. GARNET supports both frequent
and trending queries, any arbitrary time interval either current,
recent, or past, of fixed granularity, and having a set of arbitrary
filters over contextual attributes. From a system point of view,
GARNET is very appealing and industry-friendly, as one needs to
realize it once in the system. Then, a myriad of various forms
of trending and frequent queries are immediately supported.
Experimental evidence based on a real system prototype of
GARNET and billions of real Twitter data show the scalability
and efficiency of GARNET for various query types.

I. INTRODUCTION

Microblogs, e.g., tweets, online reviews on Amazon, com-
ments on news websites and Facebook, or check-in’s at
Foursquare, have recently become very popular among web
users [8], [26]. As rich user-generated data, microblogs have
been exploited in several applications, e.g., news delivery [23],
[25], event detection [1], [14], [21], market analysis [7], study-
ing public opinion [19] and geo-targeted advertising [28]. All
such applications rely on the ability to understand what people
are talking about in their microblogs, and use this information
as an indication of the importance of news, events, and/or
people interests. As a result, numerous recent research efforts
have focused on supporting frequent and trending queries
on microblogs with the form: ”Find top-k frequent/trending
keywords within the last T time units within location L” [4],
[24]. Unfortunately, such efforts have a narrow scope by:
(a) supporting either frequent queries as in [24] or trending
queries as in [4]. Frequent queries aim to find the keywords
that appear the most while trending queries aim to find the

∗This work is partially supported by the National Science Foundation, USA,
under Grants IIS-1525953, CNS-1512877, IIS-0952977 and IIS-1218168 and
the University of Minnesota Doctoral Dissertation Fellowship.

keywords that exhibit some burst according to a given trending
function. (b) supporting only recent time queries expressed by
either the last T time units as in [4] or a recent time window
interval as in [24]. (c) supporting only a location filter where
the location is either defined as a textual attribute as in [4] or
coordinates as in [24]. Very few work (e.g., [16]) have waived
the location filter to get trending keywords over all microblogs.
Twitter [27] shows localized or worldwide current trending
hashtags on a side panel.

The narrow scope of existing techniques result in the
following three main problems that hinder the widespread and
applicability of frequent and trending queries: (1) There is no
support for context filters beyond the single location context.
For example, one may need to know the trending keywords
in politics, or the trending keywords among Spanish teenagers
in California, and so on. The only way to support such filters
within current work is to apply the filter over all microblogs
first, followed by executing the trending query algorithm. This
is very inefficient and may not be even possible when the size
of the intermediate result is large. (2) There is no support for
trending queries over a historical time interval, which is needed
for historical data analysis, e.g., finding trending keyword(s)
during the past US election in 2012. The main reason is that
all existing techniques rely only on in-memory algorithms and
data structures, which is only enough to store current or very
recent incoming data. (3) From a system point of view, existing
techniques are not practical. To equip a system with modules
for each type of trending queries, one needs to implement an
algorithm for localized frequent queries [24], another algorithm
for localized trending queries [4], a third algorithm for general
trending queries [16], and so on. This is not practical as each
technique has its own data structure and storage requirements.

In this paper, we present GARNET; a holistic system
equipped with one-stop efficient and scalable solution for
supporting a generic form of context-aware frequent and
trending queries on microblogs: ”Find top-k frequent/trending
keywords within an arbitrary current/recent/past time win-
dow of fixed granularity according to a certain context”. In
that sense, GARNET supports: (a) both frequent and trending
queries, (b) any arbitrary time interval either current, recent,
or past, of fixed granularity, (e.g., hour, day, month, year) and
(c) having a set of arbitrary filters over contextual attributes.
In addition to such general form of frequent and trending
queries on microblogs, GARNET also supports reverse trending
queries, which are not supported by any of existing techniques.
An example of such queries is: ”Among what age does the

word XBox was trending last month”. From a system point
of view, such one-stop holistic approach is very appealing, as
one needs to realize it once in the system. Then, a myriad of
various forms of trending and frequent queries are immediately
supported efficiently. Contrast such approach to the case of
realizing tens of various algorithms to be able to support
various forms of trending queries.

GARNET goes beyond the location context of trending
queries in microblogs to the general case of multi-dimensional
context attributes. A context could be a combination of loca-
tion, topic, gender, age, language, or other attributes. An exam-
ple of a context-aware trending query supported by GARNET

is: ”Find trending keywords posted last March and related to
health within USA”. Such query is a two-dimensional context
query with two context attributes: topic and location, with
values of health and USA, respectively. Another example is:
”Find trending keywords posted during the last week among
Spanish tweets posted by teenagers in California”, which is a
three-dimensional context query with three context attributes:
language, age, and location, with values of Spanish, teenagers
(13 to 19), and California, respectively. The need for each
context is different based on the underlying application. For
example, some applications (e.g., market analysis) may need to
understand the trend among the age and gender context. Other
applications (e.g., education sector) may have more interest in
the language context. Others (e.g., news delivery) may have
more interest in the topic and location context. It is the job of
GARNET to support efficient and scalable execution of trending
queries under the preferred context of each application’s need.

The main idea behind GARNET is to treat context-aware
trending queries in the same way database management sys-
tems (DBMSs) treat index structures. Admin users of GARNET
can build multi-dimensional index structures to be used for an
efficient access of context-aware trending queries on specific
dimensions. For example, if it is deemed frequent to issue
queries on both the topic and location context together, then
an admin user of GARNET would decide to build a two-
dimensional index structure on both the topic and location
context. Once the index is built, any incoming queries on that
context would be answered very efficiently and in a scalable
way. Meanwhile, if a context-aware query is issued on a non-
indexed context, the query will encounter a slow response;
same as issuing a query to a DBMS for a non-indexed field.
However, building an index for all combination of context is
impractical, same like it is impractical to build index structures
over all attribute combinations of a relational table. Thus,
GARNET allows its users to create and drop indexes depending
on their needs. This facilitates a great flexibility to tune the
system performance for important query workloads and for
different applications within one system.

Each multi-dimensional index structure built by GARNET

is basically a Context-Aware Temporal Index that consists of
two indexing layers: a context layer and a temporal layer.
The context layer uses a multi-dimensional grid index, where
each dimension corresponds to one context. The temporal layer
appears in each grid cell of the context grid index, where it
contains a hierarchical temporal index that maintains aggregate
information about incoming keywords at different levels of
temporal granularity. This is basically a materialization of the
answer of trending queries at different temporal granularity.

In particular, each node in a temporal tree maintains a concise
summary structures to maintain top-k frequent keywords and
top-k trending keywords. This information is maintained on
multiple levels of temporal granularity to support queries
on arbitrary long periods of time. GARNET query processor
exploits this aggregate information to answer incoming queries
efficiently. An optimized part of the GARNET index is stored in
memory for faster execution of current and recent time queries.
The majority of the index is stored in the disk storage for
historical data analysis.

A real system prototype of GARNET is experimentally
evaluated by using a large repository of billions real Twitter
data with several types of query workloads. Experimental
evidence shows that GARNET is scalable and is able to insert
each microblog to eight different context index structures with
arrival rates that are 8× faster than a regular Twitter rate [26].
GARNET is also able to provide up to 0.3 miliseconds of query
response time in answering both top-k frequent and top-k
trending queries of any given point of time.

The rest of the paper is organized as follows: Section II
presents preliminaries. The system architecture of GARNET

is described in Section III. Sections IV, V, and VI present
index creation, management, and flushing to disk, respectively.
Section VII discusses query processing. Section VIII gives
the experimental evaluation. Related work is discussed in
Section IX. Finally, Section X concludes the paper.

II. PRELIMINARIES

This section presents a set of preliminaries for context ex-
traction from microblogs, frequent and trending computations,
and problem formulation.

A. Context Extraction from Microblogs

Each microblog comes up with a set of contextual infor-
mation that is either: (a) explicitly mentioned: For example,
Twitter associates the language of each tweet as part of
its metadata. Also, tweets posted from mobile devices have
explicit location information expressed as (latitude, longitude)
in the tweet metadata. (b) discovered through data mining
techniques: For example, discovering the gender or the age of
a person posting a certain microblog may require some data
mining techniques going through the friend list and/or prior
posts from the same person. Similarly, the location context,
if not mentioned explicitly, may be discovered from the user
location, the textual content of the microblog, or earlier posts.
(c) discovered through natural language processing: For exam-
ple, understanding the topic or the emotions of the microblog
post requires employing natural language processing modules.

The domain values of each context may be either: (a) cate-
gorical: For example, the topic context may have a specific list
of categories including politics, sports, entertainment, the gen-
der context is either male or female. Also, the age context may
be designed to have only three possible values as teenagers,
adults, and elderly. (b) continuous: For example, the location
context may have any value within the world space boundary.

Inferring the context value for each attribute is beyond the
scope of this paper. GARNET assumes that each microblog is
already mapped to its set of context attributes. Then, the main

focus of GARNET is on how to efficiently answer context-aware
trending queries on microblogs, given that the context values
of each microblog is already known.

B. Frequent and Trending Computations

Frequent keyword queries aim to find keywords that have
appeared the most (in absolute numbers) during the specified
time and contextual constraints. Meanwhile, trending keyword
queries aim to find the keywords that are trending over a period
of time (under given contextual constraints), which is measured
by the growth in frequency over time. To compute trending
keywords over time, we use the trending aggregate measure
Ttrend, which measures the growth in frequency of a keyword
W along N consecutive time units ti, 1 ≤ i ≤ N , where N is
a system parameter. Ttrend is given per the following equation,
which is derived based on the statistical linear regression [13]:

Ttrend =
6
∑N

i=1[i× (fi − f0)]

N(N + 1)(2N + 1)
(1)

Where fi, 1 ≤ i ≤ N , is the frequency of keyword W at time
ti. Details about this equation is in Appendix A.

C. Problem Definition

A context-aware trending query comes with the following
form: ”Find top-k frequent/trending keywords within context
C in time range T (of fixed granularity)”, which has three
parameters: (1) k as the number of keywords to be returned,
(2) Multi-dimensional contextual constraints C, and (3) time
range T of fixed granularity; hour, day, month, or year.

Definition 1. Context-aware query: Given integer k, multi-
dimensional contextual constraints C, and time range T of
fixed granularity (hour, day, month, or year), a context-aware
frequent/trending query returns k keywords that are: (1) top
ranked as either frequent or trending, (2) posted within the
context C constraints, and (3) posted within time T .

GARNET also supports reverse context-aware queries with
the form: ”In which values of context C is the keyword W
frequent/trending over a time range T of fixed granularity”,
which has three parameters: (1) multi-dimensional context C,
(2) keyword W , and (3) time range T of fixed granularity;
hour, day, month, or year.

Definition 2. Reverse context-aware query: Given multi-
dimensional contextual constraints C, keyword W , and time
range T of fixed granularity, a reverse context-aware fre-
quent/trending query returns a value within C where W is:
(1) top ranked as either frequent or trending, (2) posted within
the context C, and (3) posted within the time point T .

III. SYSTEM ARCHITECTURE

Figure 1 gives system architecture of GARNET , which is
composed of four main modules (Section III-A) and four main
data structures (Section III-B).

Fig. 1. GARNET System Architecture

A. GARNET Main Modules

GARNET includes four main modules, namely, index cre-
ation, index management, flushing, and query processor, de-
scribed briefly below:

Index Creation. This module receives index create/drop re-
quests from GARNET administrator and creates/drops both an
in-memory index structure and a corresponding disk-resident
one; along with updating an index catalog. Both data structures
have a flat grid index for context indexing. Each in-memory
grid cell has a flat temporal index, while in-disk index cells
have a hierarchical temporal index. Details in Section IV.

Index Management. For each new incoming microblog M ,
this module performs the following: (1) Extract the microblog
M contextual information and set of keywords. This particular
step is beyond the scope of this paper, as there are already a
plenty of research efforts in this area from both data mining
and natural language processing communities, e.g., see [18].
(2) Consult the in-memory catalog to get the set of in-memory
index structure(s) I that M belongs to, according to its
extracted context. (3) Insert M (with its keywords) into each
index in I (if any), as well as into an in-memory buffer as a
raw store for all incoming microblogs. Details in Section V.

Flushing. This module is triggered either periodically or once
the memory becomes full. The objective is to flush part of
the in-memory buffer and index structures contents to their
corresponding disk structures as a means of giving a room to
new incoming microblogs to be inserted in memory. Details
in Section VI.

Query processor. This module receives frequent and trending
context-aware queries as described in Section II-C. Based on
both temporal and contextual attribute constrains in the given
query, this module decides on: (1) Which index structure, if
any, to consult for the answer, and (2) Whether the answer
will be retrieved from the in-memory index and/or the in-disk
index. Details in Section VII.

B. GARNET Data Structures

GARNET maintains four main data structures, namely, in-
memory index, disk-resident index, raw storage, and in-memory
catalog, described briefly below:

In-Memory Index. In-memory index is created whenever
GARNET administrator submits an index create request to the
index creation module. An in-memory index is composed
of two main layers, namely the context index layer and
temporal index layer. The context index layer is basically a
multi-dimensional uniform grid index where each dimension
represents one context attribute. The temporal index layer is
basically a temporal list of nodes, where each node represents
a fixed time granularity. Details in Section IV-B.

Disk-Resident Index. For each in-memory index, there exist
a corresponding disk-resident index. Similar to the in-memory
index, a disk-resident index is composed of two layers, the
context index layer and temporal index layer. Disk-resident
index has the same context index layer as the corresponding in-
memory index. However, the temporal index layer of the disk-
resident index is a tree of temporal hierarchy that maintains
aggregate information about microblogs on different temporal
granularity. Details in Section IV-C.

Raw Microblogs Storage. GARNET maintains two raw mi-
croblogs stores: one in-memory and one in-disk. Both stores
are append-only and have their microblogs stored on their
arrival rates. GARNET keeps one hour worth of microblogs
inside its memory raw storage before flushing them to the
disk raw storage which is triggered every hour. These raw
microblogs are used to answer user queries with a non-indexed
contextual attributes as well as used to populate newly created
index structures with historical microblogs.

In-Memory Catalog. GARNET keeps all its index structures
metadata in an in-memory catalog. The in-memory catalog is
basically a table with two columns and n rows, where n is
the number of index structures that GARNET maintains. The
first column contains the name of each index, while the second
column contains the indexed contextual attributes.

IV. INDEX CREATION MODULE

This section discusses the index creation module of Fig-
ure 1. We start by the SQL syntax that triggers this module
(Section IV-A) to create an index structure that will be used
to support frequent and trending queries for specific context.
The execution itself results in creating both an in-memory
index structure (Section IV-B) and an in-disk index structure
(Section IV-C). Whenever a new index is created, GARNET will
bulk load the index with historical microblogs (Section IV-D).

A. Create/Drop Index Syntax

GARNET users can create new index structures for a
specific context by using the following SQL syntax:

CREATE INDEX IndexName ON

CONTEXT Context1, Context2, · · ·, ContextM
GRANULARITY [t]
LIMIT [k]
TREND [N]

The above index creation command has five parameters:
(1) IndexName; the name of the index, (2) One or more
Context to indicate the set of context attributes that the index
will be built on, (3) t; the finest granularity temporal value that

Fig. 2. AgeGender In-Memory Index Organization

the index must capture (e.g., hour, day, week, or month), (4) k;
the number of returned results per the top-k functionality, and
(5) N ; the number of past time intervals that are taken into
account when computing the trending function, per Equation 1.
The last three parameters, t, k, and N , are optional and have
default values of day, 100, and 3, respectively, if not defined
in the Create Index SQL statement.

The following is an example of creating a two-dimensional
index with context of AGE and GENDER:

CREATE INDEX AgeGender ON

CONTEXT Age, Gender

GRANULARITY [hour]
LIMIT [100]
TREND [3]

Once an index is no longer needed, a simple Drop Index
command can be issued to clean all the index footprints from
both memory and disk storage.

B. In-Memory Index Structure

Figure 2 depicts the organization of an in-memory Context-
Aware temporal index structure (CAT, for short) for a two-
dimensional context composed of Age and Gender. The index
is composed of two main layers, namely, context layer and
temporal layer, as follows:

Context Index Layer. The context index layer is basically a
multi-dimensional index on the given context. There is already
a rich literature on multi-dimensional index structures [10],
classified into two categories: Data-partitioning index struc-
tures (e.g., R-tree [12]) that partition the data over the index
and space-partitioning index structures (e.g., Quadtrees [22])
that partition the space. In GARNET we decided to go with
the Grid Index as an example for space-partitioning data struc-
tures, for the following reasons: (1) Most of the context domain
values are discrete (e.g., the Gender, topic, language), which
is more suitable to be expressed within space-partitioning
data structures. (2) Microblogs are added to the system in
very high arrival rates. Hence, the index structure must be
simple and as static as possible in order to avoid expensive
index repartitioning. Having said this, GARNET framework can

Fig. 3. AgeGender Temporal Tree

accommodate other multi-dimensional index structures as a
replacement of our grid index.

Each grid cell in the context layer keeps metadata about its
temporal index layer. In particular, the number of nodes and the
frequency of incoming microblogs. Figure 2 gives an example
of a context index layer as a two-dimensional grid structure
for Age and Gender attributes. The Age attribute takes three
possible values while the Gender attributes takes two possible
values, making the whole index composed of six grid cells.

Temporal Index Layer. Each cell in the multi-dimensional
context grid points to a list of temporal nodes. Each node
has a temporal range of fixed temporal granularity (e.g., one
hour) and maintains aggregate information about microblogs
that have arrived within: (a) the node temporal range, and
(b) the same context of the parent grid cell. Each temporal node
includes the following three tables: (1) Keywords Frequency
Map, which is a table that contains the number of times that
each keyword has appeared during the temporal and context
domain of that node as well as the TTrend of the keyword
which is computed by using the keyword frequency maps of
this node and the last N nodes per Equation 1, (2) Top-k
Frequent List, which is a table that maintains the list of the
Top-k keywords that have appeared the most within the node
temporal and context domain. This can be computed directly
from the keyword frequency map, yet, we are materializing it
here for efficiency. (3) Top-k Trending List, which maintains
the list of the Top-k keywords that are trending.

There are two types of in-memory temporal nodes, active
and inactive. Examples of active nodes are the right most
temporal nodes in each grid cell in Figure 2 (highlighted in
dark gray). An active receives new incoming microblogs and
will stay active till the end of its temporal domain (e.g., top
of the hour). Then it will be considered inactive, i.e., its data
structure becomes static as no new incoming microblogs will
be added to this node anymore. Inactive nodes are highlighted
with light gray in Figure 2. Once an active node becomes
inactive, a new active node will be created to receive the new
incoming microblogs.

C. Disk-Resident Index Structure

Each in-memory CAT index has a corresponding disk
resident one. The disk-resident index structure has the same
context layer as the in memory one. However, the temporal
layer is different as it is composed of a temporal tree rather
than a temporal list of nodes. Figure 3 gives the structure
of the temporal layer in the disk-resident index, where each
grid cell in the disk context layer points to the root node
of its corresponding temporal tree. The temporal tree is a

hierarchical index with multiple temporal levels where each
level corresponds to a certain temporal granularity of year,
month, day, or hour. The highest level of the tree always
corresponds to a year temporal granularity, while the lowest
level corresponds to the finest temporal granularity determined
in the CREATE INDEX statement (Section IV-A). All non-leaf
nodes have multiple children nodes that correspond directly to
a finer time granularity, e.g., a year node has up to twelve
children nodes where each of them represents a month node.
A dummy root node that does not maintain any data, is created
as a parent for an unlimited number of year nodes. The
objective of maintaining nodes over different levels of temporal
granularity is to allow answering queries with arbitrarily long
time periods while accessing minimal tree nodes.

Excluding the empty dummy root, the temporal tree in-
cludes three types of nodes, namely, active, intermediate, and
archived, described briefly below:

Active nodes. (highlighted in dark gray). Similar to the in-
memory active nodes, the temporal domain for the disk active
nodes is still not concluded as it can receive more incoming
microblogs. For example, as of Oct., 15, 2015, we have three
active nodes for year “2015”, month “October”, and day “15”,
as none of these has been concluded yet. If the lowest tree
level matches the time granularity of the in-memory CAT index
(e.g., the hour level in Figure 3), then, there will be no active
nodes in that level in the disk-based index. This is because
the temporal domain of all hours in that level have definitely
been concluded. The only active one (i.e., the node for current
hour) must be residing in memory at that time. Meanwhile,
there could be more than one active node in the same temporal
level. e.g., the day level in Figure 3. This happens only if
the temporal domains of the in-memory index spans over the
temporal domain of multiple in-disk temporal nodes of the
same level. For example, consider the case where there are
five in-memory hourly temporal nodes spanning the time from
10:00 PM on Oct 14 till 3:00 AM on Oct 15. Two of these
nodes will need to be later added to the in-disk daily node of
Oct 14, while three will be added later to the daily node of Oct
15. This means that both the daily nodes of Oct 14 and Oct 15
are still active. Each in-disk active node maintains the same
three tables as in-memory active nodes (Section IV-B), namely,
key frequency map, top-k frequency list, and top-k trending list.

Intermediate nodes. (highlighted in light gray). Similar to
the in-memory inactive nodes, these nodes have the following
three properties: (a) they maintain the same three tables as in
active nodes, (b) the values in these three tables are static and
would never change, as the temporal domain of these nodes
are concluded, and (c) the values in their key frequency maps
are used to calculate the trending function of current active
nodes of the same level per Equation 1. Each temporal level
has at most N intermediate nodes, where N is a parameter
in the CREATE INDEX statement (Section IV-A) and used
in the trending in Equation 1. Figure 3 has a temporal tree
with N=3. There are two cases where there could be less than
N intermediate nodes in a certain temporal level: (1) if there
are no available historical data in the system, e.g., the year
level in Figure 3, and (2) If the lowest in-disk temporal level
matches the level of the in-memory temporal list and there
are less than N inactive in-memory nodes. For example, in
Figure 2, there are only two inactive hourly in-memory nodes,

then, given N = 3, there should be one intermediate hourly
disk-resident node as in Figure 3

Archived nodes. These are the rest of temporal tree nodes
that are neither active nor intermediate. Unlike other nodes,
archived nodes maintain only two tables; top-k frequency list
and top-k trending list that materialize the answer of frequent
and trending queries for the context and temporal domains of
these nodes. There is no need to maintain an exhaustive list
of keyword frequency map since, unlike intermediate node, it
will not be used in any trending value. An archived node is
far from any active node by at least N+1 nodes.

D. Bulk Loading

Once GARNET recieves a CREATE INDEX command,
we populate the newly created index with historical raw
microblogs by using a bulk loading procedure. The procedure
starts by creating an hour level node for each hour of raw
microblogs starting from the oldest timestamp of the raw
microblogs. During the creation, we will also update the node’s
three statistical data structures. Whenever a time period of the
hour level nodes is concluded, i.e., the end of the day, we
create a day level node to be the parent of these hour nodes and
aggregate all statistical information from its children. Similarly,
for higher temporal levels. This process will continue until
all raw microblogs inside the disk-resident raw storage are
inserted. Then, we will drop all nodes that have a finer
temporal granularity than the lowest temporal granularity of
the newly created index. Once the disk-resident index is cre-
ated, we create the corresponding in-memory index followed
by creating active nodes for the index. Finally, we populate
each active node with the microblogs from in-memory raw
microblogs storage. When creating the in-memory index, we
will also load N previous hour nodes’ frequency maps from
the disk-resident index in order to minimize disk access for
calculating TTrend of each keyword in the in-memory index.

V. INDEX MANAGEMENT

This section discusses the index management module of
Figure 1. The input to this module is a newly incoming
microblog M . The first things that GARNET does here is to
extract the context CM from M . As mentioned in Section II-A,
context extraction is beyond the scope of this paper. Given
the extracted context CM , GARNET goes through three steps:
(1) Inserting M in the in-memory raw storage (Section V-A).
(2) Checking the in-memory Catalog for the set of index
structure(s) that match the context CM . If this set is null,
we proceed with the next incoming microblog. Otherwise,
we extract the set of keywords W from M and insert each
keyword in W to the index structure(s) that it belongs to
(Section V-B). (3) Reorganizing the updated index structure(s),
if needed (Section V-C).

A. Step 1: Insertion in Raw Storage

For each incoming microblog, GARNET will keep the
microblog inside its in-memory raw storage. This is an append-
only heap storage where the microblogs are ordered based
on their arrival time. This raw storage serves three pur-
poses: (1) Supporting queries asking for non-indexed context.
(2) Even for those microblogs that match an existing index,

we would still need to insert them in the raw storage. It may
happen later that the index is dropped, so, we would still need
to have the microblogs stored in our raw storage. (3) A newly
created index will need to be bulk loaded first. The contents of
the initial bulk loading will be retrieved from this raw storage,
along with its corresponding disk-resident one.

B. Step 2: Updating CAT Index Statistics

We start this step by consulting the in-memory Catalog to
get the set of index structures I that match the context CM of
the incoming microblog M . If I ends up to be an empty set,
we simply skip the rest of this step as well as the next step,
and just proceed to process the next incoming microblog. If I
is a non-empty set, we insert each keyword w extracted from
M into each index in I.

The insertion of a keyword w to an index I goes though
the following four steps: (1) We locate the grid cell C in the
context layer of I that corresponds to the context values CM

of M . (2) We insert w in the Keyword Frequency Map of the
active node of C. If there is already an entry for w there, we
just increase its counter wfreq , otherwise, we add a new entry
for w with the counter wfreq set to one. (3) We calculate the
trending value wtrend of w using Equation 1, and store it in
the Keyword Frequency Map. This will require consulting the
N in-memory inactive nodes that are just before the current
active node in C. If there are less than N such in-memory
nodes, we will need to encounter a disk access to retrieve
intermediate node(s) for computing the trending function. This
is why GARNET strives to make sure that there are at least
N+1 in-memory nodes available for each in-memory index
cell. Ensuring so will guarantee that there is no need to have
any disk access to compute the trending value for any incoming
microblog. (4) We check if the insertion of w needs to update
the top-k frequent and trending keywords lists in C. We do
so by comparing wfreq and wtrend with the smallest (i.e.,
kth) values in the top-k frequent and trending lists, kf and
kt, respectively. If wfreq (wtrend) is smaller than kf (kt), we
do not do any update, otherwise, we remove the kth entry
from the frequent (trending) list, and insert w to the frequent
(trending) list, ordered by its wfreq (wtrend) value.

C. Index Reorganization

Recall that all temporal nodes in the temporal index layer
are of fixed granularity, e.g., one hour. So, when a new fixed
time interval starts, e.g., on the top of the hour, we do the
following three reorganization steps for each in-memory CAT
index structure: (1) We create a new empty active temporal
node for each grid cell in the context layer of each in-memory
CAT index. (2) We mark all the previously active ones as
inactive nodes, which means that their temporal domain is con-
cluded and their statistical tables cannot be updated any more.
(3) We run a storage optimization technique with the objective
of minimizing the size of the Keyword Frequency Map without
losing much in the ability of answering frequent and trending
queries with high accuracy. In particular, we employ the Lossy
Counting Algorithm [15] to proactively remove keywords that
have low frequency under certain percentile threshold ǫ of
the total frequency of the keyword frequency map, where ǫ
is a system parameter that has a small positive fraction, e.g.,
ǫ = 0.0001. With the skewed nature of keywords distribution

in microblogs, we are able to save up to 94% of storage while
maintaining 90%+ frequent query accuracy and 85%+ trending
query accuracy. Such optimization is very important as it
allows us to store more inactive nodes in memory, and hence
much less need to have disk access either for supporting new
incoming microblogs or for answering frequent and trending
queries.

VI. FLUSHING MODULE

This section discusses the flushing module of Figure 1,
which is triggered on two events: (1) Every hour to flush
the in-memory raw storage and (2) Once the memory is
full to flush part of the in-memory CAT index structures to
their corresponding disk index structures. The hourly flushing
process appends the contents of the in-memory raw storage
to the in-disk raw storage, and then wipe the in-memory one.
The purpose is to leave room for newly incoming microblogs.
The reason for doing so on an hourly basis is that raw
microblogs consume a large portion of the memory storage.
Yet, it would be more effectively having the memory consumed
by more CAT index structures. Hence, we limit the size of
the raw storage to only the set of microblogs coming within
one hour. Meanwhile, we let the CAT index structures grow
in memory as much as possible. Once the memory is all
consumed, we decide to flush a percentage B% of the in-
memory contents consumed by the index structures, where B
is a system parameter. The index flushing process goes through
three steps, described below in Sections VI-A to VI-C.

A. Step 1: Selecting Victim Nodes

The objective of this step is select a set of in-memory
temporal nodes with a total size of at least B% to flush to the
corresponding disk index. Our choice goes towards keeping
N+1 nodes (one active and N inactive) in each grid cell in
each in-memory CAT index, and flush the rest to the disk
storage. The rationale here is that new incoming microblog
need to consult N inactive nodes to compute its trending value.
So, having less than N+1 in-memory nodes will result in a disk
access for each new incoming microblog. However, if flushing
these nodes did not make it to the required B%, we have
no options other than going for more valuable nodes that are
within the first N+1. In this case, we start flushing from the
index structures that have least recent arrived microblogs one
by one till we reach the desired ratio of B%.

B. Step 2: Flushing Victim Nodes to Disk-Resident Index

This step flushes the selected nodes from Step 1 to their
corresponding disk structures. In general, there are two cases:

Case 1: The finest temporal granularity of the disk index is
the same as in-memory index (i.e., one hour). In this case, we
will concatenate the flushed nodes in each gird cell of the in-
memory CAT index to the finest level of the temporal tree for
each corresponding grid cell of the disk-resident CAT index.
We would then need to label the disk nodes. Assume that after
this flushing, there are still V nodes in memory for a certain
grid cell. If V is more than N , then all the disk nodes are
marked as archived. Otherwise, we mark the first N + 1− V
nodes in disk as intermediate as we would need their values
to calculate the trending score of new incoming microblogs.

Case 2: The finest temporal granularity of the disk index is
higher than the in-memory index. In this case, we aggregate
all keyword frequency maps of the victims for each cell. Then,
we combine the aggregated values to the leaf in-disk active
node(s), along with updating the corresponding top-k frequent
and trending keywords lists. If the flushed content starts a
new active node on the leaf level of the disk-resident CAT
index, e.g., a new day, we will mark the old active node as
intermediate node as well as updating the N th intermediate
node to an archived one.

C. Step 3: Proactive Vs. Lazy Update of Disk Parent Nodes

Once we update the finest temporal granularity of the
disk index structure, we need to propagate all the changes
to the higher levels of the temporal tree. We can do so in a
proactive mode, which means recursively updating all parent
nodes of any newly flushed node, along with all the statistics.
This ensures the full accuracy of the in-disk index structure.
However, it comes with a high cost of disk updates with every
flushing process. As a result, GARNET leans to updating the
contents of the parent nodes in a lazy/on-demand mode. In
this mode, we do not do any updates for the parent nodes
during the flushing process. This means that the parent nodes
may not be accurate by the flushing time. The information
of such inaccurate nodes will be updated either: (1) Lazy.
When the time period of the right-most parent active node is
concluded, we aggregate all the information from its children.
(2) On-demand. When a query triggers the computation of
top-k lists in the node, we compute it in an ad-hoc way, and
materialize the answer in the node’s tables.

The proactive and lazy/on-demand modes result in a trade-
off between the insertion efficiency (hence, the digestion rate)
and the query efficiency. The lazy mode is much more efficient
in insertion time as we insert in less number of nodes.
Meanwhile, the lazy mode may encounter extra time to process
top-k frequent and trending queries of the parent active nodes
that are not updated yet. Yet, such queries will encounter slow
response time only on their first time. Since the tables in
the parent active node are also updated on-demand, a second
issuing of a query on a parent active node would have much
better performance.

VII. QUERY PROCESSING

This section discusses the query processor module of
Figure 1. As mentioned earlier, GARNET supports two types
of trending queries, namely context-aware trending queries and
reverse context-aware trending queries.

A. Context-Aware Trending Query

The query processing module in GARNET receives fre-
quent/trending queries on the form: “Find top-k frequent /
trending keywords within an arbitrary current / recent/ past
time window of fixed granularity T according to a certain
context C”. Accordingly, the first thing we do is to consult the
in-memory Catalog to check if there is already a corresponding
CAT index structure for the query context C. With a careful
system adminstration of GARNET, we expect that most queries
will find a corresponding index. It is the responsibility of
GARNET system administrator to decide on what are the set of

context attributes that most queries are asking about. For this
set of context attributes, the system administrator should build
a corresponding CAT index, as discussed in Section IV.

For those queries with matching index, we will check the
temporal constraint of the query T to see if the query answer
can be all generated from memory, disk, or both of them. In
general, T is of a fixed granularity, e.g., a specific hour, day,
month, or year. So, there must be a corresponding temporal
node NT for T that resides in either an in-memory or an in-
disk CAT index structure. Based on the status of NT , we have
the following four cases: (1) NT is in memory, (2) NT is an
intermediate disk node, (3) NT is an archived disk node, and
(4) NT is an active disk node.

In the first three cases, we just retrieve the materialized
answer for the query form either the top-k frequent or top-
k trending list of node NT based on whether the query is
a frequent or trending query, respectively. In the fourth case
(NT is an active disk node), we first need to compute the
query answer from disk, then, add to it the answer from
aggregating all memory contents. The rationale here is that the
temporal range covered by any active node must include the
current timing, which does exist only in in-memory contents
and not flushed yet to the disk storage. Computing part of the
answer from disk depends on the update mode we have used in
Section VI-C. In case we are deploying a proactive flushing
mode, getting part of the answer from disk is as simple as
retrieving it from the materialized top-k lists. In case we are
deploying a lazy mode, we would need to aggregate the answer
from the children nodes of NT as it is not materialized there
yet. Once computing this part of the answer, we store it in NT

for future queries.

In the unfavorable (and unlikely) case that there is no
matching index for context C, we will need to generate
the query answer from the raw microblogs sorted in either
memory, disk, or both. If T is this hour, we answer the query
from memory. If T is greater than the current hour but includes
current hour, e.g. today, we will scan both in-memory and
disk-resident raw storage to get the answer. Note that the disk-
resident storage is ordered temporally in chunks of hours. So,
we will only scan the part we need from it. If T is beyond
any current time slot, we just retrieve the answer only from
the disk storage by directly reading the corresponding part of
the answer from the raw disk storage.

B. Reverse Context-Aware Trending Query

The query processing module in GARNET receives reverse
frequent/trending queries on the form:”In which context C that
a keyword w is frequent / trending within an arbitrary current
/ recent / past time window of fixed granularity T ?” Similar
to answering context-aware trending query in the previous
subsection, the first thing we do is to consult the in-memory
Catalog to check if there is a corresponding index structure
for the query context C.

For those queries with a matching index, we will check
the temporal constraint of the query T to see if the query
answer can be all generated from memory, disk, or both. This
check results in the same four cases as the previous subsection.
However, rather than having one corresponding temporal node
from one grid cell, we will end up having a set of temporal

nodes that match T , as: NT1, NT2, · · ·, NTm, where m is the
number of grid cells in the index that match C. We do so as
we will need to scan over all the top-k frequent/trending lists
for all these nodes to find the node NTi with highest value
for keyword w. The query answer is the context values for
node NTi. There is one caveat here. Since we only keep up
to k frequent/trending keywords in each node, the keyword w
might not be available within the index. In this case, we will
inform the user that the keyword w is not among the top-k
frequent/trending keywords anywhere. Then, we ask the user
whether he/she wants GARNET to scan the raw microblogs to
get at which context w was most frequent/trending even though
it is not among the top-k. If needed then, we will have to get
the answer in an expensive way by consulting the raw storage
as in the case of having no matching index.

In the unlikely case that there is no matching index for the
context C, we will need to generate the query answer from the
raw microblogs. Similarly, rather than finding the keyword that
has the highest frequency/trending, we will check whether the
keyword w has appeared in each raw microblog that has the
same matching context as the query and stores the combination
of the context attributes in a sorted list. Then, GARNET will
return the combination of context attributes from the first entry
of the sorted list.

VIII. EXPERIMENTS

In this section, we evaluate the performance and scalability
of GARNET in answering different types of queries. To the
best of our knowledge, GARNET is the first system that
supports generic context-aware queries on microblogs. Thus,
there is no direct competitors to compare its performance with.
However, we compare our performance in answering both
location-aware top-k frequent queries and reverse frequent
queries to AFIA [24]. We limit our comparison with AFIA
to these queries as AFIA does not support answering trending
queries. All experiments presented in this section are based
on real Twitter data that is collected from Twitter Streaming
APIs from January 2015 to May 2015. Our dataset consists
of 1.1+ Billion tweets that consumes 1TB of disk storage
altogether with each tweet’s attributes. Tweets are preprocessed
to associate a set of keywords with each data record. We
generated a synthetic query workload which consists of values
that are randomly selected from the pool of available context.
Unless mentioned otherwise, we set the parameters of the
indexes: k and N to 100 and 3, respectively. All experiments
run on a single machine with Intel Quad-Core with CPU
3.40GHz, one thread per core, and 16GB of RAM running
64-bit Ubuntu 14.04. We will first show the scalability of the
index structures in GARNET in Section VIII-B. This includes
the index digestion rate of incoming microblogs as well as
the flushing performance of both proactive and lazy modes.
We then evaluate the performance of GARNET in answering
different types of queries in Section VIII-B.

A. Index Evaluation

To evaluate the scalability of the index structures in
GARNET, we use two measurements; digestion rate and num-
ber of hour nodes per grid cell in the in-memory CAT index.

https://dev.twitter.com/streaming/

 0

 200

 400

 600

 800

 1000

1 2 4 8

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

Inserted Index per Microblog

6000/second
12000/second
24000/second
48000/second

(a) GARNET Memory Digest Rate

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5

In
s
e
rt

io
n
 T

im
e
 (

s
)

N

2 In-Memory Nodes/Cell
3 In-Memory Nodes/Cell
4 In-Memory Nodes/Cell

(b) GARNET Disk Digest Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4

F
lu

s
h
in

g
 O

v
e
rh

e
a
d
 (

s
)

N

Lazy Mode
Proactive Mode

(c) Flushing Overhead

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8

N
o
.
H

o
u
r

N
o
d
e
s
/C

e
ll

No. Index Structures

5 Grids/Index
10 Grids/Index
20 Grids/Index

(d) No. of Hour Nodes in Memory

Fig. 4. Index Scalability Evaluation

A higher number of hour nodes in memory will reduce the
number of disk accesses since it allows more queries to be
answered from memory. We evaluate the index performance
and scalability in GARNET using eight index structures with
20 attribute combination (i.e, grid cells) each.

In Figure 4(a), the number of index structures that a new
microblog will be inserted to is varied from 1 to 8. The
experiment is run for various microblog arrival rates from 6K
to 48K per second (typical Twitter rate is 6K tweets/second).
In this experiment, we assume that all required nodes for
the insertion are available in the memory (one active node
and N inactive nodes). We first buffer one-second-worth of
microblogs in the memory, then insert these microblogs into
different number of index structures. If GARNET is able to
insert these buffered microblogs in less than one second, which
includes inserting each keyword to the Keyword Frequency
Map and updating both top-k Frequent and Trending Lists,
then GARNET is able to handle the digestion rate of that
amount of buffered microblogs per second. From the figure,
we can see that GARNET is able to handle 8× the number of
the regular Twitter rate by inserting 48,000 microblogs to 8
different index structures in less than one second. This shows
the scalability of CAT index digestion rate in GARNET.

In Figure 4(b), the parameter N that represents that number
of prior nodes needed to compute the trending function is
varied from 1 to 5. The experiment is run with three different
values of m as the number of in-memory available nodes for
each gird cell in the context index layer. In this experiment,
we use the Twitter rate of 6K microblogs/second with 4
index structures to be inserted per microblog. When N > m,
GARNET needs to fetch (N − m + 1) node(s) from the
in-disk CAT index in order to calculate the TTrend of the
incoming microblogs. This results in a slower insertion rate
in Figure 4(b) compared to Figure 4(a). However, even with
fetching one node in every cell of each index from the in-disk
CAT index, GARNET is still able to manage the incoming rate
of Twitter’s microblogs by inserting those microblogs in less
than one second.

Figure 4(c) compares the overhead of using different
flushing policies discussed in Section VI-C, i.e., lazy and
proactive modes, for each grid cell of in-memory CAT indexes.
In the lazy mode, the flushing will only affects the smallest
granularity of its index in the disk and lets the updates on the
other levels of its temporal tree index be updated in a deferred
manner. On the other hand, the proactive mode will update all
levels of the temporal tree (day, month, and year) when the
flushing happens. This results in a higher overhead flushing
time for the proactive mode compared to the lazy mode. The

figure also shows that the flushing overhead is relatively stable
with different values of N , which is approximately 900 ms for
the proactive mode and 60 ms for the lazy mode. The reason
is that GARNET loads the N Keyword Frequency Maps into
the memory once for the whole flushing period.

Figure 4(d) shows the number of hour nodes in each
cell of the in-memory CAT index at a certain point of time
over different numbers of index structures as well as different
numbers of grid cells per index. A higher number of hour
nodes in each cell of the index will result in a higher hit ratio
for the index block residing in memory. Note that the number
of hour nodes in the in-memory CAT index structures is also
determined by the total number of grid cells from all index
structures. With 16GB of memory and N = 3, GARNET is
able to answer TTrend on four index structures with ten grid
cells per index without accessing the disk-resident CAT index
structures. From this point onward, we will use four index
structures for subsequent experiments, allowing approximately
4.5 most recent hours to be covered in memory with ten grid
cells/index.

B. Query Performance Evaluation

We evaluate the query response time of answering fre-
quent/trending queries in GARNET by retrieving the answer
directly from either the in-memory or in-disk CAT index.
Figure 5(a) compares the query response time of the CAT
index built in GARNET with the ad-hoc query evaluation using
non-indexed files (Scan). We use four index structures with
different number of grid cells per index g (5, 10, or 20
cells per index). With 16GB of memory, g = 5 contains
approximately nine hour nodes in each cell in memory while
g = 10 and g = 20 contain four and two hour nodes in
each cell, respectively. This explains the immediate increase
in query response time from 0.3 ms to 2 ms for g = 10
when the query time point is more than four hours and
g = 20 in more than two hours. The increase is a result from
the requirement of retrieving the result from the materialized
answer inside the in-disk CAT index. With g = 5, the increase
of response time happens when the time point of the query
is more than nine hours, which is not shown in the figure.
For the non-supported-index (Scan), only raw microblogs from
the most recent hour are stored in the memory and the rest
of the microblogs will be stored in the disk storage to have
more memory space available for the index structures. Thus,
scanning raw microblogs from the most recent hour data to
get the top-k frequent keywords within the last hour can be
done in-memory within 827 ms without accessing a disk.
However, if the query contains a temporal value that is older
than the most recent hour, answering the query will introduce

 0.1

 1

 10

 100

 1000

1 2 3 4 5

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Hours Recency

5 Grids/Index
10 Grids/Index
20 Grids/Index

Scan

(a) Frequent Query Response Time

 0.1

 1

 10

 100

 1000

1 2 3 4 5

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Hours Recency

5 Grids/Index
10 Grids/Index
20 Grids/Index

Scan

(b) Trending Query Response Time

 0

 50

 100

 150

 200

2 3 4

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

N

Proactive Mode
Lazy Mode

(c) Flushing Based Query Latency

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 20

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Number of Grids

In-Memory Query
In-Disk Query

(d) Reverse Query Response Time

Fig. 5. Query Performance Evaluation

an overhead of finding the corresponding hour block from the
disk before scanning is performed which results in 1,130 ms
query response time. Finding the corresponding hour block is
done using a binary search. This is the main reason of the
slight increase in the Scan’s response time for queries on data
that is older than one hour. In general, using index structures
in GARNET significantly reduces the query response time of
frequent queries by approximately three orders of magnitude.

Figure 5(b) shows that trending query response time gives
a similar conclusion as the frequent query response time.
However, it is noticeable that the non-indexed scan results in
higher latency in trending queries compared to the frequent
queries (approximately 3,000 ms query response time). The
reason is that the trending query evaluation requires additional
calculations as it checks the growth of a keyword’s frequency
over time rather than its frequency in a single point of time.
This is not the case for the indexed options with GARNET as
both frequent and trending keywords are materialized within
the index nodes. In general, for both frequent and trending
queries, using index structures significantly reduces the query
response time for trending queries by up to four orders of
magnitude depending on the residence of the data.

Figure 5(c) shows the trade-off between proactive and lazy
flushing modes in supporting incoming queries. In general, if
the incoming query is requesting data that is completely either
in memory or in disk, there will be no difference between the
two flushing modes as the answer is either already materialized
in disk or will need to be computed in-memory for both modes
anyway. The only way to show the difference is to trigger a
query in which the answer is generated by aggregating both
in-memory and disk-resident CAT index data, i.e., a query that
asks for top-k frequent/trending keywords today / this month /
this year. In this case, using proactive mode within the flushing
module will result in a better query response time compared
to the lazy mode. For each query, the query response time is
roughly 20 ms better when using the proactive mode compared
to the lazy mode for both frequent and trending queries.

We also evaluate the reverse query performance in GARNET
with an increasing number of grid cells. Note that, the reverse
query performance highly depends on the number of grid cells
(context) since the reverse query requires finding a keyword in
every cell of the context index layer. An example of a reverse
query used in this experiment is: ”In which language and age
group is the keyword love the most trending in January 2015”.
Figure 5(d) compares the response time in answering a reverse
query when the cells are stored in memory to when the cells
are stored in a disk storage.

In general, answering a reverse trending query from mem-

ory has an average query response time of 1 ms. When the cells
are stored in a disk, however, the response time of different
number of cells increases significantly due to a high number of
I/O cost from disk accesses. With 5, 10, and 20 grid cells, the
query response time is 10 ms, 20 ms, and 38 ms, respectively.
We omit the response time of answering reverse queries from
non-indexed files since the number of grid cells does not affect
the performance of the Scan. Answering reverse queries with
non-indexed files will result in the same response time for
both frequent and trending queries because the non-indexed
files require a scan to be performed for all microblogs that
correspond on the time constraint.

Figure 6 compares the query response time between
GARNET and AFIA [24] for both location-aware frequent
queries (Figure 6(a)) and reverse location-aware frequent
queries (Figure 6(b)). For these experiments, we create a
location-aware CAT index with different numbers of grid cells
which divides the world into n × n grids with equal size.
Both queries are executed from the in-memory index structures
since AFIA stores all its content in the memory. For the
materialized data that is stored in a disk, we first load the
data into the memory and start the evaluation in memory.
Thus, we do not include the overhead of loading the data from
disk to memory in our evaluation. We limit our comparison
to frequent queries due to the limitation of AFIA which is
not able to answer trending queries. Figure 6(a) compares
the response time between GARNET and AFIA in answering
frequent queries with a time granularity of day over different
numbers of k. GARNET is able to answer such frequent queries
in 0.3 ms which is more than 3× faster than AFIA (1 ms).
The main reason is that AFIA extends SpaceSaving algorithm
which requires aggregation over a set of summaries when
answering frequent queries with high time granularity. On the
contrary, GARNET has the materialized answer of frequent
keywords available in each grid. Thus, GARNET is able to
outperform AFIA in answering location-aware top-k frequent
queries. From the figure, we can also see that the query
response time does not depend on the value of k for both
GARNET and AFIA which is a result of materializing the
answer for both techniques.

We also evaluate the performance of reverse queries be-
tween GARNET and AFIA in Figure 6(b). As mentioned earlier,
to answer reverse queries, we need to scan through all possible
grid cells and output the context that is most popular among
all locations for the requested keyword. This applies to both
GARNET and AFIA. Thus, a higher number of grid cells result
in a higher query response time for both techniques. In this
experiment, we used queries with different time granularity:
day and month. The query response time of GARNET is stable

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

k

GARNET Frequent
AFIA

(a) Query Response Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

10x10 40x40 70x70 100x100

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Number of Grids

GARNET Day & Month
AFIA Day

AFIA Month

(b) Reverse Query Response Time

Fig. 6. GARNETvs AFIA [24]

at 0.3-9.4 ms for any time granularity since we materialize the
top-k frequent keywords in every level of the temporal tree.
Thus, accessing any level of the temporal tree in GARNET

requires the same amount of effort. On the contrary, with
a coarser temporal granularity, each grid in AFIA contains
more summaries. Hence, AFIA encounters more overhead in
the combining operations which increases the response time
significantly with query response time of 21.75-95 ms for day
and 132-1,000 ms for month.

IX. RELATED WORK

Discovering trending items has been extensively studied
in the literature of streaming data [2], [5], [6], [11], [15],
[17], where the main focus was to discover items with highest
frequency either since the beginning of the stream [5], [15],
[17] or over a time sliding window [2], [6], [11]. However, all
these techniques have two main limitations that hinder their
applicability to microblogs applications. First, they mainly
process continuous queries, which is the dominant type of
queries in data streams. This is unlike queries on microblogs
where snapshot queries are highly important. Second, they
mostly focus on finding frequent items rather than trending
items, while the notion of trend discovery is important and
has several applications in microblogs [1], [14], [21].

To address these two limitations, a whole literature of trend
discovery in microblogs have been proposed [3], [4], [16], [24],
[30]. Table 7 classifies these techniques based on their temporal
horizon, query type, and context type. With the importance of
real-time microblogs, all existing techniques are optimized to
support recent time horizons, either as a sliding time window
of last T time units or as a time interval within the recent time
horizon. Regarding query types, existing techniques address
either frequent or trending items discovery, based on the
supported application. Event detection applications [1], [3],
[9], [14], [16], [20], [21], [29], however, are more focused
on grouping several trending keywords together to report an
event rather than focusing on the scalability and performance
of retrieving trending keywords. Thus, these applications are
orthogonal to our work in a way that GARNET can use one
of these techniques in order to report an event based on the
returned trending keywords.

With recent importance of location information on mi-
croblogs, recent existing techniques [4], [24] are tailored
to support location-aware queries. Geoscope [4] answers a
different type of trending queries, called geo-correlated trend-
ing queries, which returns top-k trending keywords that are
trending only at a certain predefined location and not at other
locations. On the other hand, AFIA [24] returns top-k frequent

Fig. 7. Frequent/Trending Items in Microblogs: Event Detection [1], [3], [9],
[14], [16], [20], [21], [29]; GeoScope [4]; AFIA [24]

keywords at different locations in recent time interval. How-
ever, AFIA is only able to answer frequent keywords queries
and is not geared towards answering trending queries. The
reason is that AFIA uses extended SpaceSaving algorithm in
retrieving their top-k frequent keywords in which the technique
will remove keywords other than the top-k frequent keywords.
These removed keywords, however, will be used in order to
calculate and find the top-k trending keywords in microblogs.

GARNET distinguishes itself from all existing techniques
in the four main aspects: (1) GARNET is the first to address
queries within arbitrary context on arbitrary attributes. All
existing techniques either support no context or only support
the location context. (2) GARNET supports queries on arbitrary
time points with fixed granularity. Hence, arbitrarily old data
can still be queried, for example, to support social media
analysis for the past few months. (3) GARNET is the first
to support discovering both frequent and trending items in
the same system. Existing work cannot be adapted to answer
both types of queries simultaneously. (4) Overall, GARNET is
a system solution that acts as a one-stop solution for a myriad
of various frequent and trending queries on microblogs. It is
more appealing to industry and more practical to be realized.
Contrast GARNET approach to the case of realizing tens of
various algorithms within one system to be able to support
various forms of trending queries.

X. CONCLUSION

In this paper, we presented GARNET; a holistic sys-
tem equipped with one-stop efficient and scalable solu-
tion for supporting a generic form of context-aware trend-
ing keywords queries on microblogs on the form: ”Find
top-k frequent/trending keywords within an arbitrary cur-
rent/recent/past time window of fixed granularity according
to a certain context”. Unlike all previous attempts, GARNET
supports both frequent and trending queries, any arbitrary time
interval and having a set of arbitrary filters over contextual
attributes. This makes GARNET a very appealing solution for
industry. From a system point of view, one needs to realize
GARNET once in the system, then, a myriad of various forms
of trending and frequent queries are immediately supported
efficiently. This is in contrast to realizing tens of various algo-
rithms to be able to support various forms of trending queries.
GARNET employs in-memory and disk-resident Context-Aware
Temporal (CAT) index structure as infrastructure to materialize
top-k frequent and trending keywords within certain com-
binations of arbitrary context and time granularity. Similar
to database management systems (DBMSs), GARNET allows
its user to create/drop CAT indexes on demand to tune its

performance depending on incoming context-aware trending
queries workloads. Experimental studies are done by deploying
a real system prototype of GARNET and using billions of
real microblogs data from Twitter. The experiments show that
GARNET is able to digest up to 8× the Twitter rate with eight
different index structures and is capable to provide up to 0.3
miliseconds of query response time in answering both top-k
frequent and top-k trending queries of any given point of time.

REFERENCES

[1] H. Abdelhaq, C. Sengstock, and M. Gertz, “Eventweet: Online localized
event detection from twitter,” PVLDB, vol. 6, no. 12, pp. 1326–1329,
2013.

[2] A. Arasu and G. S. Manku, “Approximate counts and quantiles over
sliding windows,” in SIGMOD, 2004, pp. 286–296.

[3] H. Becker, M. Naaman, and L. Gravano, “Beyond trending topics: Real-
world event identification on twitter.” ICWSM, vol. 11, pp. 438–441,
2011.

[4] C. Budak, T. Georgiou, D. Agrawal, and A. E. Abbadi, “GeoScope:
Online Detection of Geo-Correlated Information Trends in Social Net-
works,” in PVLDB, 2014.

[5] G. Cormode and M. Hadjieleftheriou, “Finding Frequent Items in Data
Streams,” in PVLDB, 2008.

[6] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream
statistics over sliding windows,” SICOMP, vol. 31, no. 6, pp. 1794–
1813, 2002.

[7] “Domo,” https://www.domo.com/solution/twitter-reporting-dashboard.

[8] “Facebook statistics.” https://www.facebook.com/business/
power-of-advertising.

[9] W. Feng, J. Han, J. Wang, C. Aggarwal, and J. Huang, “STREAM-
CUBE: Hierarchical Spatio-temporal Hashtag Clustering for Event
Exploration over the Twitter Stream,” in ICDE, 2015.

[10] V. Gaede and O. Günther, “Multidimensional Access Methods,” ACM

Computing Surveys, vol. 30, no. 2, pp. 170–231, 1998.

[11] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro,
“Identifying frequent items in sliding windows over on-line packet
streams,” in SIGCOMM on Internet Measurement Conference, 2003,
pp. 173–178.

[12] A. Guttman, R-tree: a dynamic index structure for spatial searching.
ACM, 1984, vol. 14, no. 2.

[13] J. F. Kenney and E. S. Keeping, Mathematics of Statistics, Part 1, 3rd ed.
van Nostrand, 1962, ch. 15, pp. 252–285.

[14] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang, “Tedas: A twitter-
based event detection and analysis system,” in ICDE, 2012, pp. 1273–
1276.

[15] G. S. Manku and R. Motwani, “Approximate Frequency Counts Over
Data Streams,” in PVLDB, 2002.

[16] M. Mathioudakis and N. Koudas, “TwitterMonitor: Trend Detection
over the Twitter Stream,” in SIGMOD, 2010.

[17] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in ICDT. Springer,
2005, pp. 398–412.

[18] A. Mislove, S. Lehmann, Y.-Y. Ahn, J.-P. Onnela, and J. N. Rosenquist,
“Understanding the demographics of twitter users.” ICWSM, vol. 11, p.
5th, 2011.

[19] B. O’Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith,
“From tweets to polls: Linking text sentiment to public opinion time
series.” ICWSM, vol. 11, no. 122-129, pp. 1–2, 2010.

[20] N. Pervin, F. Fang, A. Datta, K. Dutta, and D. Vandermeer, “Fast,
scalable, and context-sensitive detection of trending topics in microblog
post streams,” TMIS, vol. 3, no. 4, Jan. 2013.

[21] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
real-time event detection by social sensors,” in WWW, 2010, pp. 851–
860.

[22] H. Samet and R. E. Webber, “Storing a collection of polygons using
quadtrees,” TOG, vol. 4, no. 3, pp. 182–222, 1985.

[23] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling, “Twitterstand: news in tweets,” in SIGSPATIAL, 2009, pp.
42–51.

[24] A. Skovsgaard, D. Sidlauskas, and C. S. Jensen, “Scalable Top-k Spatio-
Temporal Term Querying,” in ICDE, 2014.

[25] B. E. Teitler, M. D. Lieberman, D. Panozzo, J. Sankaranarayanan,
H. Samet, and J. Sperling, “Newsstand: A new view on news,” in
SIGSPATIAL, 2008, p. 18.

[26] “Twitter statistics.” https://about.twitter.com/company.

[27] “Twitter,” https://twitter.com/.

[28] “Unifiedsocial,” www.unifiedsocial.com/.

[29] M. Walther and M. Kaisser, “Geo-spatial event detection in the twitter
stream,” in Advances in Information Retrieval, ser. Lecture Notes
in Computer Science, P. Serdyukov, P. Braslavski, S. Kuznetsov,
J. Kamps, S. Rüger, E. Agichtein, I. Segalovich, and E. Yilmaz, Eds.
Springer Berlin Heidelberg, 2013, vol. 7814, pp. 356–367. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-36973-5 30

[30] J. Weng and B.-S. Lee, “Event detection in twitter.” ICWSM, vol. 11,
pp. 401–408, 2011.

APPENDIX

A. TREND LINES IN GARNET

GARNET uses statistical linear regression slope to measure
the trendiness of a certain keyword. The following Lemma de-
rives the equation that determines the trendiness of a keyword:
Lemma 1: Given a keyword consecutive frequencies vector f
= [f0, f1,..., fN], the keyword trend line can be estimated with
the following formula:

Ttrend =

∑N

i=1[i× (fi − f0)]

N(N + 1)(2N + 1)
(1)

Proof: The simple linear regression slope Ttrend of x and y
is given with the following equation:

Ttrend =
Mean(xy)

Mean(x2)
(2)

Where Mean(x) is the average value of the vector and xy is a
vector that results from value-wise multiplication of the vectors
x and y. In GARNET, the vector x values are always constants
while the vector y contains the frequencies of a keyword W .
Thus values of vector x are always be [1, 2, 3, ..., N] while
values of vector y are [f1, f2, f3, ..., fN]. Thus, Mean(x2) can

be simplified as
(N+1)(2N+1)

6 respectively. On the other hand,

Mean(xy) can be calculated as

∑
N

i=1
i×fi

N
. Substitutes both

variables to Equation 1:

Ttrend =

∑
N

i=1
i×fi

N

(N+1)(2N+1)
6

=
6
∑N

i=1 i × fi

n(n+ 1)(2n+ 1)
(3)

The equation above assumes that the measurement is used
from the start of the stream and each keyword W starts from
frequency 0. However, in GARNET, we need to consider the
start position of a keyword W by using the previous frequency,
namely f0. Thus, the equation above can be modified to:

Ttrend =
6
∑N

i=1[i× (fi − f0)]

N(N + 1)(2N + 1)
(4)

