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Abstract—Remote sensing data collected by satellites are now
made publicly available by several space agencies. This data is
very useful for scientists pursuing research in several applications
including climate change, desertification, and land use change.
The benefit of this data comes from its richness as it provides
an archived history for over 15 years of satellite observations
for natural phenomena such as temperature and vegetation.
Unfortunately, the use of such data is very limited due to the
huge size of archives (> 500TB) and the limited capabilities
of traditional applications. This paper introduces SHAHED; a
MapReduce-based system for querying, visualizing, and mining
large scale satellite data. SHAHED considers both the spatial
and temporal aspects of the data to provide efficient query
processing at large scale. The core of SHAHED is composed
of four main components. The uncertainty component recovers
missing data in the input which comes from cloud coverage
and satellite mis-alignment. The indexing component provides
a novel multi-resolution quad-tree-based spatio-temporal index
structure, which indexes satellite data efficiently with minimal
space overhead. The querying component answers selection and
aggregate queries in real-time using the constructed index.
Finally, the visualization component uses MapReduce programs
to generate heat map images and videos for user queries. A set
of experiments running on a live system deployed on a cluster
of machines show the efficiency of the proposed design. All the
features supported by SHAHED are made accessible through an
easy to use web interface that hides the complexity of the system
and provides a nice user experience.

I. INTRODUCTION

Several space agencies such as National Aeronautics and

Space Administration (NASA) [1] and European Space

Agency (ESA) [2] collect enormous amounts of remote sens-

ing data using satellites that continuously orbit the earth. For

example, the Land Process Distributed Active Archive Center

(LP DAAC) provided by NASA contains more than 500TB

of data and is increasing on a daily basis [3]. This archive

contains historical satellite data of a dozen of natural phenom-

ena including temperature, vegetation, surface reflectance, and

thermal anomalies, for every 250 square meter2 for the whole

1This work was done while these two authors were visiting the GIS
Technology Innovation Center in Umm AlQura University and is supported
by the center under project GISTIC-13-05

2Some datasets have a lower resolution with data for every one KM2

world over the last 15 years. The archive is updated on a

daily basis with newly collected data. Such archive is very

useful and is actually being used by meteorologists and other

scientists in several important applications, including detection

of desertification [4], studies of land cover change [5], under-

standing ocean dynamics [6], and more generally in climate

informatics [7] as well as in various governmental initiatives

about climate change, e.g., see [8]–[10].

Although they are very useful, the huge size of such archives

makes it hard for scientists and researchers to use. As a result,

all prior research analysis attempts are either done offline

(i.e., query response time may take hours or days) or based

on a very small sample of the whole archive. A standard

way to use the LP DAAC archive is to go through a web

interface (e.g., Reverb [11]) in which the user provides some

selection criteria including spatio-temporal predicates. Then,

a list of files that match this selection criteria is returned.

Such web interface methods are not efficient for many queries.

For example, a simple selection query such as “What is the

daily temperature of a specific location in the year of 2013?”

would select 365 files which contain around 500 million points

with a total download size of 2GB. All this data will need

to be processed to select only 365 points that provide the

query answer. What is even more challenging here is that

the data returned from these files may be missing important

information either because of the satellites misalignment or

because the reading area was covered by clouds at the time

the image is taken. Hence to answer such query, data has

to be cleaned first on-the-fly before responding to the query.

Such challenges and overhead make it very hard to use such

available rich satellite data.

In this paper, we present SHAHED; a system that lays

out the necessary infrastructure to query, mine, and visualize

big spatio-temporal satellite data. In particular, SHAHED

downloads its data on a daily basis from the LP DAAC

archive, resolves its data uncertainty, and locally indexes

the downloaded data, making it ready for querying, mining,

and visualization. SHAHED had to face two contradicting

challenges; the need to process large-scale satellite data (in

order of tens of tera bytes) and the need to provide real-



time query response time. Large-scale data processing calls

for relying on a MapReduce-based environment to allow an

elastic computing environment that employs a large number

of computational nodes. Meanwhile, real-time query response

calls for not using such MapReduce environments due to their

overhead in initiating job requests. Generally, MapReduce

environments are made for batch queries rather than online

queries. As a result, SHAHED deploys SpatialHadoop [12], a

MapReduce framework for spatial data, for all of its offline

functionality, which is needed to build rich and powerful index

structures. Then, a separate query engine is used to retrieve the

answer from the already built index structures without going

through any MapReduce environment.

SHAHED is divided into two main sets of components; data

interface and user interface components. The data interface is

basically a background process that wakes up once everyday

(e.g., at midnight) to download newly added data from NASA

LP DAAC archive. Then, it triggers the execution of the fol-

lowing two consecutive modules: (1) The uncertainty handling

module, which goes through the downloaded data to fill in

the missing information. This is done by developing a two-

dimensional smoothing technique over missing information.

For efficient uncertainty processing, we use SpatialHadoop

to scale up this module. (2) The indexing module, which

takes the cleaned data from the uncertainty handling module,

builds a spatial index for this data (using SpatialHadoop),

and appends this new index to the current list of available

spatial index structures in a way that forms a global spatio-

temporal index over all available satellite data. In addition to

being triggered daily, the indexing module is also triggered

monthly and yearly, to combine the set of daily and monthly

indexes into one bigger spatial index structure that covers data

for a whole month and year, respectively. This is still done

within the main spatio-temporal index structures maintained

by SHAHED indexing module.

The user interface of SHAHED receives three kinds of

requests from its users, namely, querying, mining, and visual-

ization requests. Each request goes to a corresponding module.

Hence, the user interface of SHAHED is composed of three

main module, querying, mining, and visualization. In this pa-

per, we focus and discuss only the querying and visualization

modules, while the miningmodule is out of scope of this paper.

The queryingmodule supports two kinds of queries: (1) spatio-

temporal selection queries, where users can request a set of

values (e.g., temperature or vegetation) for a certain spatial

region over a certain temporal interval, and (2) spatio-temporal

aggregate queries, which is similar to selection queries, yet

we report the aggregate (e.g., average or maximum) of all

the values within the specified spatio-temporal range. For

higher efficiency, the querying module does not go through

SpatialHadoop. Instead, it has its own separate query engine

that returns the query answer efficiently in an interactive

real-time response time; something that cannot be provided

should we go with a MapReduce environment. This is achieved

by exploiting the spatio-temporal index structure, built and

maintained by the indexing module.

The visualization module supports two main functionality:

(1) spatio-temporal heat maps, where users can request to

generate a sequence of heat maps of certain values (e.g.,

temperature or vegetation) for a certain spatial region and

over a certain temporal period. The sequence of heat maps are

returned as a set of images as well as an animated video. This

is a very important and needed functionality by meteorologists

as they need to visualize the change of behavior over a certain

temporal period, (2) multi-level spatial heat maps, where users

can request a single multi-level heat map for a certain time

instance over a certain spatial region. Such multi-level heat

map allows the user to zoom in and out within the picture to

get either lower or higher resolution heat maps in an interactive

way, which is another important functionality requested by

meteorologists. Unlike the querying module, the visualization

module is not interactive. Instead, it works as a web service,

where users submit their requests through a nicely designed

web interface. Once a request is submitted, SHAHED exploits

its index structure to retrieve the required data while generating

the requested heat maps. Once this process is done, an email

is sent to the user as a notification that the request is finished

with a link to download the requested data. The time to satisfy

a request heavily depends on the size of the area covered by

the request and the length of the temporal period. Requests

with large areas (e.g., the whole world) over a long time

period (e.g., a whole year) may take an hour or so to satisfy.

That is still acceptable as usually such requests do not need

real-time response. This also allows us to comfortably use

SpatialHadoop to scale up the heat map generation.

Our reported experience and use of SHAHED show that it is

a very efficient system with a wide use. In terms of execution

time, the uncertainty and indexing modules run as background

processes triggered periodically. The process usually takes up

to few minutes, and it does not affect the query performance.

In the mean time, spatio-temporal selection and aggregate

queries within the querying module are all supported with a

real-time response time. This is mainly due to the fact that

they have their own path to exploit the already built spatio-

temporal index structure. Finally, generating a heat map within

the visualization module may take up to few minutes. For

example, we have generated a single heat map for the whole

world (using 450 Million points) in less than three minutes

using a cluster of only four quad-core machines. Such numbers

show the scalability, efficiency, and usability of SHAHED

system.

The rest of this paper is organized as follows. Section II

gives a background overview of NASA satellite data. The

system overview of SHAHED is presented in Section III. The

uncertainty, indexing, querying, and visualization modules are

described in Sections IV, V, VI, and VII, respectively. In

Section VIII, we report experimental numbers from our use

of SHAHED. The web interface of SHAHED is highlighted

in Section IX. Finally, Section X concludes the paper.



II. BACKGROUND

The Land Process Distributed Active Archive Center (LP

DAAC) [3] stores historical satellite data of a dozen of

natural phenomena including temperature, vegetation, surface

reflectance, and thermal anomalies. This section gives a nec-

essary background of such data archive.

A. Structure and Format of the LP DAAC Archive

The LP DAAC archive is organized in a hierarchical struc-

ture that makes it easy to locate files by dataset, time, and

location. Figure 1 illustrates the structure of files in the LP

DAAC archive organized in four levels. In the first level, files

are organized by their data sets, where each data set is stored

in a separate directory (e.g., temperature or vegetation). In the

second level, each data set is temporally partitioned in daily

partitions, each stored in a separate directory named by the

day of this snapshot. In the third level, data in each snapshot

is partitioned using a uniform grid over the whole globe. Each

grid tile is identified by its two-dimensional coordinate in the

grid, e.g., h21v06 represents the cell in column 21 and row 6.

In the fourth level, each file contains a two-dimensional array

of numbers, which represent the values (e.g., temperatures)

for each point in the given region and time. Files are of the

Hierarchical Data Format (HDF), which is a binary format

where readings are arranged in a two-dimensional array that

covers the associated tile. The size of the array is either

1200 × 1200, 2400 × 2400, or 4800 × 4800 depending on

the resolution of the data set, where each value in the array

represents an area of size 1000 × 1000m, 500 × 500m, and

250× 250m, respectively.

The coordinates of each value in the array are not explicitly

stored, but it can be computed using the sinusoidal projection

as follows: Given the temperature data set where each tile is of

size 1200×1200 and a point in tile h21v06 at the position (100,
100) in the two-dimensional array. To compute its latitude and

longitude coordinates, we first calculate the point location in

the sinusoidal space as: x = 21 + 100/1200 and y = 6 +
100/1200. Then, the latitude and longitude are computed as:

lat = (9− y)× 10 and lon = (x− 18)× 10× cos(lat). The
same equations can be reversed to compute the position of a

point in a file given a latitude and longitude offsets.

B. Data Retrieval from LP DAAC Archive

With its current hierarchical organization, LP DAAC pro-

vides a simple way to retrieve a certain value given the type

of the data set, a temporal range, and a spatial range. First,

the list of directories is scanned to locate the directory of the

requested dataset type. Then, the directories are kept sorted

by time and the given time range is translated to a range of

directories to access. Finally, in the third level of the hierarchy,

a two-dimensional grid index is constructed on the fly, which

makes it easy and efficient to select the files that match the

user specified spatial range. To build the spatial grid index,

each tile has to be assigned a spatial range according to the

tile identifier (e.g., h21v06). The spatial range is calculated

using the sinusoidal projection, described in Section II-A.
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Fig. 1. Structure of LP DAAC archive

Unfortunately, such straightforward method is extremely

inefficient when selecting a large set of data as this requires

reading large number of files as described in an example in

Section I. It is also inefficient when reading a single value as

an on-the-fly index will be built while a large file is retrieved

just to get a single value. Such inefficiency makes it hard for

scientists to access such valuable archive. This becomes our

main motivation to develop SHAHED to make such valuable

archive easily accessible to scientists.

C. Data Uncertainty in LP DAAC Archive

A main challenge in processing NASA LP DAAC files

is the data uncertainty imposed by missing values. Missing

values are mainly a result of one of the following four reasons:

(1) Data in regions outside the earth. Depending on the angle

in which the image was taken by the satellite, part of this

image might be outside earth. This type of missing values can

be detected when a point is converted from sinusoidal space

to latitude-longitude space as it produces an invalid longitude

value, i.e., less than -180 or larger than 180. (2) The specified

data set is available only for land (e.g., land temperature) while

the missing point is located in a water area (e.g., ocean). This

type of missing data is detected by imposing a water mask and

detecting points that fall within water areas. The water mask

is provided by NASA as a set of HDF files at the highest

available resolution, i.e., 250× 250 meters. (3) Mis-alignment

of satellites results in uncovered sharp strip areas of the earth.

The strips may cover different areas of the globe based on earth

and satellite movements. (4) The satellites were not able to

read values of certain areas as it was covered by the clouds at

the time of taking the snapshot. All missing values of the four

above types are marked in the LP DAAC files by a special (fill)

value. These missing values should be handled and cleaned

to avoid any incorrect computations. In SHAHED, we do so

by skipping the values of the first two types as they are truly

irrelevant and should be missing, while we clean the data from

the last two types using SHAHED uncertainty module.
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III. OVERVIEW

Figure 2 gives an overview of SHAHED system architec-

ture, which consists of four main modules, namely, uncer-

tainty, indexing, querying, and visualization, described below:

The uncertainty module. This module is triggered on a daily

basis to clean the newly downloaded daily data from NASA

LP DAAC archive. The objective is to estimate and recover

the missing values of the satellite data that emerge either

from satellite mis-alignment or cloud coverage. To do so, the

uncertainty module employs a two-dimensional interpolation

function that smooths out the missing values within the two-

dimensional space. More details are described in Section IV.

The indexing module. This module employs a novel multi-

resolution spatio-temporal index for efficient data indexing and

retrieval. It is triggered by two events: (1) The end of the

uncertainty module, where the new cleaned data is added to

the current spatio-temporal index structure, and (2) Periodic

monthly and yearly execution to compact the index structure.

More details are described in Section V.

The querying module. This module receives spatio-temporal

selection and aggregate queries from SHAHED users. Then, it

exploits the spatio-temporal index structure with early pruning

techniques to return the requested answer. More details are

described in Section VI.

The visualization module. This module runs on top of the

querying module to generate snapshot, multi-resolution, or

animated heat maps based on a user query request. It employs

novel visualization techniques that scale up the image gener-

ation process using the underlying MapReduce environment.

More details are described in Section VII.

SHAHED also has one more module, namely, mining mod-

ule which is not depicted in Figure 2, though it should lie

between the querying and visualization modules. The mining

module supports more complex and analysis queries, e.g.,

“find any outliers in a specific area over a certain range of

time”, or “Given a set of dates and areas of past earthquakes,

find out if there is a certain pattern that appears before

earthquakes”. The mining module is out of scope of this paper,

and hence we are not discussing it further, as it requires too

much space to fill in the details of mining algorithms.

SHAHED is equipped with an easy-to-use map-based web

interface layer that hides the complexity of the system through

a simple and elegant web interface that accesses all SHAHED

functionality. Details of the web interface are described in

Section IX.

(a) With missing data (b) Missing data recovered

Fig. 3. An example of hole recovery with a heat map

IV. UNCERTAINTY

This section describes the uncertainty module in SHAHED.

We start by showing the effect of uncertainty on satellite data,

then, we present our algorithm to recover such uncertain data.

A. Data Uncertainty

Figure 3 depicts the plotting of two heat maps for the same

area of Saudi Arabia on the same day. The first plotting (Fig-

ure 3(a)) relies on the raw LP DAAC data that includes a lot of

missing values, while the second plotting (Figure 3(b)) relies

on the same set of data, yet, after applying our uncertainty

recovering technique. Focusing on the figure with uncertain

data (Figure 3(a)), we can easily distinguish the effect of two

different factors: (1) blank curvy polygon areas in the middle

and top left of the figure, which is a result of areas covered by

clouds at the time of taking the satellite snapshot, and (2) a

blank sharp rectangle coming from the bottom right corner of

the figure and going close to the top of the figure, which is a

result of satellite misalignment.

B. Recovering Uncertain Data

Per Figure 3(a), it is clear that having blank areas and

missing information in satellite data significantly reduces its

usage. As a result, we have developed a simple data recovery

technique that aims to predict the missing values using a two-

dimensional interpolation function. The basic idea is to calcu-

late two estimates for each missing point, namely, x-estimate

and y-estimate, which are calculated using a traditional linear

interpolation function based on the nearest two valid points

on the same horizontal and vertical lines, respectively, as the

missing point. Then the estimated value is computed by taking

the average of the two estimates.

Figure 4 gives an example of how the two-dimensional

interpolation technique works. All cells marked with a ques-

tion mark or x represent a missing value. Empty cells are

non-relevant to this example and are omitted for clarity. The

missing value x1 is estimated by taking the average of the x-
estimate = 5×3+9×1

4
= 6 and the y-estimate = 4×2+7×1

3
= 5.

The x-estimate is computed using a traditional interpolation

function of the two values 5 and 9 with distances 1 and 3,
respectively. Similarly, the y-estimate is calculated from the

values 4 and 7 with distances 1 and 2, respectively. For x2,

there is no valid value on the same row left to it. Thus, we

compute the x-estimate as 7, as the nearest value on the same

row, which is then averaged with the y-estimate as before.
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x3 does not have a y-estimate as there are no other values

on the same column which means it is estimated using only

the x-estimate. Similarly, x4 is estimated using only the y-
estimate as there are no other values on the same row. Finally,

for x5, there are no valid values either on the same row or

column. For this special case, we compute its estimate after

x3 and x4 are estimated by taking the average of x3 and x4.

Figure 3(b) depicts the heat map after filling all missing values

using our recovery technique. This makes querying, mining,

and visualizing satellite date much beneficial.

V. SPATIO-TEMPORAL INDEXING

As discussed in Section II, the only available way to access

LP DAAC data is through using on-the-fly indexes. However,

this may end up to be very inefficient, even for simple queries.

For example, retrieving all temperature values in a specific

point over a period of 100 days would retrieve 100 files

just to read one value from each file, which is extremely

inefficient. Furthermore, aggregate queries such as computing

the average temperature over a given area will retrieve a lot

of points in this area before computing their average. To

overcome such inefficiency, we equip SHAHED with a spatio-

temporal index structure that is designed mainly to support

the main SHAHED functionality of supporting spatio-temporal

selection and aggregate queries as well as the visualization

functionality.

Figure 5 gives the layout of our spatio-temporal index

structure. The index has two orthogonal hierarchies as follows:

Temporal hierarchy. The index is organized in three temporal

layers, each representing the whole dataset using a differ-

ent temporal resolution. The lowest resolution layer contains

yearly index structures, i.e., the whole data of one year is

included in one index, while the highest resolution layer

contains daily index structures. A monthly data structure is

built only after the whole month is concluded. Similarly, the

yearly index structure is built only at the end of the year.

Hence, in Figure 5, we can see that there are 80 daily index

structures from 2014, yet, only two monthly index structures

for January and February, as the March index is not built yet.

Similarly, the 2014 index is not built yet. It is important to

note that indexes in one level are independent of indexes in

other levels, which means that data is replicated three times.

This replication is the storage overhead we choose to pay to

provide efficient query processing, as will be described later.

12 366 365...3 12 ...3 12 ...3 80

dec...jan feb dec...jan feb jan feb

2012 2013

Aggregate

Spatial Index

Yearly

Aggregate

Indexes

Monthly

Aggregate

Indexes

Daily

Aggregate

Indexes Last day

Fig. 5. Spatio-temporal aggregate index

(c)Aggregate Quad Tree(a)Grid partitioning (b)Spatial sorting

2012

Fig. 6. Aggregate spatial index

Spatial hierarchy. Figure 6 gives the details of each yearly,

monthly, or daily index structure. Each index by itself is an

aggregate spatial index in the form of an aggregate quad-

tree [13]. The lowest level of the aggregate spatial index

partitions the data spatially using a uniform grid (Figure 6(a)).

The reason we use a grid partitioning is that the data in

NASA LP DAAC archive is uniformly distributed. Then, in

each partition, the points are sorted using their respective Z-

order values within the partition (Figure 6(b)). Finally, on top

of the sorted points, we build an aggregate quad tree [13],

which can be efficiently constructed when the points are

already sorted [14]. The quad tree is prepended to the data

file to ensure they are both stored in the same machine in

HDFS. Each node in the aggregate quad tree includes a list of

aggregates, namely, sum, minimum, maximum, and count, of

all entries in its children nodes. Other aggregate values can be

derived from the cached values such as average (sum/count)
or range (maximum−minimum), and more functions can

be added such as variance or standard deviation.

When the system is deployed for the first time, the index

is bulk loaded with all data that is already available in the LP

DAAC archive. This bulk loading process starts by building all

the indexes in the daily temporal layer. Then, it builds indexes

for the larger time interval (i.e., monthly) by merging daily

indexes for all previous (i.e., completed) months. After that,

it builds yearly spatial indexes for all past years by merging

monthly spatial indexes. Once the index is bulk loaded with

all existing data, the indexing module is then called at regular

time intervals to add new daily snapshots of data as they are

added to the LP DAAC archive.

To be able to realize such indexing layout, there are three



main components that are used as building blocks to realize

the spatio-temporal indexing in SHAHED: (1) Building a stock

quad tree, which is basically, a template that will be used for

all quad trees of the same resolution. This one-time process

is done at the system start up and used throughout the system

afterward, (2) Building one daily spatial index for a new

snapshot added to the LP DAAC archive by NASA. This

component is called on a daily basis to add any newly added

snapshots, and (3) Building spatial indexes for larger time

intervals (e.g., monthly or yearly), which is done by merging

smaller indexes (e.g., daily or monthly). This component is

called regularly by the end of each month or year according to

the temporal resolution. In the rest of this section, we describe

each of these three components in details.

A. Building a Stock Quad Tree

One way to build the desired spatio-temporal index structure

over existing and newly arriving data is to scan the whole data

set; for each daily data snapshot, we (1) partition the data in a

grid structure, (2) compute the Z-order of each point, (3) sort

the points according to their Z-order value, and (4) construct

the aggregate quad tree. The main overhead here is in con-

structing the aggregate quad tree, as partitioning is already

done within the data archive itself as described in Section II,

while computing the Z-order of a point is straightforward.

However, we aim to make the index construction process more

space and time efficient by making use of the following two

properties of the data stored in tile files: (1) In each tile, the

points are uniformly distributed in the space covered by the

tile, and (2) There are only three available tile sizes, 1200,
2400, and 4800. These two properties make the quad trees

constructed on these files share a lot of similarities, which

allows us to construct stock quad trees and reuse them to

save space and time while indexing. In a one-time offline

phase, three stock quad trees are constructed for tiles of sizes

1200, 2400, and 4800. Later on, these stock trees are used

while constructing and querying tiles. Below, we describe the

structure of the stock trees, their construction process, and how

they are used to index tiles.

SHAHED constructs one quad tree for each of the three

resolutions supported by NASA, 1200, 2400 and 4800. These
quad trees are built at system start up and are kept in main

memory to use while building a quad tree index for a tile

or while querying one of the constructed indexes. To build a

stock quad tree of a specified resolution (e.g., res = 1200),
we start with a two-dimensional array of size res × res.
The values in this array are not relevant to indexing as they

represent non-spatial values such as temperature. Each value

is assigned a coordinate (x, y) equal to its position in the two-

dimensional array. This means that both x and y are integers

in the range [0, res). Using array position as coordinates has

two advantages. First, it makes it easier and straight forward

to compute Z-order values by interleaving bits from the two

integer values. Second, it generates exactly the same structure

for all tiles with the same resolution regardless of its position

on the map which allows us to reuse the stock quad tree

for all those tiles. Once coordinates are assigned to points,

their respective Z-order values are computed and the points

are sorted. While sorting the points, we keep track of the

final position in the sorted list for each entry in the original

array. This mapping is kept in a lookup table, which helps

us later while indexing actual data by mapping each value

directly to its position in the sorted array without repeating

the computation of Z-order values or the sort algorithm.

Once the points are sorted, the quad tree is constructed

based on the sorted order as described in [14]. Each node in the

quad tree is assigned a unique ID, start and end positions.

The start and end positions specify the range of values in

the sorted order covered by this node. By the properties of

the Z-curve, points covered by any node in the quad tree are

contiguous in the sorted order. We start by creating the root

node of the tree with (ID = 1, start = 0, end = res× res).
Under the root node, four children nodes are created by

partitioning the space into four quarters. The range of values

covered by the root node is divided into four partitions, one

for each child node. These partitions are found by detecting

where the two high-order bits of Z-order values change from

00 → 01 → 10 → 11. The split process is repeated for each

node as long as number of records in the node is larger than

the capacity of a leaf node (e.g., 100). When four child nodes

are created, they are assigned the IDs PID × 4 + i, where
PID is the ID of the parent node and i ∈ {0, 1, 2, 3} is the

child number. More details of the quad tree construction from

Z-curve ordered values are in [14]. Notice that the stock tree

does not hold any actual values of the input array as these

values are stored in the actual quad tree for each indexed file.

The stock quad tree contains mainly the structure of the tree

as well as the lookup table created while sorting the points by

Z-order values.

B. Building a Daily Spatial Index Structure

By the end of each day (at midnight), a background process

is triggered by SHAHED to collect all newly inserted snap-

shots from the LP DAAC archive and build a spatial index for

each one. Since the data in the archive is already partitioned

using the sinusoidal grid, the process is simplified to building

an aggregate quad tree for each tile. In this step, a tile of a

standard resolution needs to be indexed. As these indexes are

independent, this step can be done in parallel, where each tile

is processed by a different machine.

The input is a two-dimensional array V of size res× res,
where res is the resolution of the tile (e.g., 1200) and the

output is an aggregate quad tree that indexes the input values

V . The quad tree is initialized with a header that contains two

values res and c, where res is the resolution of the tree and

c is the cardinality of the tree, which indicates the number of

values stored at each location. For a newly constructed quad

tree from a daily snapshot, c is set to one. When multiple quad

trees are merged, c is updated to reflect the number of values

at each point as described later in the merge process. To build

the quad tree, we first sort these points in V according to their

Z-order values. Instead of recomputing the Z-order values and



sorting them, the lookup table of the stock quad tree with the

same resolution is fetched and used to map each point to its

position in the sorted values. Sorted values are stored in a one-

dimensional array V ′ of size res2. The sorted array is filled

in linear time by mapping each value from V to its position

in V ′ directly using the lookup table. Once the sorted array

is ready, the tree can be queried using the structure stored in

the stock quad tree, which is shared among all quad trees of

the same resolution. Since the stock quad tree is kept in main

memory, and the size of the sorted array is the same as the

original array, this quad tree index (without aggregate values)

is considered a zero-overhead index in terms of storage. It is

also very efficient because the quad tree structure is kept in

main memory.

After the values are sorted, the next step is to compute the

aggregate values in each node of the quad tree. Aggregate

values are stored in a hash table in the quad tree using node

ID as the key. To fill in this hash table, we traverse the tree

in a bottom-up manner starting with leaf nodes. For each leaf

node, the set of values stored under this node are scanned

by obtaining the start and end positions from the stock quad

tree and iterating over them in the sorted list V ′. All supported

aggregate functions are calculated in a linear time and stored

in the hash table. For non-leaf nodes, the aggregate values

of the four child nodes are obtained from the hash table and

are further aggregated to compute the aggregate values of the

parent node. This procedure is repeated until the root node

is reached. With the addition of the aggregate values, the

overhead of the index is no longer zero but is still minimal

compared to a fully structured quad tree.

C. Temporally Merging Spatial Index Structures

The constructed daily indexes are efficient for answering

selection and aggregate queries on a specific day or a small

range of few days. However, answering a selection query

over a period of one year would still be inefficient as it

requires searching 365 quad trees. To overcome this challenge,

SHAHED regularly combines these daily trees into larger

trees, where each tree covers a whole month or a year. This

process is triggered at regular intervals (i.e., monthly or yearly)

and it merges smaller trees to build a larger tree. For example,

at the end of each month, this process is triggered to combine

all daily indexes constructed for that month to form one quad

tree that covers the whole month.

The input of the merge step is a list of quad trees of

the same space (e.g., 1200 × 1200) and time (e.g., daily)

resolution, while the output is one quad tree of the same space

resolution, but lower time resolution (i.e., larger time interval)

that includes all values in all input trees. The structure of the

merged tree is the same as the input trees. This makes it easier

when further merging the output tree (e.g., monthly) into even

larger trees (e.g., yearly) using the same merge algorithm. The

header of the merged tree is initialized with a space resolution

res equals to the resolution of the input trees and a cardinality

c equal to the sum of the cardinality of all input trees. The

sorted values V ′ of the output tree is formed by merging the

values of all input trees while keeping them in time order. This

step is simple because all input lists V ′ are already sorted and

they are all of the same size. Simply, we go over all trees in a

round-robin fashion and grab one value out of the sorted values

V ′ of each tree and store it in the output. This is repeated until

all values from all trees are consumed. Notice that the memory

footprint of this algorithm is minimal as the merge step can be

done directly within the external storage. In case an input tree

has a cardinality c > 1, each iteration reads c values from this

tree instead of one value to keep the resulting values sorted

temporally. For example, if an input tree represents a 30-day

month, the 30 values are read as one block and written to

output in this order.

After the sorted list V ′ is calculated, the final step is to

compute the aggregate values in the output tree nodes. Notice

that although the output tree contains more values, it has the

same number of nodes with the same structure as all input

trees. Think of it as another tree with the same number of

records, where each record contains a list of values instead

of one value. The query processor uses the cardinality c to

determine the number of values in each record. Having the

same number of nodes with the same structure simplifies the

calculation of the aggregate values in the output tree. The

aggregate values of a node in the output tree is calculated

by aggregating all values in the corresponding nodes with the

same ID in all input nodes.

VI. QUERY PROCESSING

The spatio-temporal index introduced in SHAHED supports

two types of queries, selection and aggregate queries. In

selection queries, a set of values are returned in a given spatio-

temporal range, while in aggregate queries, only aggregate

values (e.g., average) are returned for the selected range. To

provide an interactive query answer and avoid MapReduce

overhead, both queries run on a single machine without

MapReduce.

A. Selection Queries

In spatio-temporal selection queries, the input is a spatial

rectangular range and a temporal range of dates; the answer

is all readings in the specified range. For example, find all

temperature values in Minneapolis area from Feb., 10, to

March 15, 2013. The query processing runs in three steps,

temporal filter, spatial filter, and spatial refine. (1) In the

temporal filter step, the temporal index with the lowest granu-

larity (i.e., year) is visited first, and if a partition in that level

is completely contained in the specified temporal range, this

partition is added to the selection list and the temporal range

is updated to exclude the selected partitions. This process is

then repeated on levels with higher granularity until the level

with the highest granularity is visited (i.e., daily) which is

guaranteed to cover any remaining parts in the temporal range.

(2) In the spatial filter step, the grid in each temporal partition

is used to select grid tiles that overlap the spatial range. Tiles

that are completely contained in the query range are directly

copied to output without further processing as all values in



them are in the answer, while partially overlapping tiles are

further processed in the next step. Notice that the same grid

is used in all temporal partitions which allows us to run this

step once on one grid and reuse the answer with all other

temporal partitions selected by the first step. (3) The spatial

refine step processes tiles that partially overlap query range to

select values that are inside the query range. Since each tile is

indexed using a quad tree, the quad tree is processed to select

points that satisfy the spatial range. Notice that no temporal

filtering is required because we only match temporal partitions

that are completely covered by the query range. No partially

overlapping partitions are ever selected.

To process the range query on the quad tree, we first

transform the query range from the latitude-longitude space to

the sinusoidal space in which quad trees are created, and then

run the range query on them. First, we apply the sinusoidal

projection to each dimension in the query range to transform

it to the sinusoidal space. Then, for each tile matched by the

spatial filter, the query range is clipped to the range covered

by this tile so that the clipped range is completely contained

in the tile. The clipped query range is then normalized to

the resolution of the tile such that the coordinates of the

query range are integers in the range [0, res] where res is

the resolution of the tile, res ∈ {1200, 2400, 4800}. This
normalization is done to transform the query range to the

space of the quad tree as all points in the quad tree have

coordinates in the range [0, res]. Finally, the stock quad tree

of the matching resolution is processed with a traditional range

query starting at the root and going deeper in the tree as

needed. At each node, if the minimum bounding rectangle

(MBR) of this node is completely contained in the query range,

all values under this node are returned. If the MBR of the node

partially overlaps query range and it is an internal node, the

four child nodes under this node are visited and their MBRs

are tested in the same way. Otherwise, if it partially overlaps

the query range and it is a leaf node, all points under this node

are scanned and only those in the query range are returned.

To retrieve all values in a node, the start and end positions

for this node are retrieved from the stock quad tree and the

values in the range [c×start, c×end) in the sorted values V ′

in the tree are retrieved, where c is the cardinality of the tree.

Notice that all spatial attributes are kept in the stock quad tree

which is completely stored in memory while only the non-

spatial values (e.g., temperature) are stored in the aggregate

quad tree on disk. This means that the range query is entirely

executed in the main memory and only matching values are

retrieved from disk which makes this range query algorithm

optimal in terms of the amount of data read from disk.

Since all temporal partitions selected by the temporal filter

step are indexed using the same grid and quad trees, the result

of a range query search can be reused in all temporal partitions.

In other words, the spatial range query is executed only once

on one temporal partition, and when matching values are to

be retrieved from disk on a particular tile, they are retrieved

from all quad trees built on the same spatial tile on all selected

temporal partitions.

B. Aggregate Queries

Similar to selection queries, in aggregate queries, the user

specifies a spatial and temporal range; the answer is all aggre-

gate values supported by the index for data points satisfying

the spatio-temporal range. A straightforward implementation

for this query is to run it as a post processing step after the

selection query. However, we apply a more efficient query

processing technique that makes use of the aggregate values

stored in the quad tree nodes. The query runs in three steps,

namely, temporal filtering, spatial filtering and aggregate

calculation. The first two steps are the same as the selection

query except for one difference. In spatial filtering step, all

tiles overlapping the query range are sent for further processing

in the aggregate calculation step. In other words, tiles that are

completely contained in query range are treated the same as

partially overlapping tiles.

Then, in the aggregate calculation step, the aggregate quad

tree in each selected tile is processed to compute part of the

aggregate value. For each quad tree, the query range is first

normalized as described in selection queries where range query

dimensions are in the range [0, res]. The processing starts from
the root of the corresponding stock quad tree. If a node is

completely contained in the query range, the aggregate values

of its contents are retrieved from the corresponding node in

the matching tree and accumulated to the result. Otherwise,

if a node partially overlaps the query range, its four children

nodes are checked. This process is repeated until leaf nodes are

reached. The points under a matching leaf node are scanned

and the values of points contained in the query range are

accumulated. This algorithm is much faster than retrieving all

points in the range as the aggregate values of trees or nodes

completely contained in the query range are directly retrieved

without scanning the points stored in it.

VII. VISUALIZATION

The values returned by spatio-temporal selection and ag-

gregate queries need to be visualized for overview, analysis,

and comparisons. This section describes how the results of

the queries are visualized as heat maps. SHAHED supports

three output formats, static images that represent a heat map

of a selected dataset on a user-specified date, videos that

visualize the changes of a dataset over a date range specified

by the user, and multi-level images which represent a heat

map for a specified date at different zoom levels allowing

the user to navigate using pan, zoom, and fly-to interactions.

The generation of both static images and videos is described

in Section VII-A while multi-level images are described in

Section VII-B.

A. Heat Map Images and Videos

Figure 8 shows an example of a heat map for temperature

on a selected date generated by SHAHED and visualized

on Google Earth. SHAHED can also generate a sequence of

images where each image represents a heat map of a day in a

selected date range. This sequence can be combined in a video



Fig. 7. A heat map of temperature in the whole world generated by SHAHED

Fig. 8. Heat map of temperature viewed on Google Earth

to show the change of values over time 1. The generated heat

maps give an overall picture of value distribution and can be

included in a report or a presentation. A heat map is generated

as a static image using a MapReduce program described below.

A video is generated as a sequence of images each representing

a heat map on each day and then these images are combined

to make a video.

The heat map visualization operation takes as input a

dataset, a specified date, a spatial range as a rectangle, and

a size of generated image as width and height in pixels. The

output is an image of the specified size, which represents the

heatmap for the specified area. The visualization operation

works in three steps, selection, tile draw, and overlay steps. In

the selection step, the archive is accessed to select grid cells

that overlap with the query area. Each tile is assigned to a

machine which becomes responsible of drawing this part of

the heat map in the second step. In the tile draw step, each

1Please refer to an example at http://youtu.be/hHrOSVAaak8

machine takes a tile and generates a heat map for the data in

this tile. It starts by creating an image of size width×height
pixels initialized with a transparent background. Then, points

are read one-by-one and each point is plotted as a rectangle

that represents the area it covers according to the resolution

of the data (e.g., 1km× 1km). The color of the rectangle is

selected from the spectrum of all colors according to the value

of the associated point where the minimum possible value is

colored blue and the maximum possible value is colored red. If

multiple points map to the same pixel in the generated image,

the average of their values is taken to smooth the image.

If the recover option is enabled in the uncertainty module

(Section IV), missing values are automatically recovered as

the input files are read so that the image becomes complete.

The output of the tile draw step is a set of images all of the

same size and each one representing part of the heat map for

one tile. Finally, the overlay step overlays all the generated

images on top of each other to generate the final picture.

Since each machine plots part of the image and leaves other

parts transparent, overlaying images on top of each other will

generate the correct final picture. Along with the generated

image, SHAHED also produces a KML file which allows

the heat map to be displayed in a GIS software such as

Google Earth as depicted in Figure 8. For video generation,

multiple MapReduce jobs are executed by SHAHED each

corresponding to one day in the range. Upon completion of all

these jobs, a final call to a video generator is made to combine

all images together in one video.

Figure 7 shows an example of a heat map of the temperature

on April 8th, 2014 for the whole world generated from more

than 300 files containing around 450 Million points. The

resolution of this image is about 8000×4000 pixels and it took
around five minutes to generate on a cluster of four nodes. All

missing data is recovered in this image to give a smooth image

that covers all land areas.



Fig. 9. A multi-level heat map displayed on Google Maps

B. Multi-level Heat Maps

In addition to generating heat maps as images or videos,

SHAHED is also capable of generating multi-level interactive

heat maps where users can navigate through a map of the

world and visualize the heat map of the visible area interac-

tively using the standard navigation options, pan, zoom, and

fly-to. Figure 9 shows an example of a multi-level heat map

displayed as a layer on top of Google Maps. The main idea

behind interactive heat maps is to precompute the heat maps

for all regions and zoom levels. As the user navigates through

the map, the system just picks from these precomputed heat

map images and display them on the map. The challenge here

is to generate all these images efficiently using MapReduce.

The multi-level heat map operation takes as input a dataset,

a specific date, a spatial range, and number of zoom levels as

integer value. The output is a set of images which represent

heat maps at all supported zoom levels and regions in the

specified spatial range. Figure 10 gives an example of a multi-

level heat map generated at three zoom levels. Each image is

of size 256 × 256 pixels and covers a different region based

on its position in the pyramid. For example, the image at the

top of the pyramid represents the whole range at the lowest

zoom level. In level 1, the same area is represented by four

images each of size 256× 256 and so on. The operation runs

in three steps, selection, partition, and plot. In the selection

step, a spatio-temporal selection query is executed against the

spatio-temporal index to retrieve all points in the user-specified

range. Selected points are sent to the second step for further

processing. In the partition step, a map function running in

parallel on all machines scans the selected points and replicates

each one to all overlapping pyramid tiles. Figure 10 illustrates

an example where a point p is replicated to three tiles, one in

each zoom level. Finally, in the plot step, each reducer takes

a pyramid tile ID and all points in this tile and it plots an

image of size 256× 256 pixels which represents the heat map

in the corresponding area. The heat map is generated exactly

the same as described earlier in Section VII-A. The generated

image is directly stored in the output folder with the naming

convention tile-i-x-y.png where i is the zoom level,

(x, y) is the position of this tile in the grid at zoom level i.
The above algorithm works fine, but it has a major drawback

Level 0

Level 1

Level 2

py

x

Fig. 10. Pyramid of images generated for interactive heat map

at higher levels of the pyramid. Since the tiles at higher levels

in the pyramid cover larger regions, there will be more points

replicated to these tiles. As an extreme case, the tile at the top

level covers the whole space (e.g., the whole world), which

means all points in the whole world will be replicated to this

tile. For some queries where the selection area is very large,

the set of selected points might contain several billions of

points that should be plotted as a heat map by the machine

that is assigned to the top of the pyramid. The processing of

that tile might be prohibitively large. At the same time, this

processing is unnecessary for two reasons. (1) Usually, images

at higher levels of the pyramid do not have to be accurate as

they just give a general picture. (2) The amount of details that

a single image can contain is limited by number of pixels in

it which is around 256× 256 ≈ 64K pixels.

To overcome such unnecessary overhead, we introduce an

optimization to the above algorithm to be more efficient

without losing much of the output quality. In the partition

step, instead of blindly replicating each point to all overlapping

tiles, we adopt an adaptive sampling technique that only writes

a random sample of points to higher levels of the pyramid.

Each point is replicated to each tile with a probability that

is calculated adaptively based on the zoom level. The goal

is to make the expected number of points in each tile equal

to number of pixels in the generated image. This makes

the load more balanced as each tile is expected to contain

the same number of points regardless of its zoom level. To

accomplish this goal, a point is replicated to a tile at level

i with a probability αi = α0.min{1, T 2

|P |/4i }, where α0 is

the base sampling factor described below, T is the edge size

of a tile in pixels (i.e., 256) and |P | is the total number

of points in the user specified spatial range which can be

easily calculated since data is uniformly distributed and the

spatial density is known beforehand. The term |P |/4i gives

the number of points covered by one tile at level i, assuming

data in uniformly distributed. The adaptive sampling factor

α0 is a system parameter that can be adjusted to increase the

quality of generated heat maps for this algorithm. The default

value of α0 is one and it can be increased to increase number

of sampled points. If more than one point are sampled and

they map to the sample image pixel, their values are averaged

to produce smoother looking images with higher quality.
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Fig. 11. Performance Experiments

VIII. EXPERIMENTS

In this section, we report the performance of SHAHED as it

is running live on a small cluster of five machines (one master

and four slaves). This cluster has Hadoop 1.2.1 and Spatial-

Hadoop 2.2 deployed on it and running on Ubuntu 12.04. All

machines have 16GB of memory, 2TB hard disk and a quad

core processor which gives a total of 16 processing cores.

Unless mentioned otherwise, we use the temperature dataset

(MYD11A1 V005), which is collected daily at 1200 × 1200
resolution.

Figure 11(a) reports both building time and memory usage

when building the stock quad trees. The system contains only

three quad trees of resolutions 1200, 2400, and 4800. As

shown in figure, it takes only a few seconds to build the stock

quad tree and the memory consumption is at most 100MB for

the largest one. Most of this processing and memory overhead

are directly resulting from the computation of Z-order values

and keeping the lookup table which maps each item to its

sorted index. This overhead is paid once when the system

starts up and is used to save computation and disk overhead

when building aggregate quad trees.

Figure 11(b) gives the time and storage overhead for build-

ing the aggregate quad tree. The disk and time overhead

shown in the figure result mainly from the computation of

the aggregate functions as sorting is done in linear time and

does not involve any comparisons. By contrasting the two

figures, we could get rough estimates of the processing and

disk savings, which result from the use of stock quad trees.

For example, for building a single quad tree, we save about six

seconds for computing Z-order values and sorting them, which

is shown in Figure 11(a). In addition, for an aggregate quad

tree of resolution 4800, storing the tree structure of the tree

would cost roughly the same as storing aggregate values as it

consists of a few numbers attached to each node. Given that

the LP DAAC archive contains millions of tiles, the stock quad

tree would save tera bytes of storage and thousands of hours

of indexing time. The performance of the merge component,

which merges a list of aggregate quad trees, is basically the

time required to read the input files and write them back after

merging, and is omitted for space limitation.

Figure 11(c) gives the performance of a selection query

for a single point over time intervals of 1, 30, 100, and

365 days. This figure compares the performance of the naive

implementation which runs directly on non-indexed HDF files,

with the performance of SHAHED which uses our spatio-

temporal index. It is clear that the naive solution does not

scale at all because it needs to open a different file to obtain

each point in the query range. The performance of SHAHED is

almost constant as all the points in the answer are contained in

only few files due to the spatio-temporal index which packs

data in monthly and yearly indexes. Aggregate queries save

even more time when compared to the naive algorithm as we

make use of the precomputed aggregate values but the results

are omitted for space limitation.

Figure 11(d) gives the performance of the visualization

component when generating static images of heat maps at

different sizes. In this figure, we vary the area size by choosing

four areas that cover a city, a country, a continent, and the

whole world with areas of size 0.0002%, 0.6%, 10%, and

100%, respectively. For each one, a MapReduce job is run to

generate the image and the end-to-end time is measured. This

figure shows the great scalability of the visualization algorithm

where it generates a heat map for the whole world in about 200

seconds without using the uncertainty module. It also shows

the efficiency of the uncertainty module where the overhead is

less than 50% when compared to visualization. Generating a

video involves generating a list of static images and combining

the result with a video converter.

IX. WEB INTERFACE

SHAHED has a simple and interactive interface (depicted

in Figure 12) that is easily accessible to end users from any

web browser and provides access to all its functionality. The

main area of the interface is occupied by a map which allows

the user to easily navigate to any place either through pan

and zoom or typing the place name to fly there directly.

There is also a dataset selector that allows users to choose

any dataset from the ones available in the NASA archives,

e.g., temperature or vegetation. A temporal range can be set

either by explicitly typing the start and end date or by using

a slide control to set the requested time interval. Clicking the

‘Overlay Data’ check box adds an interactive heat map layer

for the selected dataset on top of the current view, which can

be navigated in a way similar to Google Maps. Finally, the

user can click on one of the two ‘generate’ buttons to generate

either an image or a video for the heat map of the selected

region and time interval. In addition, the user can also choose

an option to specify a spatio-temporal selection along with a

dataset and the system will visualize the results as graphs for

easy analysis and comparison. The details of each of these

functionality is described below.

A. Spatio-temporal Queries

The user interface accepts spatio-temporal queries from the

user and uses the spatio-temporal index described in Section V



Fig. 12. Web interface

to answer these queries. In Figure 13, two points are selected.

Then, for each selected point, a spatio-temporal selection

query retrieves all values of the selected dataset (temperature)

in the selected time interval and results are visualized in form

of graphs. The interface also allows the user to select a range

rather than a single point and an aggregate query on the

selected area is executed.

B. Image/Video Generation

SHAHED provide the functionality to export a static image

or a video that which represent the heat map in the specified

region and time interval. For images, the user selects a dataset,

specifies a region on the map, a date on the calendar, and an

email address. SHAHED accepts these parameters and issues

a MapReduce job in the back end which generates an image

according to the specified user request. Upon completion of

the job, the output is sent to the user as an email containing a

link to download the requested image as both a static image

and a KML file, which allows this image to be displayed on a

GIS software such as Google Earth. For video generation, the

user specifies all the previous information but a time interval

is provided rather than one specific date. SHAHED runs a

batch of MapReduce jobs, where each job generates a heat

map for one day in the specified time interval. Once all jobs

are completed, a call is made to a video generator to combine

all generated images in a video that is finally sent to the user

as a link to download on the specified email address.

C. Multi-level Heat Maps

Other than generating images and videos, SHAHED also

allows users to browse the heat maps directly from the browser.

Once the ‘Overlay Data’ check box is checked, a new layer

is added to the map, which shows the interactive heat map

of the current selected dataset and date. For the interactive

heat map to be displayed, we precompute all heat maps of all

regions and times of interest which allows the web interface

to provide a smooth and interactive browsing experience for

users. As the map view is changed, the browser automatically

loads the set of images that cover the current view according to

the zoom level and displayed region. For areas or times where

the system does not have precomputed heat maps, users can

still issue an export command which works with the raw data

and generates the required heat map accordingly.

Fig. 13. Compare the temperature at two points

X. CONCLUSION

We presented SHAHED; a MapReduce-based system for

querying, mining, and visualizing large scale satellite data.

We have focused only on the querying and visualization func-

tionality. SHAHED is composed of four main components:

Uncertainty to recover missing data from satellite images,

indexing that provides a novel spatio-temporal index structure

for satellite data, querying to answer selection and aggregate

spatio-temporal queries in real-time, and visualization that

generates heat map images and videos for user queries. SHA-

HED is equipped with an easy-to-use web interface that grant

users access to all its functionality. Reported experimental

numbers from SHAHED shows it great scalability, efficiency,

and usability.
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