
GeoRank: An Efficient Location-Aware
News Feed Ranking System∗

Jie Bao1 Mohamed F. Mokbel2
1 2Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA

2 KACST GIS Technology Innovation Center, Umm Al-Qura University, Makkah, Saudi Arabia
{baojie, mokbel}@cs.umn.edu

ABSTRACT
News feed function becomes very popular in many social network-
ing services and news aggregators, as it delivers the messages from
users’ subscribed sources. More recently, location has been intro-
duced to the news feed function, which returns the news items rel-
evant to the user’s location. However, with the large number of the
news items generated by the sources, existing news feed systems
opt to return the top-k most recent ones, which completely over-
looks the messages’ spatial relevance and may end up in missing
more geographically close ones. In this paper, we present Geo-
Rank, an efficient location-aware news feed ranking system that
provides top-k new feeds based on (a) spatial proximity, (b) tem-
poral proximity, and (c) user preferences. GeoRank encapsu-
lates spatio-temporal pruning techniques to improve its response
time and efficiency. GeoRank is composed of two main modules,
namely, query processor and message updater. The query proces-
sor module is triggered by the user, upon logging on to the system,
to provide the top-k ranked location-based news feeds. The mes-
sage updater module is a process running in the background, which
keeps maintaining statistics used by the query processor module.
Extensive experimental results, based on real and synthetic data
sets, show the scalability and efficiency of GeoRank.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Algorithms

Keywords
location-based social networks, location-based services

1. INTRODUCTION
Social networking services, e.g., Twitter and Facebook, and

news aggregators, like iGoogle and MyYahoo!, have become one

∗This work is supported in part by the National Science Foun-
dation, USA, under Grants IIS-0952977 and IIS-1218168 and by
KACST GIS Technology Innovation Center at Umm Al-Qura Uni-
versity, Makkah, Saudi Arabia.
Permission to make digital or hard copies of all or part of this work for per-
sonal or class room use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org
ACM SIGSPATIAL GIS’13 November 5-8, 2013. Orlando, Florida, USA
Copyright (c) 2013 ACM ISBN 978-1-4503-2521-9/13/11 ...$15.00.

of the most popular web services. One of their main function-
alities is the news feeds [1], where users can receive news items
posted from their subscribed sources, e.g., friends or news sources
of interest. With the widely usage of location information, many
news items are now associated with geographical information, e.g.,
geo-tagged photos or check-ins. As a consequence, the news feed
also becomes location-aware [2, 3], where the news items in the
news feed are not only from the subscribed sources, but also rele-
vant to the user’s location. However, due to (a) the large number
of the relevant news items generated by the users’ sources/friends
and (b) the limited screen viewing capability, a user may not be in-
terested in all the relevant messages. For example, a desktop user
may be interested in the top-50 news items, while a mobile user
may be only interested in the top-10 news items. As a result, the
existing news feed systems [1, 2, 3] opt to return only the top-k
most recent ones. However, with such strict temporal order, a user
may end up missing very relevant news items that are very close
to the user location, yet, they are not very recent. Moreover, dif-
ferent users may have different tastes for the relevant news items:
traveling users may interested in the nearby messages, while sta-
tionary users may interested in the recent messages. Thus, there is
a strong motivation calling for a new way to produce more “person-
alized” location-aware news feeds for the user, which include the
top-k most relevant news items considering a user’s preference.

In this paper, we present GeoRank, an efficient location-aware
news feed ranking system, which produces the news feed based on
a ranking function considering: (a) the temporal proximity, where
more recent news items are favored, (b) the spatial proximity be-
tween the location of the news items and the user, where closer
news items are favored, and (c) a user defined preference parameter
0 ≤ u.ω ≤ 1, which reflects the relative importance of the tempo-
ral and spatial proximity. For example, a traveling user may set a
smaller u.ω to get more geographically close news items, while a
stationary user may set a higher u.ω to include more recent ones.

The goal of GeoRank can be abstracted as an aggregated top-k
query from multiple input lists (i.e., the news sources) based on a
ranking function. One way to realize the GeoRank is to retrieve the
top-k most relevant news items from each of the subscribed news
sources and perform a global top-k selection afterwards. However,
this approach is extremely inefficient and may introduce signifi-
cant response delay, because: (1) retrieving the top-k most relevant
news items from each news source can be costly, especially when
it possesses a large number of news items; and (2) a user may have
subscribed to many sources (e.g., a typical user in Facebook fol-
lows 150 friends [4]), which results in evaluating a large number
of top-k most relevant news items queries. As users may issue the
news feed request repeatedly over the time, the user response time
and the system efficiency are the main concerns. To this end, Geo-

Rank avoids such costly approach by injecting the ranking function
deep inside the news feed system. GeoRank employs spatial and
temporal pruning techniques that not only avoid retrieving the mes-
sages that will not make it to the top-k news feed result, but also
avoid evaluating the top-k queries to the news sources who will not
contribute any messages to the news feed. In that way, GeoRank
significantly reduces the user response time and system overhead.

Although injecting a top-k ranking function inside of query op-
erations, especially those operations that read data from different
lists, is a well studied problem (e.g., see [5] for a survey), unfor-
tunately, existing techniques are not applicable to our problem due
to the following four main reasons: (1) Most existing top-k tech-
niques require that input lists are sorted on the attribute that con-
tributes to the ranking function. Such requirement is not applicable
to our case, as a news source will be subscribed by many users who
want to get the news feed at different location. It is not possible
to provide an universal ranked spatial order in advance. (2) Ex-
isting techniques focus on addressing one top-k query at a time.
GeoRank is different, where each user in the social network poses
a unique location-aware news feed query to multiple news sources
upon logging on to GeoRank. So, different users may retrieve news
items for the same input lists. Thus, GeoRank has the opportunity
to exploit optimization and indexing techniques that will be shared
by all users. (3) Existing techniques have the implicit assumption
that number of items in the result (i.e., k) is significantly higher
than the number of input lists, which could be only two or three
lists. The environment, where GeoRank is applied, exhibits a com-
pletely opposite behavior, where a typical value of k could be 30
or 50, while the number of input lists has an average value of 150,
e.g., the number of friends for an average Facebook user. Such
property gives the room for different spatial and temporal pruning
techniques. And (4) Most of the existing top-k techniques overlook
the updates in the input list, where the input lists are static. How-
ever, in the GeoRannk, the news sources may update new messages
continuously, where an efficient updating algorithm is also needed.

GeoRank consists of two main modules, namely, the GeoRank
query processor and the GeoRank message updater. GeoRank
query processor is mainly responsible for producing the top-k
ranked location-aware news items. GeoRank query processor em-
ploys a two-stage pruning technique. On the first stage, the query
processor module prunes those news sources (or friends) that will
never contribute any news item to the news feed. On the second
stage, the query processor module exploits spatial and temporal
pruning techniques to avoid evaluating all the news items from each
candidate news source, i.e., the sources that are not pruned from the
first stage. The key for effective pruning techniques in the query
processor module is the availability of pre-computed statistics that
are well maintained for each user, while the user is offline.

On the other side, GeoRank message updater module does not
really contribute to the answer of any top-k news feed requests.
Instead, it is a background process with the sole responsibility of
maintaining the set of pre-computed statistics used later by query
processor module in all its pruning techniques. In a nutshell, Geo-
Rank encounters a system overhead through its message updater
module in continuously maintaining a set of statistics for each user.
However, this offline system overhead is amortized by the savings
in online query response time for each user’s news feed request.
GeoRank message updater module is mostly triggered by each sub-
mitted new message to check if it will affect any of the existing pre-
computed statistics. The efficiency of the message updater module
stems out from its ability to smartly point out those statistics that
will be affected by every new message submitted to the system.
Another trigger for the GeoRank message updater module is that

the user follows a new source, where the message updater module
will initialize the statistics for the relationship.

Extensive experimental results based on real data sets crawled
from Twitter show the efficiency and scalability of GeoRank, along
with the effectiveness of its pruning and optimization techniques
used in both its query processor or message updater modules.

The rest of the paper is organized as follows: Section 2 high-
lights the related work. Section 3 presents preliminaries in Geo-
Rank. Section 4 gives an overview of the system. The details of
GeoRank major modules, query processor and message updater
are presented in Sections 5 and 6, respectively. Experimental re-
sults are given in Seciton7. Finally, Section 8 concludes the paper.

2. RELATED WORK
This section highlights the related work to GeoRank in three

main areas: (1) News ranking/news feed systems, (2) Efficient eval-
uation of top-k queries, and (3) Answer quality in top-k queries.
News ranking/news feed systems. Most of the existing news rank-
ing systems, e.g., [6, 7], ranks the news by matching the content
with the user’s profile. Other systems, e.g., [8, 9], keep tracking
of the users’ clicking behaviors. Most recently, location informa-
tion has drawn a significant attention in generating more relevant
news, e.g., [10, 11], or enabling the location tagging, e.g., [12, 13].
Moreover, MobiFeed [14] provides the relevant news items based
a user’s predicated traveling path. However, these technique can-
not be adapted in GeoRank directly, because all the above tech-
niques assume the users are interested in the news items from all
the sources. GeoRank, on the other hand, allows the users to get
their news feed from the subscribed news sources.

To incorporate with the social awareness, news feed systems [1]
have been proposed, whereas location-aware news feed systems [2,
3] further introduce the spatial relevance. However, these existing
news feed systems limit their result as the most recent ones. At
the same time, because of its important, several commercial prod-
ucts have also appeared to provide news feed services. However,
none of them provides the similar service as GeoRank. For ex-
ample, Facebook Places consider the location as just an additional
tag, where their users get the same news feed regardless of user
locations. FourSquare can only provide a view for the geo-tagged
messages issued in a nearby venue, yet nothing about ranking the
results based on a spatio-temporal function. GeoRank, on the other
side, provides the users with a personalized top-k most relevant
messages, considering both spatial and temporal proximity.
Efficient evaluation of top-k queries. The top-k query evaluation
has been well studied in the literature, e.g., see [5, 15, 16, 17, 18].
All algorithms present extensions or variations from the famous
TA algorithm that retrieves objects from a set of input lists, each
ordered based on one attribute contributing to the overall ranking
function [15, 16]. More recent algorithms have focused on sup-
porting top-k queries on streaming environment and continuous
queries, e.g., [19]. As mentioned in the previous section, existing
algorithms are not applicable to GeoRank: (1) input lists have to be
ordered on a contributing attribute to the ranking function. It is not
a valid assumption in GeoRank, whereas the users issue news feed
requests from different locations; (2) a top-k query is evaluated in
an ad-hoc basis, which is not the case in GeoRank. Although the
users issue news feed request for a unique set of sources, there are
many cases they may share a part of sources [20]. Thus, shared
execution techniques and index structures are needed to further op-
timize the system performance; (3) most of the existing techniques
consider k is significantly higher than the number of input lists,
which is completely the opposite in GeoRank, where k is signifi-
cantly lower than the number of input lists. And (4) most of the

existing top-k techniques overlook the updates in the input list.
However, in GeoRank, new messages come continuously, where
efficient updating method is also essential.
Answer quality in top-k queries. Several methods have been
proposed to provide better quality of top-k queries that match
the users’ different requirements. Examples of such methods in-
clude but not limited to the skylines [21], hybrid multi-objective
methods [22], and top-k dominance [23]. With the popularity of
location-based services, spatial information has been introduced in
the top-k rankings, e.g., k nearest neighbor queries [24], where
only the distance proximity is considered. Then, spatial sky-
lines [25] and spatial preference queries [26] incorporate other fac-
tors in the ranking function. Unfortunately, none of these tech-
niques is directly applicable to GeoRank, as all of them assume that
their input is stored in one table or index structure. This is not the
case in GeoRank, as the top-k answer may be retrieved from dif-
ferent sources. In addition, GeoRank takes the social aspect, where
the top-k messages have to come from the subscribed sources.

Most recently, recommendation techniques have been intro-
duced [27, 28] in top-k rankings to utilize the user behaviors. The
location recommendation is either based on mining the user’s tra-
jectories [28] or adjusting traditional collaborative filtering tech-
niques to the spatial environment [27]. The latter relies on finding
similar users, who do not have to be friends nor have to even know
each other. This is different form GeoRank, where users only see
the news from the sources of interest.

3. PRELIMINARIES
3.1 Messages, Users, and News Feed
Location-based Messages. Similar to the existing social network-
ing services, each message M from a user u has a timestamp M.t
indicating its issuing time. In addition, each message has an explicit
geographical coordinate M.loc, indicating the location, which can
be either the user’s current location extracted from a GPS equipped
device or the most related location inferred from the contents.
System Users. A user u in GeoRank maintains four main at-
tributes: (1) the user location u.loc, which can either be the user
current location or a fixed location set in the user profile. In Geo-
Rank, a user’s location is static, as in the most cases, users get the
news feed frequently from certain locations, e.g., office or home. If
a user has more than one location for getting the news feed, we con-
sider her as two different users in the system; (2) a set of followers
u.F that represents the set of other GeoRank users who have in-
dicated their interests in any location-based messages posted by u;
(3) a set of sources u.S, that represents the set of other GeoRank
users, where u has indicated his/her interest in any location-based
messages posted by any of them; and (4) a preference parameter
0 ≤ u.ω ≤ 1, that weights the user preference towards spatial and
temporal proximity, described in Section 3.2.
Rank Aware Location-based News Feed. Once the user u logs
on to GeoRank, u receives news feed messages that are: (a) issued
by one of the users in u’s source list, u.S, and (b) among the top-
k highest scores, according to the message ranking function, de-
scribed in Section 3.2, that considers user location u.loc, message
location M.loc, message time M.t, user log on time u.t and user
preference parameter u.ω. k is a system wide parameter indicating
the total number of messages that will be delivered. For example,
a typical value of k is 50 for desktop users and 30 for a mobile de-
vices. During a logging session, a user u may post location-based
messages that may be seen later by her follower in u.F .
3.2 Message Ranking Function

GeoRank employs a ranking function Ranking(u,M) that
gives a relevant score of a message M to a user u. The higher

GeoRank

Sn

S1

1. Rank aware location-

based news feeds request

2. Retrieve

messages

3. Messages

8. Statistics update

4.News feed

7. New message

GeoRank

Query

Processor

GeoRank

Message

Updater

User

Fn

F1

S
o
u

rc
e

 L
is

t
F

o
llo

w
e
r L

is
t

5.New source user6.Register

Figure 1: GeoRank System Architecture.
the score the more relevance is the message. The ranking function
encapsulates both the temporal and spatial proximity of M to u.
Since spatial and temporal proximity have two different domains,
i.e., distance in miles and time in hours, the ranking function nor-
malizes the spatial and temporal proximity to have a normalized do-
main score from 0 to a maximum score Max. The ranking function
also employs a personalized preference parameter 0 ≤ u.ω ≤ 1
that weights the relative importance to a user. Formally, the mes-
sage ranking function can be represented as:

Ranking(u,M) = u.ω × NormTemporal(u.t,M.t)

+(1− u.ω)× NormSpatial(u.loc,M.loc) (1)
A higher value for the user preference parameter u.ω indicates
a higher weight to the temporal proximity than the spatial prox-
imity. At one extreme, setting u.ω to 0 indicates that the user
only cares about the closest k messages, among the ones issued
by uj ∈ u.S, which is similar to the results of k nearest neigh-
bors (KNN queries) [24]. On the other extreme, setting u.ω to 1
indicates that the user only cares about the most recent messages,
which is equivalent to the traditional news feed function [1].

In the mean time, NormTemporal(u.t,M.t) is a normalization
function that normalizes the time differences between the user log-
ging on time u.t, which is NOW, and the message issue time M.t
to scale from 0 to the maximum scoring value Max. The temporal
normalization function decreases linearly within a range of a pre-
determined temporal boundary T , where the score of Max is given
when there is no time difference between the log on time and the
message issuing time, while a score of 0 is given to those messages
that are older by T time units or more from the log-on time. Sim-
ilarly, NormSpatial(u.loc,M.loc) is a normalization function that
normalizes the Euclidean space difference between the user loca-
tion u.loc and the message location M.loc to scale from 0 to a
maximum value Max. The spatial normalization function also de-
creases linearly, up to a predetermined spatial boundary S.

3.3 Problem Definition
Our problem in GeoRank can be formulated as: “Given a set of

users U in the system, where each user u has a list of followers
u.F , a list of sources u.S, and a preference parameter u.ω. Once
a user u logs on the system, GeoRank finds the top-k most relevant
news items, based on her current location u.loc, log on time u.t,
and the preference parameter u.ω from her sources”.

The main contribution of GeoRank is not to create an alternative
ranking method for news feed, but to improve its efficiency. In that
way, users can enjoy news feed with short response times, while
the system is not overwhelmed.

4. GEORANK SYSTEM OVERVIEW
4.1 System Architecture

Figure 1 depicts the system architecture of GeoRank, which is
composed of two main modules, namely, the GeoRank query pro-
cessor and the GeoRank message updater, briefly described below:
GeoRank query processor. The query processor module is auto-
matically triggered for a user u, once u logs on to GeoRank system.
The query processor module first consults the source list u.S to find

and rank the relevant messages, using the user preference parame-
ter u.ω and the ranking function Ranking(u,M) (Arrows 1 and 2
in Figure 1). The output of the query processor module is a set
of k messages as the top-k highest ranked messages among all the
messages posted from the user’s subscribed sources u.S (Arrows 3
and 4 in Figure 1). The query processor module employs a set
of smart pruning techniques to avoid scanning all possible sources
and messages. In addition, it relies on pre-computed statistics that
significantly enhance the query performance. Details of the query
processor module will be described later in Section 5.
GeoRank message updater. The main purpose of the message up-
dater module is to track the set of statistics used later by the query
processor module for improving the efficiency. The statistics in-
clude the most relevant (or highest ranked) messages for u from
each user in its sources u.S. The message updater module is trig-
gered by: (1) Adding a new source user, where user uf follows the
message updates from user u (Arrow 5 in Figure 1). In this case, we
initialize the most relevant message, among the ones posted from
u, for uf , along with with few other statistics; and (2) A new mes-
sage M posted by user u (Arrow 7 in Figure 1). In this case, we
update the statistics for the user’s followers in u.F , with internally
used statistics. It is important to note that the message updater
module does not directly contribute to the answer. Instead, it is a
process running in the background to facilitate the mission of the
query processor module, whenever called. Details of the message
updater module will be described in Section 6.

4.2 Data Structure
In addition to the typical user data for each user u that includes

the user id u.id and location u.loc, GeoRank maintains the follow-
ing data structure for each user u:
A preference parameter (u.ω), which gives the user preference
towards the spatial or temporal domains, as described in the ranking
function in Section 3.2.
The source list (u.S), as the set of other users that u is interested
to receive messages from.
The follower list (u.F), as the set of other users who are interested
in receiving messages from u.
List of posted location-based messages (u.M), as the list of prior
posted messages from user u. Each message M ∈ u.M has a
location M.loc and timestamp M.t.
Spatial grid index (u.G), as the underlying spatial index structure,
which consists of n × n equal area grid cells. A grid cell C ∈
u.G includes all the user followers u.F , sources u.S, and posted
massages u.M, whose locations fall within the cell area boundary.

5. GEORANK QUERY PROCESSOR
The query processor is responsible for providing the top-k rele-

vant news feed for user u. A straightforward way to support this
functionality is to decompose a user’s news feed request into |u.S|
top-k queries, as one query for each source user us ∈ u.S. Then,
the final result is assembled by aggregating the overall top-k ranked
messages among the ones retrieved from all the source users. The
query processor module in GeoRank avoids such naive (and pro-
hibitively expensive) solution through a two-step approach that is
based on two main concepts: (a) It is not necessary to check all
the source users us ∈ u.S for the relevant messages, as it is most
likely that k < |u.S|. For example, in Facebook, an average user
has 150 friends (i.e., sources), yet k may be set to 50. This means
that we can get all the top-50 ranked messages from at most 50
friends, and (b) It is not necessary to return k messages from each
checked source user us ∈ u.S, as most of such returned messages
will not qualify for the final top-k answers.

In order to exploit these two concepts, GeoRank query proces-
sor follows a two-step approach. The first step, termed candidate
sources selection (Section 5.2), exploits the first concept to early
prune a large number of source users, who will never contribute to
any of the top-k news items. Non-pruned sources are considered as
candidate sources and checked further in the second step. The sec-
ond step, termed news feed aggregation (Section 5.3), exploits the
second concept by using spatial and temporal pruning techniques,
along with an early termination condition, to minimize the number
of retrieved messages to produce the top-k ranked news feed.

Algorithm 1 gives the pseudo code for GeoRank query proces-
sor, with its two main steps. The input to the algorithm is the user
location u.loc, preference parameter u.ω, source list u.S, list of the
most relevant messages u.R, grid index structure u.G, and log on
time u.t, which is set as NOW. Notice that we do not need anything
related to the set of user’s followers u.F within the query process-
ing module, as none of them will contribute to the messages that
the user u will receive in her news feed. The output of the algo-
rithm is the set of highest ranked k location-based messages based
on their spatial and temporal relevance to the user u according to
u’s preference parameter u.ω and the message ranking function.

5.1 Additional Data Structure
In addition to the data structure described in Section 4.2, the

query processing module maintains the following data structure:
List of most relevant messages from the sources (u.R), as one
message from each source user us ∈ u.S. A most relevant message
Rs, posted by a source user us, is pre-computed and continuously
maintained in GeoRank. Rs represents the highest ranked message
posted from the source user us with respect to user u according
to the user’s message ranking function and preference parameter
u.ω. This is a key structure in the GeoRank query processor as it
plays a major role in all the pruning techniques. It is important to
note that the query processor module in GeoRank just uses this key
data structure to produce the results. However, the computation and
the continuous maintenance of this data structure is all done by the
GeoRank message updater module, described in Section 6.

5.2 STEP 1: Candidate Sources Selection
The candidate sources selection step aims to exploit the fact that

the number of messages k is highly likely to be less than the number
of source users, i.e., k < |u.S|. This means that at least |u.S| − k
sources will never contribute to the top-k news feed. The objective
of this step is to find out these |u.S|− k sources and exclude them,
along with their messages, from any further consideration.
Main idea. The main idea of this step relies on the list of the most
relevant messages u.R to prune |u.S|−k sources. Since this list in-
cludes exactly one message from each source user, then we can just
take the highest k ranked messages, and only consider these sources
users. It means that any source user that does not contribute to the
highest k messages in u.R will never contribute any message to
the news feed. The reason is that we can easily create a news feed
with k messages (aggregating the top-k ranked messages from the
list of the most relevant messages u.R), where all the messages
there have higher ranking scores than the highest ranked ones from
the excluded source users. As a result, if we can get these top-k
ranked source users based on their most relevant message scores,
we can easily avoid a significant amount of computations in the
news feed processing. However, producing such top-k list based
on the most relevant messages from the source users is not triv-
ial, as the only thing that we can pre-compute is the source’s most
relevant message itself. The reason we cannot store the message
score is that the ranking score is mainly depend on the user’s log-on
time (i.e., u.t), which is needed in the temporal normalization, i.e.,

Algorithm 1 GeoRank Query Processing
Input: user location u.loc, preference parameter u.ω, source list u.S, most
relevant messages u.R, grid index u.G, and log on time u.t.
Output: Top-k highest ranked messages.
1: //Step 1. Candidate source selection
2: minscore← 0; count← 0; CandList← ϕ
3: for each message Mi ∈ u.R do
4: score ← u.ω × NormTemporal(u.t,Mi.t) + (1-u.ω) ×

NormSpatial(u.loc,Mi.loc)
5: if score > minscore OR count < k then
6: CandList← CandList ∪ (ui, score)
7: if count > k then
8: Remove (umin, minscore)
9: end if

10: minscore← minimum score in CandList
11: count← count + 1
12: end if
13: end for
14: //Step 2. GeoRank news feed aggregation
15: N ← k; Result← All messages in CandList
16: for each source ui ∈ CandList, ordered by ranking score do
17: D← NormSpatial−1(minscore−u.ω×Max

1−u.ω
)

18: T ← NormTemporal−1(
minscore−(1−u.ω)×Max

u.ω
)

19: Result ← Result ∪ top-N messages from ui within D & T (re-
trieved from u.G, ranked by score)

20: N ← k− number of items in Result with a score higher than
ui+1.score

21: if N ≤ 0 then
22: Return top-k messages in Result as the final result
23: end if
24: minscore← The score of the kth item in Result
25: end for
26: Return top-k messages in Result as the final answer

NormTemporal(u.t,M.t), as a part of the message ranking func-
tion (described in Section 3), and not known as a priori. This calls
for a online computing for the current score of each message in
u.R, once u is logged on, as only then, we know about u.t and
the score for temporal normalization. The correctness of this ap-
proach comes from the fact that even without knowing the score of
each message Rs ∈ u.R, we are still confident that this Rs has the
highest ranking score among all messages produced by the source
user us. We will elaborate more on it, when discussing the message
updater module (Section 6), which ensures the sanity of u.R.
Algorithm. Lines 2 to 13 in Algorithm 1 gives the pseudo code of
the candidate sources selection step. The algorithm iterates over all
the messages in u.R, while calculating the score of each message
based on the user’s location, log-on time, and the underlying mes-
sage ranking function. The source users that may contribute to the
top-k highest ranked messages are stored, along with their rank-
ing scores, in the list CandList, for the further processing. Mean-
while, minscore is set as the minimum score we have in CandList.

5.3 STEP 2: News Feed Aggregation
Given a set of candidate sources (i.e., CandList), produced

from Step 1, a naive way to produce the top-k news feed for
a user is to just get the local top-k messages from each source
us ∈ CandList, and then proceed to find the global top-k mes-
sages across all the candidate sources. The news feed aggregation
step aims to avoid such naive way by: (a) minimizing the number
of retrieved items from each source us ∈ CandList using spatial
and temporal pruning techniques, and (b) avoiding checking all the
sources us ∈ CandList through an early termination condition.
The output of this step is the requested top-k messages for user u.
Main idea. The main idea of the news feed aggregation step is to
use the current minimum score (minscore) of all available message
ranking scores in CandList, to compute both spatial and temporal
boundaries that limit the number of messages retrieved from each

candidate source. In addition, we incrementally maintain a set of
valid candidate messages along with their minscore, which is used
to update the spatio-temporal boundaries and limit the number of
further processed messages from each candidate source user. This
can be summarized in the following three ideas:

• Spatial boundary. Given that the kth highest ranked message
we have so far for u has the score minscore, then for a mes-
sage M to make it among the top-k messages for u, M has to
have a higher score than minscore, i.e., per Equation 1, u.ω×
NormTemporal(u.t, M.t) + (1- u.ω) × NormSpatial(u.loc,
M.loc) > minscore. In order to get a spatial boundary of
where the message location M.loc should be, we assume that
M has the highest possible temporal score Max. In this case,
in order for M to make it to the highest top-k messages, M
has to be located inside the spatial area D, as follows:

D = NormSpatial−1(
minscore − u.ω × Max

1− u.ω
), (2)

where NormSpatial−1() is the inverse function of the spatial
normalization in the user’s message ranking function. This
means that if a message M is located outside of the area D,
M will have no chance in having a higher score than min-
score, hence will not make it to the top-k items.

• Temporal boundary. Similar to the case of determining a
spatial boundary, in order to get a temporal boundary of when
the message was posted, we assume that M has the highest
possible spatial score Max. In this case, in order for M to
make it to the highest top-k messages, M has to be posted in
the last T time units, computed as follows:

T = NormTemporal−1(
minscore − (1− u.ω)× Max

u.ω
),

(3)
where NormTemporal−1() is the inverse function of the tem-
poral normalization in the user’s message ranking function.
This means that if M was posted older than T time units, M
will have no chance in making it to the top-k items.

• Number boundary. We start by the objective of getting the
top-k messages. Then, as we visit each source user in the
candidate sources, CandList, we start to confirm that a cer-
tain number of message, x, will definitely be among the top-
k ones. In this case, for the next source user to visit, we
only look for retrieving at most |k − x| messages. As we
keep lowering our number boundary, we early terminate our
search when the number boundary reaches 0.

Algorithm. Lines 15 to 26 in Algorithm 1 gives the pseudo code of
the news feed aggregation step. We initially set our number bound-
ary N as k, and the output result set as the list of messages in
CandList. Then, we iterate over each source ui ∈ CandList,
in descending order of their most relevant message scores, as the
source user with higher score has a higher chance to contribute
messages to the news feed result. For each source, we calculate
both the spatial and temporal boundaries D and T , per Equations 2
and 3, respectively. Then, we exploit the spatial grid index struc-
ture u.G to retrieve the highest N ranked messages that lie within
our spatial and temporal boundaries from source ui. The retrieved
messages, which could be at most N messages, are inserted to our
current result set. Our number boundary N is set by subtracting
k with the number of messages in the current result set that has a
higher score than the score of the next source user. This is mainly
as these messages are guaranteed to be in the top-k result. If the
number boundary becomes lower than or equal to zero, we just
terminate the algorithm and return the top-k messages in the cur-
rent result set as the news feed. Otherwise, we set the value of the

Carol

M2

Carol

M5

Alice’s Messages Alice’s Spatial Index Carol’s Result Set

(a) GeoRank News Feed Aggregation in source user Alice

David’s Messages David’s Spatial Index Carol’s Result Set

(b) GeoRank News Feed Aggregation in source user David

D

M7

M6

M8

MSG Time Score

Alice.M4 19:30 8.5

Alice.M3 15:00 6.9

Alice.M2 9:00 -

Alice.M1 8:00 -

MSG Score

Alice.M4 8.5

David.M7 7.0

Alice.M3 6.9

minscore 6.9

MSG Time Score

David.M8 19:30 -

David.M7 17:00 7.0

David.M6 16:40 6.2

David.M5 15:00 -

MSG Score

Alice.M4 8.5

David.M7 7.0

Alice.M3 6.9

minscore 6.9

M4

M3
M1

D

Figure 2: Example of GeoRank News Feed Aggregation Step.
new minimum score (minscore) as the score of the kth item in the
current result set, and proceed to check on the next source ui+1.
The algorithm continues till we either have our number boundary
N ≤ 0, or go through all the sources in the CandList. The lat-
ter case corresponds to the unlikely case, where each source ui ∈
CandList contributes exactly one message to the user’s news feed.
Example. Carol requests her top-3 location-based news feed at
time 20:00. Then, assuming that the candidate sources selection
step returns three candidate sources, i.e., Alice, David, and Bob,
with the their most relevant message scores of 8.5, 7.0, and 6.7,
respectively. Thus, the minimum score (minscore) is set to 6.7.
Figure 2 illustrates the news feed aggregation step that will be ex-
ecuted for Carol, where we go through the three candidate sources
based on their scoring order, i.e., we first start with user Alice. Fig-
ure 2a depicts Alice’s four messages, with their issuing times and
locations, marked as black dots on her grid spatial index. Assuming
that we have calculated the temporal boundary T using Equation 3
to be 15:00 and the spatial boundary D using Equation 2 to be the
circle around Carol’s location in Alice spatial index. Since Alice
is the first user to check for, our number boundary N is initialized
by k=3. Based on the temporal, spatial, and number boundaries,
we only need to retrieve two messages from Alice, namely, M4 and
M3, with scores 8.5 and 6.9, respectively. Among M4 and M3, we
know for sure that M4 will make it to the final answer as it scores
higher than the most relevant message score of the next source user,
i.e., David. However, we are not yet sure about the fate of M3.
Since M3 has a lower score than the highest scored message from
David, then there is a probability that David may have two mes-
sages higher than M3. With this, we update our number boundary
to be N = 2, indicating that we are still looking for two more mes-
sages from David. Also, the minimum score is updated to 6.9 as
the kth ranked message we have so far, which is M3.

Figure 2b depicts David’s messages. With the updated minimum
score, the temporal boundary T becomes tighter as 16:00 while
the spatial boundary D is depicted by a smaller circle. Only two
messages satisfy the new spatial, temporal, and number boundaries,
namely, M7 and M6 with scores 7.0 and 6.2, respectively. With
this, we know that for sure M7 and M3 will be in the final result,
as both of them score higher than 6.7, which is the highest message
score from Bob. So, we just update our number boundary to be 0.
As this is our stopping criteria, we terminate the algorithm without
visiting Bob, where news feeds include M4, M7, and M3, in order.

6. GEORANK MESSAGE UPDATER
As discussed in the previous section, the query processor mod-

ule mainly relies on the list of most relevant messages, u.R, in
all its pruning techniques. However, the query processor module
has dealt with this list as a given input, and has nothing to do with
computing and maintaining it. In this section, we discuss GeoRank
message updater module, where its main purpose is to ensure the
sanity and accuracy of the list u.R. For a user u, computing the
most relevant message Rs from a source us ∈ u.S includes two

steps, initialization and maintenance. The initialization step takes
place when a new source user us is followed by the user u. Then,
u will need to compute an initial value of Rs, based on the mes-
sages from the source user us, i.e., us.M. The maintenance step
is triggered with each new message posted from the source user
us ∈ u.S, where we will need to check if the new message has a
higher score to u than the current most relevant message from us.

The challenge here comes from the fact that each new message
from a source user us ∈ u.S is not only relevant to u, but, it
is also relevant to all those users that consider us as one of their
sources, i.e., all the users in the follower list us.F . A straightfor-
ward solution can go as follows: Once a source user us submits
a new message, we scan all the followers uf ∈ us.F to check if
we need to update the most relevant message with the new mes-
sage for any of these users. This straightforward solution can be
extremely inefficient, where users may have large number of fol-
lowers and produce large number of messages, e.g., according to
the Facebook statistics [4], an average user has 150 friends and
creates over 90 pieces of content each month. Doing an exhaustive
search of every posted message over every user’s follower may be
prohibitively expensive. GeoRank message updater module avoids
such prohibitively expensive operations by employing spatial fil-
ters that limit the number of followers to check for. This is done
by associating a set of |u.F| monitoring areas for user u, as one
monitoring area per follower uf ∈ u.F . Then, whenever u posts
a new message M at location M.loc, we do not need to check for
all u’s followers. Instead, we only check on those followers, whose
monitoring areas overlaps with the new message location M.loc.

6.1 Additional Data Structures
In addition to the data structures described in Section 4.2, the

message updater module maintains the following data structure:
List of monitoring areas for the followers (u.A), as one moni-
toring area for each user’s follower uf ∈ u.F . A monitoring area
Af is initialized and maintained by the message updater module to
significantly reduce the computational costs for updating the list of
most relevant messages for that follower uf .R. A monitoring area
Af basically says that in order for a new message M from user u
to make it to the list of most relevant messages for the follower uf ,
then, M has to be located inside Af . All the follower’s monitoring
areas are laid out in the user’s spatial grid index structure, u.G.

6.2 Initialization: New Source Update
Whenever a user u1 decides to follow the message updates from

another user u2, u2 is added to the list of source users of u1, i.e.,
u1.S = u1.S ∪ u2, and, at the meanwhile, u1 is added to the list
of followers of u2, i.e., u2.F = u2.F ∪ u1. Then, the message up-
dater module needs to take two actions: (1) initialize the most rel-
evant message R2 ∈ u1.R, where R2 is the most relevant (highest
ranked) one to user u1, among all other messages posted from u2;
and (2) initialize the monitoring area A1 ∈ u2.A in user u2, which
says that any newly posted message from u2 that is located outside
area A1 will never make it to the list of most relevant messages of

u1, u1.R. The two initialization actions are outlined below:
Action 1: Initializing the most relevant message R2 ∈ u1.R. To
perform this action, we need to find out the most relevant message
to u1, among all the ones posted by u2. Since all posted messages
by u2, u2.M, are sorted by their issuing times, we just scan the list
u2.M, and calculate the score of each message based on the tem-
poral order. We first consider the latest message as the most rele-
vant one. Assuming that the score of this message is MaxRelScore,
then we update the most relevant message whenever we find a mes-
sage with a higher score than MaxRelScore, and accordingly ad-
just the value of MaxRelScore. Notice that a message M2 with a
lower temporal score than message M1 can still have a higher over-
all score than M1, if M2 has a higher spatial score than M1. We
early terminate our scanning process if the next message to visit
in u2.M cannot score higher than MaxRelScore, regardless of its
proximity to the location of u1. In this case, we know that none
of the subsequent messages will score higher than MaxRelScore,
also regardless of its proximity to u1. To judge on this early ter-
mination procedure, we will assume that the next message to visit
Mn has the maximum spatial score Max. Then, Mn score will be:
Ranking(u1,Mn) = u1.ω × NormTemporal(u1,Mn) + (1 − u1.ω)
× Max. This means that we can early terminate, if this score is less
than MaxRelScore, i.e., the temporal score of the next message Mn

is less than MaxRelScore−(1−u1.ω)×Max
u1.ω

. Finally, it is important
to note that we only store the most relevant message R2 in u1.R
without its score MaxRelScore. This is mainly because this score
will be irrelevant when time advances, as its value is based on the
temporal score, which can only be computed with the current time.
Action 2: Initializing the monitoring range area A1 ∈ u2.A.
To perform this action, we will need to find an area A1 such that
if a new incoming message M from u2 is located outside A1, then
we can safely conclude that M will never make it to the list of
most relevant messages for user u1, u1.R. We will use the most
relevant message R2, computed in Action 1, as an estimation of
the initial value of A1. We can safely say that if a new incom-
ing message M has less score than that of R2, then, M will have
no chance in replacing R2. Although we know the current exact
score of R2, we cannot rely on this score when comparing it with
the score of the new message M , as the score of R2 decays over
time, where its issuing time becomes further. To make R2 and M
comparable, we use a very conservative estimation of the score of
R2 at the time when u2’s new message M is issued. The con-
servative estimation is obtained by considering that the temporal
score of R2 has decayed to its lowest possible value 0. In this
case, the minimum possible score of R2 is MinScore = (1-u1.ω)
× NormSpatial(u1.loc,R2.loc). Then, with another conservative
assumption, we assume the incoming message M has the high-
est possible temporal score Max. Then, for M to have a higher
score than R2, the following criteria should hold: Ranking(u1,M)
> MinScore, i.e., u1.ω × Max + (1−u1.ω)× NormSpatial(u1,M)
> MinScore. This means that A1 is a circular centered at u1.loc
with a radius A1.r, computed per the following equation:

A1.r = NormSpatial−1(
MinScore − u1.ω × Max

1− u1.ω
), (4)

Finally, the computed monitoring area A1 is laid out on the
source user’s grid spatial index u2.G.

6.3 Maintenance: New Message Update
Whenever a user u posts a new message M , u needs to check if

M will affect any of the most relevant messages Ru for the follow-
ers, u.F . If so, we update the most relevant messages accordingly,
along with their corresponding monitoring areas stored at u.
Main idea. The main idea of the maintenance step is to exploit

Algorithm 2 GeoRank Message Updating
Input: A message M posted by user u
1: AffectedList← ϕ
2: C ← The grid cell in u.G that includes M.loc
3: for each monitoring area Af ∈ u.A located in cell C do
4: if M.loc is inside Af then
5: AffectedList← AffectedList ∪ uf

6: end if
7: end for
8: for each follower uf ∈ AffectedList do
9: Ru← Retrieve u’s most relevant message to uf from uf .R

10: MostRelScore ← uf .ω × NormTemporal(NOW,Ru.time) + (1-
uf .ω) × NormSpatial(uf .loc,Ru.loc)

11: NewMsgScore ← uf .ω × Max + (1-uf .ω) ×
NormSpatial(uf .loc,M.loc)

12: if NewMsgScore > MostRelScore then
13: Ru←M in uf .R
14: MinScore← (1-uf .ω) × NormSpatial(uf .loc,M.loc)

15: Af .r← NormSpatial−1(
MinScore−uf .ω×(Max)

1−uf .ω
)

16: end if
17: end for

the grid spatial index structure maintained at u, u.G, to early prune
followers that will not be affected by the new message M . Such
early pruning avoids an exhaustive scan over all followers of u. For
those followers who are not pruned, we still do an extra check to
see if M actually affects their most relevant message from u, as we
used the conservative way to calculate the monitoring areas. If this
is the case, we update the most relevant message for the follower
with the new message. Finally, we use the updated most relevant
message to calculate a new monitoring area for such followers, in
a similar way to the initialization module discussed in section 6.2.
Algorithm. Algorithm 2 gives the pseudo code for the message
updater module upon receiving a new message M from user u.
The pseudo code has two main steps:

(1) Finding out the list of followers that may be affected by the
new message M (Lines 1 to 7 in Algorithm 2). We do so by first
locating the cell C in u.G that includes the message location M.loc.
Then, for any follower uf whose monitoring area Af is registered
in cell C, we do an extra check to see if M.loc is located inside Af .
If this is the case, uf will be added in the list of affected followers.

(2) For each affected follower uf , we update its most relevant
message Ru with the new message M posted from u, if needed.
In case that the message update takes place, we also update the
monitoring area Af at user u (Lines 8 to 17 in Algorithm 2). We
do so by doing the following for each user uf in the list of af-
fected followers: (a) We retrieve Ru from the list uf .R as the cur-
rent most relevant message from user u to follower uf , (b) As we
do not have the score of Ru, we will need to calculate Ru score
(i.e., MostRelScore) based on the current time and the follower lo-
cation. It is important to note that we could not store this score
with Ru as it decays over time, and has to be recomputed with ev-
ery time instance. Thus, we opt to compute it only when needed,
(c) We compute the score of the new message M (i.e., NewMs-
gScore) considering that the temporal score is of a maximum value
as M is just posted now, while the spatial score is computed based
on the proximity of message location to the follower’s location
uf .loc, and (d) We compare the score of the most relevant mes-
sage (MostRelScore) against that of the new message M (NewMs-
gScore). If the new message has a lower score, we just do nothing,
as the new message will not affect anything in our maintained data
structure. On the other hand, if the new message has a higher score
than that of the currently most relevant message, we first replace
the currently most relevant message Ru by the new message M .
Then, in a similar way to what we have done in section 6.2, we

(a) Affect Follower Selection

M

Bob

David

Eddie

(c) Monitoring Range Update

Bob

David

Eddie

AliceAlice

(b) Most Relevant Message Update

Follower Ru
Most

Rel

New

Msg

Alice M3 - -

Bob M4 - -

David M2 7.5 7.3

Eddie M 7.1 7.9

Figure 3: Example of Message Update in GeoRank.
calculate the minimum possible score of M using only its spatial
score, and use this value to update the radius of the monitoring area
Af for that follower in the user’s spatial index u.G.
Example. Figure 3 gives an example of the maintenance algorithm
in GeoRank message updater. Figure 3a depicts the spatial grid
index at user Carol, where she maintains four circular monitoring
areas that correspond to her four followers Alice, Bob, David, and
Eddie, along with the message M posted from Carol (depicted by a
small triangle). As the location of message M is located outside the
monitoring areas of Alice and Bob, we just early prune these two
followers, as we know for sure that their most relevant message will
not be affected by M . Figure 3b depicts the further actions taken
on the remaining users, David and Eddie, where we calculate their
scores of the new message M based on their preference parame-
ters and locations, which, ended up to be 7.3 and 7.9, respectively.
Assume that the prior most relevant scores at David and Eddie are
7.5 and 7.1, respectively. By comparing the new computed scores
for M by the old most relevant scores, we find that M has a lower
score than what David already has, so, we just exclude David from
any further considerations. In the mean time, we find that M actu-
ally gives a higher score that what Eddie already has. In this case,
we do two actions: (1) Update the most relevant message Rcarol at
Eddie to be M , and (2) Update the monitoring area of Eddie to be
tighter based on the new message M (Figure 3c).

7. EXPERIMENTAL EVALUATION
Experimental evaluations of GeoRank are based on an actual

system implementation in PostgreSQL database management sys-
tem [29]. Experiments are based on a set of 10 Million geo-tagged
Twitter messages (i.e., tweets) issued within the state of Minnesota,
US, generated as follows: First, we crawled the twitter message
data via Twitter Search API1 for one week. Then, we got ≈ 650K
distinct geo-tagged tweets, where the geographical information is
represented as either a semantic location, e.g., a city name or lat-
itude/longitude coordinates. In the former case, we use Google
GeoCoding API2 to convert into latitude/longitude coordinates. We
make use of these real 650K tweets to get to know the real spatial
and temporal distributions the tweets. Finally, we generate syn-
thetic 10,000 GeoRank users, where each user is associated with
1,000 geo-tagged tweets. The locations and issuing times of all the
10 Million messages mimic the spatial and temporal distributions
of our crawled real tweets. Also, locations of the 10,000 users are
static and set randomly based on the locations of the real tweets.

Mostly taken from Facebook statistics [4], and unless mentioned
otherwise, each user is following an average of 150 users (i.e.,
sources) and is also followed by another 150 users (i.e., follow-
ers), randomly picked from the user set. We set the default k as 30,
which means the user likes to see the top-30 messages in the news
feeds. We use a simple ranking function, where Max is set to 10,
and every one mile or one hour is equivalent to 0.1. The default user
preference parameter ω is set to 0.5. Finally, a 10×10 grid struc-

1Twitter Search API: http://search.twitter.com.
2Google GeoCode:http://maps.googleapis.com/maps/api/geocode/

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 0.25 0.5 0.75 1.0

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

u.ω

On-top Ranking
GeoRank

(a) Different User Preferences.

 0

 200

 400

 600

 800

 1000

 1200

 1400

100 150 200 250 300

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

Numbers of Source Users

On-top Ranking
GeoRank

(b) Different Source Users.
Figure 4: Compare With “On-Top” Approach.

ture is constructed for each user to index message locations and the
monitoring areas. All experiments were evaluated on a server com-
puter with Intel Core 2 Quad CPU 2.83GHz processor and 8 GB
RAM running Ubuntu Linux 10.04.
7.1 GeoRank Overall Performance

In this section, we compare the overall performance of GeoRank
against the simple on-top approach. In the on-top approach, we
issue one top-k query to each source user and aggregate the top-k
results to produce the news feed. We still optimize in the on-top
using the temporal order of the messages for the early termination.

Figure 4a gives the performance of both approaches when vary-
ing the user preference parameter u.ω from 0 to 1. GeoRank con-
sistently gives 6 to 10 times better performance than the on-top
approach. This is mainly because GeoRank reduces the number
of evaluated source users, i.e., we do not have to check on each
source user, and also reduce the number of processed messages at
each source. Another thing to note is that with the increasing of
u.ω, the on-top approach gets a better performance. This is be-
cause the temporal early termination technique is more effective
with the more weight to the temporal domain. This is not the case
in GeoRank as it gives the same good performance for all ω.

Figure 4b gives the performance, when varying the number of
source users from 100 to 300 to simulate the users following differ-
ent numbers of sources. In the experiment, each user follows ran-
domly selected source users and we evaluate the average news feed
processing time. As shown in the figure, GeoRank scales up well
with the increase of the number of source users, while the perfor-
mance of the on-top solution deteriorates significantly. Moreover,
the performance gains by GeoRank increases significantly, when
the querying user follows more source users. Especially for the
case of 300 sources, GeoRank gives 28 times better performance
than the on-top approach. The main reason is because of the prun-
ing power at GeoRank avoiding all the disqualified source users,
while on-top approach still needs to check on all source users. Es-
sentially, GeoRank does not care about the total number of source
users followed by the querying user, it will always process up to
k source users for the news feed. As a result, we can infer that
GeoRank will be even more efficient comparing with the on-top
approach for the active users, who may follow hundreds or thou-
sands of other users in a real social networking system.

Based on the above experiments, GeoRank outperforms the on-
top approach significantly in all the cases. Thus, we can safely con-
clude that GeoRank will reach a better throughput than the on-top
approach. Moreover, we find that the on-top approach is impracti-
cal due to its unacceptable performance (i.e., the response times),
and hence will not consider it in the further experiments.
7.2 GeoRank Query Processor Performance

This section studies the performance of the internals of GeoRank
query processor, i.e., the processing time to produce the news feed.
As discussed in Section 5, GeoRank query processor has two main
steps: candidate sources selection and news feed aggregation. To
study the effect of each step separately, we compare two versions

 0

 20

 40

 60

 80

 100

 120

100 150 200 250 300

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

Numbers of Source Users

GeoRank-CS
GeoRank

(a) Processing Time.

 0

 200

 400

 600

 800

 1000

 1200

100 150 200 250 300

T
o
ta

l
P

ro
c
e
s
s
e
d
 M

e
s
s
a
g
e
s

Numbers of Source Users

GeoRank-CS
GeoRank

(b) Total Processed Messages.
Figure 5: Different Numbers of Source Users

 0

 50

 100

 150

 200

 250

10 20 30 40 50

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

k

GeoRank-CS
GeoRank

(a) Processing Time.

 0

 500

 1000

 1500

 2000

 2500

 3000

10 20 30 40 50

T
o
ta

l
P

ro
c
e
s
s
e
d
 M

e
s
s
a
g
e
s

k

GeoRank-CS
GeoRank

(b) Total Processed Messages.
Figure 6: Different Numbers of K Values.

of GeoRank. The first version, termed GeoRank-CS applies only
the candidate sources selection, while the second one is equipped
with both the pruning steps. The comparison is done when varying
the number of source users, k, and ω.
Number of source users. Figure 5 gives the performance of both
GeoRank and GeoRank-CS when varying the number of source
users from 100 to 300. The performance is measured in terms
of processing time (Figure 5a) and number of processed messages
(Figure 5b). The processing time for both GeoRank and GeoRank-
CS increases with the number of sources, as we need more time
to calculate and rank the scores of most relevant messages in the
first step. The performance gap between GeoRank and GeoRank-
CS shows the effect of the news feed aggregation step, employed
by GeoRank, where it: (a) prunes more sources than GeoRank-CS
with the early termination condition, and (b) employs both spatial
and temporal pruning techniques to avoid retrieving k messages
from each candidate source. With number of processed messages
(Figure 5b), it is interesting to see a consistent behavior for both
GeoRank-CS and GeoRank, as the number of processed message
is almost not affected by the number of sources. This is mainly as
in both algorithms, the candidate selection step prunes the list of
sources to 30, i.e, the value of k. As a result, no matter how many
sources we have, we only operate on the top-30 of them.
Top k values. Figure 6 gives the performance of both GeoRank
and GeoRank-CS, when varying k from 10 to 50, in terms of pro-
cessing time (Figure 6a) and number of processed messages (Fig-
ure 6b). With the increase of k, Both GeoRank and GeoRank-CS
take more time to produce the answer and process more messages,
as both of them need to check more sources and messages. How-
ever, it is interesting to see that the performance gain of GeoRank
increases with k. This shows that with larger k, the news feed ag-
gregation step in GeoRank becomes even more effective, because
of the pruning and early termination. Also, it is obvious that the
trend of processing time is similar to the trend of the number of
processed messages, which gives insight that the processing over-
head is mainly due to the processed messages.
User preference parameter u.ω. Figure 7 gives the performance
of both GeoRank and GeoRank-CS when varying ω from 0 (spatial
proximity is mostly favored) to 1 (temporal proximity is mostly
favored), in terms of processing time (Figure 7a) and number of
processed messages (Figure 7b). For all values of ω, there is a
consistent performance gap between GeoRank and GeoRank-CS.
Although ω plays a major role in determining both the spatial and

 0

 20

 40

 60

 80

 100

 120

0 0.25 0.5 0.75 1.0

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

u.ω

GeoRank-CS
GeoRank

(a) Processing Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 0.25 0.5 0.75 1.0

T
o
ta

l
P

ro
c
e
s
s
e
d
 M

e
s
s
a
g
e
s

u.ω

GeoRank-CS
GeoRank

(b) Total. Processed Messages.
Figure 7: Different User Preferences.

 0

 50

 100

 150

 200

 250

 300

100 150 200 250 300

A
v
g
.
P

ro
c
e
s
s
in

g
 T

im
e
 (

m
s
)

Numbers of Followers

Basic
GeoRank

(a) Processing Time.

 0

 50

 100

 150

 200

 250

 300

100 150 200 250 300

P
ro

c
e
s
s
e
d
 F

o
ll
o
w

e
rs

Numbers of Followers

Basic

GeoRank

(b) Processed Followers.
Figure 8: Different Numbers of Followers.

temporal boundaries in the news feed aggregation step, increasing
or decreasing the value of ω just tightens one boundary and relaxes
the other. Overall, the performance gain becomes consistent. In the
mean time, for ω > 0.5, we can see that the number of processed
messages increases for both GeoRank and GeoRank-CS, hence, the
performance degrades. This is mainly due to the distribution of
messages is more clustered towards the time domain, and hence
favoring the temporal domain results in processing more messages.

7.3 GeoRank Message Updater Performance
This section studies the performance of GeoRank message up-

dater module, which is the overhead to maintain the statistics. As
discussed in Section 6, GeoRank message updater employs a set
of monitoring areas, indexed by a spatial grid index, to determine
which followers will be affected by the new message. To evaluate
the main idea of the message updater module, we compare the full
version of GeoRank against a basic approach for the message up-
dater module, which scans all the followers for most relevant mes-
sage updates whenever a new message is posted. We discuss the
results varying the number of followers, update frequencies, and ω.
Number of followers. Figure 8 gives the performance of both Geo-
Rank and basic approaches when varying the number of followers
|u.F| from 100 to 300. In terms of average processing time for each
posted message (Figure 8a), both GeoRank and basic encounter
more time with the increase of the number of followers. However,
basic approach uses more time with more followers, as it needs to
check all the followers. On the other side, GeoRank is more effi-
cient, as it utilizes the monitoring areas and only updates a subset
of followers, as we plot the number of followers (Figure 8b). For
example, in the case of 300 followers, the basic approach checks
on 300 followers while GeoRank checks on only 140 followers.
Message update frequencies. Figure 9 gives the performance of
both GeoRank and basic approaches when varying the message up-
date frequency from 1 to 15 messages per day. In terms of average
processing time for each posted message (Figure 9a), the basic ap-
proach suffers from an increase in processing time with higher fre-
quencies, where we need to check on every follower for update. In
the mean time, GeoRank shows much better scalability where it ac-
tually gives better performance with higher update frequency. The
main reason behind this scalability is that with higher update fre-
quencies, GeoRank can easily update the monitoring areas for the
user followers to be tighter and more accurate. Thus, higher update
frequency results in a much better performance for GeoRank. In

 0

 20

 40

 60

 80

 100

 120

1 3 5 10 15

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

Update Frequency (per day)

Basic
GeoRank

(a) Processing Time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 3 5 10 15

P
ro

c
e
s
s
e
d
 F

o
llo

w
e
rs

Update Frequency (per day)

Basic
GeoRank

(b) Processed Followers.
Figure 9: Different Message Update Frequencies.

 0

 20

 40

 60

 80

 100

 120

0 0.25 0.5 0.75 1.0

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

u.ω

Basic
GeoRank

(a) Processing Time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 0.25 0.5 0.75 1.0

P
ro

c
e
s
s
e
d
 F

o
ll
o
w

e
rs

u.ω

Basic

GeoRank

(b) Processed Followers.
Figure 10: Different User Preference Parameters.

terms of the number of followers to check on (Figure 9b), the basic
approach gives steady state performance as it basically checks for
all the 150 followers. In the mean time, GeoRank checks for lower
number of followers with the increase of the update frequency. This
is mainly due to the tighter and more accurately calculated moni-
toring areas, as previously discussed.
User preference parameter. Figure 10 gives the impact of differ-
ent follower’s preference parameter u.ω on the message update per-
formance of GeoRank and basic approach, where we set the same
preference parameter for all the user’s followers varying from 0
(only cares about location) to 1 (only cares about time). Figure 10a
gives the average processing time, and Figure 10b gives the average
number of followers processed by each approach for one message
update. We have the following observations: (1) the basic approach
is almost not affected by the ω at all, as it checks the most relevant
message update for all the followers, regardless of their preference
parameter ω, (2) GeoRank is more scalable than the basic approach
as it only updates a subset of the followers for each message update,
and (3) GeoRank has a better performance, when the follower’s
preference parameter is smaller (cares more of the spatial domain).
This is because the monitoring areas are calculated based on Equa-
tion 4, where with a larger preference parameter uf .ω, we will have
a smaller monitoring area registered at the user’s spatial index. As
a result, less number of followers is selected for most relevant mes-
sage updates, when a new message is posted from the user. On the
other hand, when the follower’s preference parameter is larger (i.e.,
cares more about time), the processing time of GeoRank increases,
as each follower has a larger monitoring area and more followers
are selected for update when a new message is posted. For exam-
ple, in the extreme case uf .ω = 1 (meaning that the followers only
cares the most recent message from the source users), GeoRank has
the same performance as the basic approach, because, in this case,
the monitoring area is set as the whole space, and all the followers
need to be selected for the most relevant message update.

8. CONCLUSION
In this paper, we have presented GeoRank; an efficient location-

aware news ranking system. GeoRank provides the top-k relevant
news items considering: (a) the spatial proximity, (b) the time re-
cency of the message, and (c) a preference function, that weights
the relative importance of the above factors. The basic ideas in
GeoRank is fairly simple but highly effective, which tries to avoid
the unnecessary computations for processing the disqualified the

news sources and their messages. GeoRank is composed of two
main modules, namely, query processor and message updater. The
query processor module retrieves top-k most relevant news feed.
On the other side, the message updater module is a process run-
ning in the background to maintain the statistics. Such statistics
ensure efficiency of the query processor, and hence GeoRank. Ex-
tensive experimental results, based on real and synthetic data sets,
confirm that GeoRank significantly reduces the response time for
news feed and improves the efficiency by at least 6 to 10 times.

9. REFERENCES
[1] A. Silberstein, J. Terrace, B. F. Cooper, and R. Ramakrishnan, “Feeding Frenzy:

Selectively Materializing User’s Event Feed,” in SIGMOD, 2010, pp. 831–842.
[2] J. Bao, , M. F. Mokbel, and C.-Y. Chow, “GeoFeed: A Location-aware News

Feed System,” in ICDE, 2012, pp. 54–65.
[3] M. Sarwat, J. Bao, A. Eldawy, J. J. Levandoski, A. Magdy, and M. F. Mokbel,

“Sindbad: A Location-based Social Networking System,” in SIGMOD, 2012,
pp. 649–652.

[4] “Facebook Statistics,” http://www.facebook.com/press/info.php?statistics, 2010.
[5] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A Survey of Top-k Query

Processing Techniques in Relational Database Systems,” ACM Computing
Surveys, vol. 40, no. 4, p. 11, 2008.

[6] G. M. D. Corso, A. Gull, and F. Romani, “Ranking a stream of news,” in WWW,
2005, pp. 97–106.

[7] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A Contextual-Bandit Approach
to Personalized News Article Recommendation,” in WWW, 2010, pp. 661–670.

[8] A. Das, M. Datar, A. Garg, and S. Rajaram., “Google news personalization:
scalable online collaborative filtering,” in WWW, 2007, pp. 271–280.

[9] J. Liu, P. Dolan, E. Ronby, and Pedersen, “Personalized News Recommendation
Based on Click,” in IUI, 2010, pp. 31–40.

[10] B. E. Teitler, M. D. Lieberman, D. Panozzo, J. Sankaranarayanan, H. Samet,
and J. Sperling, “NewsStand: a new view on news,” in SIGSPATIAL, 2008,
p. 18.

[11] G. Quercini, H. Samet, J. Sankaranarayanan, and M. D. Lieberman,
“Determining the spatial reader scopes of news sources using local lexicons,” in
SIGSPATIAL, 2010, pp. 43–52.

[12] L. Aalto, N. Göthlin, J. Korhonen, and T. Ojala, “Bluetooth and WAP Push
Based Location-Aware Mobile Advertising System,” in MobiSys, 2004, pp.
49–58.

[13] Y. Cai and T. Xu, “Design, Analysis, and Implementation of A Large-scale
Real-time Location-based Information Sharing System,” in MobiSys, 2008, pp.
106–117.

[14] W. Xu, C.-Y. Chow, M. L. Yiu, Q. Li, and C. K. Poon, “MobiFeed: A
Location-Aware News Feed System for Mobile Users,” in SIGSPATIAL, 2012.

[15] U. Güntzer, W.-T. Balke, and W. Kießling, “Optimizing Multi-Feature Queries
for Image Databases,” in VLDB, 2000, pp. 419–428.

[16] S. Nepal and M. Ramakrishna, “Query Processing Issues in Image
(Multimedia) Databases,” in ICDE, 1999, pp. 22–29.

[17] J. Lu, P. Senellart, C. Lin, X. Du, S. Wang, , and X. Chen, “Optimal Top-k
Generation of Attribute Combinations based on Ranked Lists,” in SIGMOD,
2012, pp. 409–420.

[18] P. Cao and Z. Wang, “Efficient Top-k Query Calculation in Distributed
Networks,” in PODC. ACM, 2004, pp. 206–215.

[19] A. Yu, P. K. Agarwal, and J. Yang, “Processing a Large Number of Continuous
Preference Top-k Queries,” in SIGMOD, 2012, pp. 397–408.

[20] Y. Li, Z.-L. Zhang, and J. Bao, “Mutual or Unrequited Love: Identifying Stable
Clusters in Social Networks with Uni- and Bi-directional Links,” in WAW,
2012, pp. 113–125.

[21] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in
ICDE, 2003, pp. 717–719.

[22] W.-T. Balke and U. Guntzer, “Multi-objective Query Processing for Database
Systems,” in VLDB, 2004, pp. 936–947.

[23] M. L. Yiu and N. Mamoulis, “Efficient Processing of Top-k Dominating
Queries on Multi-Dimensional Data,” in VLDB, 2007, pp. 483–494.

[24] G. R. Hjaltason and H. Samet, “Distance Browsing in Spatial Databases,” ACM
TODS, vol. 24, no. 2, pp. 265–318, 1999.

[25] M. Sharifzadeh and C. Shahabi, “The Spatial Skyline Queries,” in VLDB, 2006,
pp. 751–762.

[26] M. L. Yiu, H. Lu, N. Mamoulis, and M. Vaitis, “Ranking Spatial Data by
Quality Preferences,” TKDE, no. 99, pp. 1–1, 2010.

[27] J. Bao, Y. Zheng, and M. F. Mokbel, “Location-based and preference-aware
recommendation using sparse geo-social networking data,” in SIGSPATIAL,
2012, pp. 184–195.

[28] V. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative Location and Activity
Recommendations with GPS History Data,” in WWW, 2010, pp. 1029–1038.

[29] “PostgreSQL ,” www.postgresql.org.

