
Geoinformatica
DOI 10.1007/s10707-011-0149-0

Continuous aggregate nearest neighbor queries

Hicham G. Elmongui · Mohamed F. Mokbel ·
Walid G. Aref

Received: 3 February 2009 / Revised: 22 October 2011 /
Accepted: 14 November 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper addresses the problem of continuous aggregate nearest-
neighbor (CANN) queries for moving objects in spatio-temporal data stream man-
agement systems. A CANN query specifies a set of landmarks, an integer k, and
an aggregate distance function f (e.g., min, max, or sum), where f computes the
aggregate distance between a moving object and each of the landmarks. The answer
to this continuous query is the set of k moving objects that have the smallest
aggregate distance f . A CANN query may also be viewed as a combined set of
nearest neighbor queries. We introduce several algorithms to continuously and
incrementally answer CANN queries. Extensive experimentation shows that the
proposed operators outperform the state-of-the-art algorithms by up to a factor of
3 and incur low memory overhead.

Keywords Continuous query · Spatio-temporal query · Aggregate nearest neighbor

This work is supported in part by the National Science Foundation under Grant Numbers
IIS-0811954, III-1117766, IIS-0964639, IIS-0811935, CNS-0708604, IIS-0952977 (NSF
CAREER) and by a Microsoft Research Gift.

H. G. Elmongui (B)
Department of Computer and Systems Engineering, Faculty of Engineering,
Alexandria University, Alexandria 21544, Egypt
e-mail: elmongui@alexu.edu.eg

M. F. Mokbel
Department of Computer Science and Engineering, University of Minnesota - Twin Cities,
200 Union Street SE, Minneapolis, MN 55455, USA
e-mail: mokbel@cs.umn.edu

W. G. Aref
Department of Computer Science, Purdue University, 305 N. University St., West Lafayette,
IN 47907, USA
e-mail: aref@cs.purdue.edu

Geoinformatica

1 Introduction

The widespread of location-detection devices makes it possible to exploit new
functionalities that result in new personalized services based on user locations.
These new functionalities go way beyond the simple object finder services that are
represented by either simple range or nearest-neighbor queries. In this paper, we
focus on one of these new functionalities, in particular, the continuous aggregate k-
nearest-neighbor queries. While traditional nearest-neighbor queries aim to find the
k-nearest objects to only one certain point, the aggregate k-nearest-neighbor queries
aim to find the k-nearest objects to a set of multiple points. In that sense, the query
answer to the aggregate k-nearest-neighbor query needs to be defined through an
aggregate to define how an object is considered close-by to the set of multiple points.

In general, the aggregate k-nearest-neighbor query problem can be formulated as
follows: Given two sets of data points O and L, find the closest k points from O to
all points in L based on a certain aggregate function f . Figure 1 illustrates the use of
three different aggregate functions that may be used to define the query answer. In
this figure, L1, L2, and, L3 are the set of multiple points L that we need to compute
their aggregate k-nearest objects among the set of points O that includes objects O1

to O15. Figure 1a–c represent the cases where the aggregate function f is sum, max,
and min, respectively. For simplicity, we consider k = 1. In this case, Fig. 1a considers
the sum nearest neighbor query where O14 is the object whose sum of distances to
L1, L2, and, L3 is minimal. On the other side, Fig. 1b considers the case of maximum
nearest-neighbor query where O9 is the object whose maximum distance to any of
L1, L2, and, L3 is minimal. Finally, Fig. 1c depicts the case of minimum nearest-
neighbor query where O6 is the object whose minimum distance to any of L1, L2,
and L3 is minimal.

The term “aggregate nearest-neighbor query” is coined in the literature in the
context of spatial databases [29, 36] to refer to the case of several parties that look
for a meeting point while minimizing a certain aggregate function with respect to all
parties in the Euclidean space [29] and road networks [36]. Both proposed solutions
in [29, 36] focus only on the case of snapshot queries, i.e., they do not maintain the
result in case of location updates.

In this paper, we overcome the limitations and overhead of re-evaluating previous
snapshot-based approaches upon location updates. Indeed, we consider the problem

(a) Sum (b) Max (c) Min

Fig. 1 Examples of aggregate nearest neighbor queries

Geoinformatica

of continuous k-aggregate nearest-neighbor queries (CANN) where we aim to
continuously find the closest k moving objects from the set O to a set of stationary
points L—the landmarks. The set of moving objects O are continually changing their
locations. We aim to provide an incremental algorithm in which we maintain an initial
answer with slight overhead rather than reevaluating the query with each movement
update. Our problem setting has several real life applications. For example, consider
a franchise with L locations that wants to send k e-coupons every few minutes to
a set of close-by customers among all customers O who are driving their vehicles.
It is of interest to the franchise to carefully select these k customers as the current
close-by customers to the L locations. The close-by customers can be represented
as either sum, minimum, or maximum distance. As an illustration, consider that L1,
L2, and L3 in Fig. 1 are the locations of a certain franchise that aims to send one
e-coupon. The coupon can be sent to that customer with minimum sum, max, or, min
distance to the three franchise locations. It is up to the franchise to choose any of the
three aggregate functions as any of them will make sense in terms of choosing the
best k customers. Thus, we aim to incorporate the three aggregate functions in our
approach.

Our proposed algorithms for the continuous k-aggregate nearest-neighbor queries
rely on combining the aggregate computation with the sorting and top-k selection
in a way that limits the expensive aggregate computations and sorting to only few
objects that have the potential to be part of the answer, i.e., top-k. In this context,
we propose two algorithms, namely, H-CANN and P-CANN. The first algorithm
is a holistic algorithm; it takes into account all landmarks when it decides whether
or not to prune an object from being part of the answer. On the other hand, P-
CANN is a best-effort progressive algorithm that eagerly prunes moving objects,
even during the computation of the aggregate distance of the moving objects to the
landmarks. P-CANN exploits some interesting geometric properties of the aggregate
distance functions to assign a threshold to each landmark. These assignments impose
an optimization problem, which is to have an interesting landmark order. We give
several heuristics to retrieve the best order, and show through experiments the best
policy to use for each aggregate function. P-CANN is a “best-effort” algorithm,
it might only produce the k′ aggregate nearest neighbors, where k′ < k. In the
experimental section, we show that, on the average, k′ ≈ 0.95k.

None of the proposed algorithms need to recompute the query answer to maintain
the query answer continuously. In fact, all the proposed algorithms update the query
answer on the fly whenever a location update is made available from the underlying
infrastructure.

The contributions of this paper can be summarized as follows:

– We propose two algorithms (H-CANN and P-CANN) to retrieve the aggregate-
nearest neighbors of a set of landmarks in a moving object database.

– We introduce several policies (first-fit, best-fit, and worst-fit) to determine the
order of landmarks upon assigning pruning thresholds to each landmark in P-
CANN.

– We perform an extensive performance evaluation of the proposed algorithms,
and state the cases in which each algorithm is performing best. Experimental
results show a factor of up to 3 improvement in performance over existing state-
of-the-art algorithms.

Geoinformatica

The rest of the paper is organized as follows. Section 2 highlights related work.
Section 3 gives some preliminaries, including the system environment, the formal
problem definition, and a classification of the aggregate distance functions. We
propose H-CANN and P-CANN in Sections 4 and 5, respectively. In Section 6,
we evaluate the proposed techniques through an extensive experimental study. We
conclude the paper by a summary and final remarks in Section 7.

2 Related work

Over the last decade, there has been several works that address the issue of continu-
ous queries over moving objects (e.g., [8, 9, 12, 14, 16, 17, 20, 22, 25, 26, 30–32, 35, 37]).
However, most of these works focus on the case of range queries [8, 12, 14, 25]
and nearest-neighbor queries [9, 16, 26, 27, 30, 32, 35, 37]. Recently, there has been
increasing interest in supporting other kinds of continuous queries, e.g., density
queries [13, 18], reverse-nearest-neighbor queries [19, 34], closest pair queries [33],
medoid queries [33], and skyline queries [15]. Up to the authors’ knowledge, the
problem of continuous k-aggregate nearest-neighbors has not been addressed before.

Most related to our work are the group-nearest-neighbor query (GNN) and
the aggregate-nearest-neighbor query (ANN). The GNN query retrieves the object
whose sum of distances to group members is minimal (e.g., [21, 28]). The ANN query
(e.g., [29, 36]) is a generalization of the GNN query: besides the sum function, other
aggregate functions are considered such as the maximum and the minimum of the
distances to group members. This problem has been investigated for both spatial
data that uses Euclidean distances [29] and for road networks [36] where the distance
between two points is the sum of the road segments that constitute the shortest path
between these two points. The algorithms in [29] and [36] are progressive where
one uses an iterator interface on top of them and call “getNext()” to retrieve the
next aggregate nearest neighbor. However, they are not incremental. They work
on snapshot queries. If the objects are to change their location, the query has to
be recomputed from scratch. The proposed techniques are focused on continuous
queries.

There has been not much work on the continuous version of the aggregate nearest
neighbor problem. Conceptual partitioning algorithm (CPM), which is originally de-
signed for the continuous monitoring of nearest neighbor queries, has been extended
to the aggregate nearest neighbor queries [26]. Since we are comparing against CPM
in the experimental section, we summarize CPM in the following section.

2.1 Conceptual partitioning algorithm

The conceptual partitioning algorithm (CPM) is an efficient method for monitoring
continuous nearest neighbor queries. It assumes that the moving objects are indexed
by a main-memory grid. The size of each grid cell is the same, say δ × δ. Each grid
cell is associated with the moving objects located therein.

The main module of CPM is the nearest-neighbor computation algorithm. For
each submitted query, this module is invoked to compute the initial results of the
query. CPM organizes the grid cells based on their proximity to the query region.
This organization provides a natural order of the grid cells to be processed so as to

Geoinformatica

minimize the probed cells during the search. The probed cells are referred to as the
inf luence region.

With the arrival of the location updates from the moving objects, only these
updates affecting the influence region are considered for the maintenance of the
query results.

The CPM algorithm is extended to answer the aggregate nearest neighbor queries
as shown in Fig. 2. The minimum bounding rectangle (mbr) of the query points
{L1, L2, L3} is calculated, and the space is partitioned around it as rectangles as
shown in Fig. 2a. After the initial aggregate nearest neighbor computation, the
influence region is determined. Figure 2b shows the influence region for this query
when the aggregate function f = sum. For details, the reader is referred to [26].

Both the CPM algorithm and our proposition use the Euclidean distance as the
distance metric when computing the aggregate distance function.

2.2 The spatio-temporal histogram (ST-histogram)

Introduced in [11], the ST-histogram provides for the selectivity estimation of moving
objects. Rather than examining and/or sampling all incoming location updates, ST-
histograms are built and maintained by monitoring the actual selectivities of the
outstanding continuous queries. The ST-histogram returns the selectivity of the
objects located inside any polygon-shape.

The ST-histogram is a grid-based selectivity estimator. Each grid cell contains the
selectivity of the objects residing within. Using a feedback from the query processor
about the actual selectivity of a query, the grid cells are updated accordingly to reflect
this feedback on the estimator.

(a) Partitioning into Rectangles (b) Influence Region

Fig. 2 Conceptual partitioning (CPM) algorithm

Geoinformatica

3 Preliminaries

3.1 System environment

For the rest of this paper, we assume an environment where each of the moving
objects is equipped with a location detection device, e.g., a GPS. The moving objects
will report their location periodically every time unit.

For the continuous query evaluation of spatio-temporal queries, there are two
models of handling the location updates. (1) The updates are pushed into the query
processor as soon as they are available (e.g., as in [24]). (2) The query processor pulls
the current location of the objects for execution in order to update the query answer
(e.g., as in [25]). In this paper, we assume the first model, where the query answer
gets updated whenever location updates are made available to the algorithm.

3.2 Formal problem definition

The continuous aggregate nearest neighbor query is defined as follows. The
query is defined with the following parameters: (1) A set of N landmarks L =
{L1, L2, . . . , LN}, (2) a set of M moving objects O = {O1, O2, . . . , OM}, whose
location updates arrive as a stream, and (3) an aggregate distance function f . The
query continuously retrieves the object Oc whose aggregate distance according to
L is minimum. The aggregate distance of any object Oi is denoted by Di and
is computed from the Euclidean distance between the moving object and all the
landmarks. Therefore,

Di = f N
k=1(||Oi − Lk||)

3.3 Classification of aggregate functions

We classify the aggregate functions into two classes, A and B, based on their
evaluators (defined below).

Definition 1 The evaluator E with order m of an aggregate function f (that takes a
vector X as its parameter) is defined as the value of the aggregate function f on the
first m components of X, i.e.,

E(f (X), m) = f (x1, x2, . . . , xm)

The evaluator E of a function f with order m is monotonically increasing with respect
to m iff m ≥ m′ ⇒ E(f, m) ≥ E(f, m′).

Definition 2 Class A aggregate function (e.g., sum and max) is an aggregate func-
tion whose evaluator is monotonically increasing with respect to its order. Class
B aggregate function (e.g., min) is an aggregate function whose evaluator is not
monotonically increasing with respect to its order.

The aggregate functions that are described in this paper are aggregate distance
functions, where the aggregation occurs on the Euclidean distance between an object
and each landmark. The first holistic algorithm, H-CANN, may be applied using any

Geoinformatica

aggregate distance function. However, P-CANN works only for Class A aggregate
distance functions. Class A aggregate distance functions have interesting properties
that will be exploited in Section 5.

3.4 Loci of aggregate distance functions

Aggregate functions whose parameters are Euclidean distances from a point to a set
of landmarks have interesting loci [29]. We use the properties of these loci in the
design of P-CANN.

The loci of the points in space with the same sum aggregate distance form a closed
shape. The landmarks form the foci of this shape. The resulting shape for sum is
smooth; i.e., it is differentiable.

Similarly, the loci of the points in space with the same max aggregate distance
form a closed shape. The landmarks form the foci of this shape. For N foci and for
an aggregate distance d, the resulting shape is the intersection of N circles with radii
d. The centers of these circles are the foci.

Nevertheless, the loci of the points in space with the same min aggregate distance
form a shape that is not necessarily closed. The landmarks form the foci of this shape.
The resulting shape may contain holes and it may be non continuous. Typically, for
N foci and for an aggregate distance d, the resulting shape is the union of N circles
with radii d. The centers of these circles are the foci.

These loci form a family of concentric curves. The number and location of the
landmarks as well as the aggregate distance function determine the shape of the
family of curves. For Class A aggregate distance functions, the loci are closed and
convex. Moreover, the center of the convex shape is the centroid of the aggregate
distance function.

Figure 3a–c show the families of curves for different aggregate distance functions
when the number of landmarks is 3. An outer locus in these figures corresponds to a
larger aggregate distance than an inner locus.

3.5 Frequently used symbols

Table 1 summarizes the primary symbols used throughout the paper.

(a) sum (b) max (c) min

Fig. 3 Family of equal aggregate distance shapes

Geoinformatica

Table 1 Frequently used symbols

Symbol Description

k The target answer set size
f The aggregate distance function
O The set of moving objects
L The set of landmarks
M The number of moving objects
N = |L| The number of landmarks
Oi The ith object
Li The ith landmark
di The distance to the ith landmark
Di The aggregate distance function of the ith object
O(k) The kth aggregate nearest neighbor object
D(k) The aggregate distance function of O(k)

m The order of the aggregate distance function evaluator
E(f, m) The evaluator of the aggregate distance function f with order m
R H-CANN threshold: the safety margin
Ri The threshold associated with the ith landmark
Ci The locus associated with the ith landmark
ri The ith probed values in the unbounded binary search for Ri

� The maximum distance between consecutive location updates of any object
δ The grid cell length/width of the CPM algorithm

4 H-CANN: a holistic CANN algorithm

In this section, we present a holistic algorithm (H-CANN) that computes the CANN
query. H-CANN gets its input as a stream of location updates of the moving objects.
These locations are updated periodically. H-CANN is “holistic” in that it considers
the aggregate distance to all landmarks in order to compute a threshold. This
threshold will be used for deciding whether or not a moving object is part of the query
answer. The output of H-CANN is a stream of the object identifiers that belong to
the query answer at the current time period.

4.1 Algorithm overview

In this section, we present a high level description of H-CANN before we give the
details subsequently.

H-CANN incrementally evaluates the continuous aggregate nearest neighbor
queries. It keeps the current query answers in an answer set. The answer set is
represented by a data structure called HashedHeap (described in Section 4.4). The
HashedHeap is probed to get the aggregate distance of the kth nearest neighbor to
the landmarks, which is used to compute a threshold, R, as given in Section 4.3.

The current answer set is updated according to the location updates of the moving
objects. When a moving object, Oi, reports its location, its current location is used to
compute its aggregate distance to all landmarks (Di). If the answer set size is less than

Geoinformatica

k, this object is added to the query answer. Otherwise, the moving object’s aggregate
distance is compared against the threshold R. This comparison yields to the following
situations:

If Oi does not belong to the answer set:

– If Di < R, this object replaces the kth aggregate nearest neighbor. (case i)
– If Di ≥ R, this object is pruned. (case ii)

If Oi belongs to the answer set:

– If Di < R, this object location is updated in the answer set. (case iii)
– If Di ≥ R, there might be another candidate moving object, O j, that does

not belong to the answer set but has an aggregate distance, Dj, such that
Dj < Di. (case iv)

We overcome the uncertainty resulting from case iv, by extending the answer
set. The extended answer set will contain information about these candidate objects.
Therefore, we can capture O j as part of the answer set without any delays.

A moving object is candidate if there is a possibility that it becomes part of the
answer set if it continues its motion with the same speed and direction. The cache
region is the region that contains all the candidate objects. The safety margin is the
threshold R that will be used to prune the objects that are outside the cache region.
The computation of the cache region is given in Section 4.3. In the next section, we
illustrate a running example to show how H-CANN uses the extended answer set to
answer a continuous aggregate nearest neighbor query.

4.2 Running example

A running example is shown in Fig. 4a–e. The continuous aggregate nearest neighbor
query Q is submitted to the system with k = 2. Q has 3 landmarks (L1–L3). The
answer of Q should continuously report the current objects whose maximum distance
to all three landmarks is minimal. The first five location updates are being illustrated.
Each of these figures shows the execution of the algorithm upon the arrival of the
location update of one moving object.

The algorithm keeps track of the distance of the farthest object (the kth top object)
in the answer set from the landmarks. In fact, such object, referred to by O(k), is
the head of the HashedHeap and O(k)’s aggregate distance to all landmarks is D(k).
The top set of tables in Fig. 4 shows the extended answer set after the update is
handled. Each object is shown along with its aggregate distance to the landmarks.
Only the first k = 2 objects represent the answer set. The other elements represent
the cache region. A line is drawn between each moving object and its corresponding
farthest landmark to show the aggregate distance: the maximum distance to the three
landmarks for that object.

In this example, we assume that the maximum distance between two consecutive
location updates for any moving object is bounded by � = 3, which can be calculated
from the maximum speed of the moving object and the frequency with which it is
reporting its location. Therefore, the safety margin will be computed, as will be shown
in Section 4.3, by the formula R = D(k) + �.

Geoinformatica

Fig. 4 Execution of H-CANN with 3 landmarks ({L1, L2, L3}) and with an answer size k = 2 with a
max aggregate-distance metric

Assume that we start with a fresh system, where the result set is empty and no
location update has arrived yet. Upon the arrival of the first 2 location updates from
O1 and then O2 (Fig. 4a and b), both objects will be inserted in the HashedHeap since
the result set has not reached its capacity yet. Next, O3 reports its location. The head
of the HashedHeap is O(k) = O2, and the safety margin R = D2 + � = 6.083 + 3 =
9.083. O3 will be stored in the cache region since D(k) < D3 < R.

Next, O2 moves to a farther place and its location gets updated in the extended
answer set. Therefore, O3 is switched from the cache region to the answer set since
D3 < D2. Notice that O3 is the new head of the HashedHeap O(k). We compute the
new safety margin, R = D3 + � = 8.062 + 3 = 11.062. Since the safety margin got
increased, all elements existing in the cache region will remain in it.

Last, a new object O4 reports its location (D4 = 5.831). Because D4 < D3, O4

makes it to the answer set and becomes the new head of the HashedHeap, pushing
O3 to the cache region. We recompute the new safety margin, R = 5.831 + 3 = 8.831.
Then, we truncate the cache region by removing O2 that has an aggregate distance
larger than the safety margin.

H-CANN uses one threshold (the aggregate distance of the farthest object in the
answer set) to prune the moving objects after it computes the aggregate distance.

Geoinformatica

In Section 5, we propose a progressive algorithm that associates a tight threshold
for each landmark. These thresholds will be used to prune objects during the
computation of the aggregate distance of the objects.

4.3 Computation of cache region

Assume that an object, say Oi, does not make it to the answer set because it has an
aggregate distance larger than that of the head of the HashedHeap, say O j. Assume
that O j moves and becomes farther from the landmarks than Oi. If we do not save the
previous location update of Oi, Oi will not be able to make it to the answer set until
Oi’s next location update. We solve this problem by storing some moving objects in
a cache region. In Fig. 5, the distance between two location updates of an object O
is bounded by �, e.g., based on maximum object speed and the two consecutive time
durations between the object updates. Therefore, the new distance of this object to
any landmark (d′

i) is bounded by the sum of � and the old distance to this landmark,
di, (triangle inequality). In other words, d′

i < di + �. Therefore, the new aggregate
distance (D′

i) might at most be larger than the old aggregate distance (Di) by � in
case of a min or max aggregate distance function; i.e., D′

i < Di + �. In the case of the
sum aggregate distance function, the difference will be at most � times the number
of landmarks, N; i.e., D′

i < Di + N ∗ �.
If D(k) is the aggregate distance of the head of the HashedHeap, the safety margin,

say R, will have the value of R = D(k) + � in the case of max or min aggregate
distance function. When the aggregate distance function is sum, the safety margin
will be R = D(k) + N ∗ �. An object O that does not qualify into the answer set will
be inserted into the cache region if O’s aggregate distance does not exceed the safety
margin.

4.4 Data structures

We use a data structure, termed HashedHeap, to maintain the answer set of the
proposed algorithms. A HashedHeap consists of a descending priority queue (a heap)
and a hash table that hashes into the elements inside the priority queue. The objects
are ordered in the priority queue according to the aggregate distance from a set
of landmarks. The hash table provides a way to efficiently locate internal nodes in

Fig. 5 Cache region
computation

Geoinformatica

the priority queue using the moving-object identifier. The head of the HashedHeap,
which is the front of the priority queue, has the largest aggregate distance.

The answer set is extended with a cache region. The cache region stores moving
objects that are not part of the answer set, but may become part of it in case a member
of the answer set moves farther away from the landmarks. The cache region, which
was previously used in [22], is stored in another data structure called HashedList. The
HashedList consists of a sorted doubly linked list and a hash table that hashes into
the elements inside the sorted doubly linked list using the moving-object identifier.
The objects are ordered in an ascending order in the list according to the aggregate
distance from a set of landmarks. The head of the HashedList, which is the front of
the doubly linked list, has the smallest aggregate distance in the list. The tail of the
HashedList has the largest aggregate distance in the list.

The extended answer set In the following, we refer to the union of the answer set
(HashedHeap) and the cache region (HashedList) by the extended answer set (see
Fig. 6). When we insert a new moving object Oi in the extended answer set, we try to
insert it into the HashedHeap first. If the HashedHeap does not reach its capacity, say
k, the object gets inserted successfully. Otherwise, we compare Oi with the head of
the HashedHeap, O(k). The object that has a smaller aggregate distance will remain
in the HashedHeap, whereas the other object will be inserted into the cache region,
the HashedList. At any point in time, the cache region will be truncated according to
the safety margin.

The same logic holds in the following cases: (1) if an object in the HashedHeap
updates its location, it is compared with the head of the HashedList. (2) if an object in
the HashedList updates its location, it is compared with the head of the HashedHeap.
In these two cases, the object that has a smaller aggregate distance will remain in the
HashedHeap, whereas the other object will be inserted into the cache region, the
HashedList.

Fig. 6 The extended answer set

Geoinformatica

4.5 Algorithm details

H-CANN has three inputs. The first input is k, the answer set size. The second input
is the set of moving objects that will report their location updates periodically. The
third input is the set of landmarks to which the aggregate distance is computed.
Algorithm 1 gives the pseudocode of H-CANN. Whenever a CANN query is issued,
the extended answer set is initially empty (lines 2 and 3). For each arriving location
update loc, the algorithm proceeds as follows (lines 5–23). Let the object Oi be the
object whose location is loc. We compute its aggregate distance to all landmarks in
line 7.

Algorithm 1 Holistic algorithm for CANN
1: Function H-CANN(int k, MovingObjects O, Landmarks L)
2: S is the extended answer set (S := HashedHeap ∪ HashedList)
3: S = φ

4: while the query is active do
5: look for a newly received location update loc
6: Oi is the object whose location update is loc
7: Di ← the aggregate distance of Oi to L
8: if Oi /∈ S then
9: R ← the safety margin

10: if |S| < k or Di < R then
11: S = S ∪ {Oi}
12: if Oi = S.HashedHeap.head then
13: R ← re-compute the safety margin
14: truncate S.HashedList
15: end if
16: end if
17: else
18: update Oi’s location in S
19: R ← re-compute the safety margin
20: if S.HashedHeap.head has changed or Di > R then
21: truncate S.HashedList
22: end if
23: end if
24: end while

First, consider when Oi does not exist in the extended answer set (lines 9–16). We
compute the safety margin (line 9). We have two cases: (1) the extended answer set
size is less then k, and (2) the aggregate distance of Oi to all landmarks is smaller
than the safety margin. In these two cases, Oi is added into the extended answer
set (line 11). This means that Oi is either added to the HashedList (for Case 2) or
to the HashedHeap (for Case 1) (possibly pushing an object from the HashedHeap
to the HashedList as described before). In Case 1, if Oi becomes the head of the
HashedHeap, we recompute the safety margin, and possibly truncate the HashedList
accordingly (lines 12–15).

Next, consider when Oi already exists in the extended answer set (lines 17–23).
We update the location of Oi in the extended answer set S (line 18). This update
may incur moving its position within either the HashedHeap or the HashedList, or

Geoinformatica

even across them. Then, we re-compute the safety margin in line 19. If the head of
the HashedHeap has changed, we truncate the HashedList (line 21).

5 P-CANN: a progressive algorithm for CANN

In this section, we propose P-CANN, a best-effort progressive algorithm for comput-
ing and maintaining the answer of CANN over a period of time. P-CANN is designed
for Class A aggregate functions. Having a monotonically-increasing evaluator for the
aggregate function is necessary for the correctness of this algorithm that has superior
performance than H-CANN (see Section 6).

P-CANN is a best-ef fort algorithm. It achieves great improvement in performance.
However, it might produce the k′ aggregate nearest neighbors, where k′ < k. In
Section 6, we show that P-CANN may produce about 95%–98% of the target answer
size.

P-CANN is a progressive algorithm. A threshold is associated with each landmark.
This threshold is used to prune the moving objects from being part of the query
answer. In contrast to H-CANN that has one threshold for pruning the objects, P-
CANN has a threshold per landmark that provides tighter bounds for pruning.

We start with an overview of P-CANN in Section 5.1. Next, we give the P-CANN
algorithm that answers a continuous aggregate nearest neighbor query in Section 5.2.
Finally, we show how to compute the thresholds associated with each landmark in
Section 5.3.

5.1 Overview of P-CANN

In this section, we present an overview of the logic of P-CANN. First, a suitable
ordering of the landmarks is determined and a threshold is associated with each
landmark. The thresholds are computed such that they are used to prune the
objects during, and not after, the evaluation of the aggregate distance function. The
landmarks are ordered in such a way to reduce the distance computations. The details
of computing the thresholds and figuring out a good landmark ordering are given in
Sections 5.3 and 5.4, respectively.

We illustrate, in Fig. 7a–d, the search space and its progressive reduction using
a running example of four landmarks L1, L2, L3, L4 and a sum aggregate distance
function. The thresholds associated with these landmarks are R1, R2, R3, R4, respec-
tively. In each of the figures, the black-colored region represents the domain of the
objects with an evaluator E(sum, i) that has a value larger than Ri. The enclosed
white-colored region is the domain of the objects with an evaluator E(sum, i) ≤ Ri.

First, the evaluator with Order 1 is computed and compared against R1. An
object is pruned during the evaluation of its aggregate distance if it lies in a black-
colored region. Otherwise, we continue computing the evaluator with the higher
order. This process continues until the evaluator with Order N is reached (number of
landmarks is N = 4). The CANN query answer consists of objects with an evaluator
E(sum, 4) ≤ R4.

Algorithm 2 shows how the thresholds are used within the computation of the
aggregate distance (ComputeAggDistOrPrune), which will return infinity if the
object may be pruned. Typically, after updating the running aggregate value (line 7),

Geoinformatica

(a) E(sum, 1) £ R1 (b) E(sum, 2) £ R2

(c) E(sum, 3) £ R3 (d) E(sum, 4) £ R4

Fig. 7 Progressive reduction of P-CANN search space. The silver stars represent the foci of the locus
of E(sum, i) ≤ Ri

Algorithm 2 Compute aggregate distance for P-CANN
1: Function ComputeAggDistOrPrune(MovingObject Oi, Landmarks L,

Thresholds R)
2: f is the aggregate function
3: aggValue = 0
4: N = |L|
5: for k = 1 · · · N do
6: d ← distance from Oi to Lk

7: aggValue ← f (aggValue, d)

8: if aggValue > Rk then
9: /*aggValue = E(f, k)*/

10: return ∞
11: end if
12: end for
13: return aggValue

the running aggregate value is checked against a threshold associated with the current
landmark. If the running value exceeds the threshold, the object is pruned without
the need to continue its aggregate distance computation (lines 8–11).

Geoinformatica

5.2 P-CANN algorithm

Algorithm 3 gives the outline of P-CANN. The algorithm maintains the answer set
in a HashedHeap. This set is initialized at the beginning of the algorithm (lines 2–4).

First, we start by optimizing P-CANN. This optimization consists of computing
the thresholds that will be assigned to each landmark in line 5, and will be used to
prune the moving objects. The algorithm proceeds by looking for the newly arriving
location updates of the moving objects. The thresholds assigned to each landmark
are used to prune objects upon the computation of their aggregate distance from the
landmarks (line 9). For an object that belongs to the answer set, if it is to be pruned, it
is removed from the HashedHeap (lines 11–13). However, if the object is not pruned,
its location will be updated in the answer set (lines 15 and 16).

Algorithm 3 Progressive algorithm for CANN
1: Function P-CANN(int k, MovingObjects O, Landmarks L)
2: S is the HashedHeap containing the answer set
3: N = |L|
4: S = φ

5: R[1 · · · N] ← ComputeThresholds(L)

6: while stopping condition not met do
7: look for a newly received location update loc
8: Oi is the object whose location update is loc
9: Di ← ComputeAggDistOrPrune(Oi, L, R)

10: if Di = ∞ then
11: if Oi ∈ S then
12: remove Oi from S
13: end if
14: else
15: if Oi ∈ S then
16: update the location of Oi in S
17: else
18: if |S| < k then
19: insert Oi in S
20: else
21: Ok is the furthest object in S from L
22: Dk ← the aggregate distance of Ok to L
23: if Di < Dk then
24: replace Ok by Oi in S
25: end if
26: end if
27: end if
28: end if
29: end while

On the other hand, for the non-pruned objects, the following occurs. If the answer
set contains less than k objects, the object is added to the HashedHeap (lines 18 and
19). Otherwise, the aggregate distance of any such object will be compared with the
aggregate distance of the farthest object in the answer set. The object with the smaller
aggregate distance will dominate and will remain in the answer set. The other object
gets pruned (lines 21–25).

Geoinformatica

Computing tight thresholds for the landmarks to prune many objects is essential
for P-CANN to achieve high performance. This process involves two main steps. The
first step is to determine the order of the landmarks that will be used in computing
the aggregate function in ComputeAggDistOrPrune. The second step is computing
the thresholds given the landmarks order determined in the first step. We start with
the second step in Section 5.3, and defer the details of the first step to Section 5.4.

5.3 Computing the thresholds

5.3.1 Overview

The order of the landmarks that is used in the aggregate distance evaluator is
reversed when we compute the thresholds. For N landmarks, RN is computed before
RN−1, which in turn is computed before RN−2, and so on. We highlight the main idea
of such computation as:

– RN is computed such that at least k moving objects have their aggregate distance
less than RN ; i.e., their evaluator E(f, N) < RN .

– For the threshold Ri, where 1 ≤ i < N: Any moving object, whose evaluator
E(f, i + 1) < Ri+1, must have its evaluator E(f, i) < Ri. Otherwise, the moving
object will be incorrectly pruned in ComputeAggDistOrPrune.

Therefore, with the help of a selectivity estimator (details below), RN may be
calculated by searching for it such that the locus of DN = E(f, N) < RN forms
a shape that contains at least k objects. Moreover, for 1 ≤ Ri < N, Ri may be
calculated by searching for it such that the locus of E(f, i) < RN forms a shape that
contains the shape representing the locus of E(f, i + 1) < Ri+1. Figure 8a–d illustrate
the steps to compute the thresholds in our running example.

5.3.2 Running example

In line 7 of ComputeAggDistOrPrune, the threshold of any landmark Li is com-
pared against f (d1, d2, . . . , di), where di is the distance between the moving object
and the ith landmark.

We show the details of the computation of the thresholds using two parallel
example queries in the case of sum and max aggregate distance functions. Figure 9a
and b show the loci of aggregate distance functions in the case of the landmarks
{L1, L2, L3, L4} for both functions, sum and max, respectively. The light gray curve,
C4, represents the locus of the points in space whose aggregate distance from the
landmarks {L1, L2, L3, L4} is R4. The black curve, C3, represents the locus of the
points in space whose aggregate distance from {L1, L2, L3} is R3. Similarly, the white
curve, C2, represents the locus of the points in space whose aggregate distance from
{L1, L2} is R2. Finally, the dark gray curve, C1, represents the locus of the points in
space whose aggregate distance from landmark L1 is R1 (N = 4 in this example).

5.3.3 Details: computing RN

We start by searching for RN using a spatio-temporal selectivity estimator called the
ST-histogram [11]. The ST-histogram performs an unbounded binary search [6] to

Geoinformatica

(a) The black shape, E(sum, 4) £ R4,
contains k objects

(b) The circumference of the black
shape, E(sum, 3) = R3, is tangent to
the white shape, E(sum, 4) £ R4

(c) The circumference of the black
shape, E(sum, 2) = R2, is tangent to
the white shape, E(sum, 3) £ R3

(d) The circumference of the black
shape, E(sum, 1) = R1, is tangent to
the white shape, E(sum, 2) £ R2

Fig. 8 Calculating the thresholds: overview

find out the value RN of the aggregate distance function f (d1, d2, . . . , dN) whose
locus contains at least k objects. The unbounded binary search is a logarithmic
algorithm. In this search, the current probed value of the aggregate distance defines
the current probed locus. Figure 10 shows an example of applying the unbounded
binary search to find a threshold RN , where the probed values of the aggregate
distance are r1, r2, . . . , r6.

The ST-histogram estimates the selectivity of the moving objects that exist in any
polygon. A polygon approximating the locus of each aggregate distance function is
sent to the ST-histogram to return its selectivity. The vertices of the polygon are
sampled from the locus. For a Class A aggregate function, the center of the convex
shape is the centroid of the aggregate distance function. We perform a rotational
plane sweep from the centroid to get the samples. After each degree of rotational
sweep, one sample is collected using another unbounded binary search starting from
the centroid and in the direction of the sweep. Points that exist inside the locus
will have a smaller aggregate distance value, whereas points outside the locus will
have a larger aggregate distance value. A point P is a sample vertex of the polygon
when P minimizes the distance between the aggregated value of the probed locus
and P’s aggregate distance on the segment from the centroid and in the direction of
the sweep. The other vertices will be retrieved in the same way after rotating more
degrees in the rotational sweep.

Geoinformatica

(a) f = sum (b) f = max−loci thickened for illustration

Fig. 9 Use of the loci of aggregate distance functions in computing the thresholds. Ci represents
E(f, i) = Ri

5.3.4 Details: computing Ri, 1 ≤ i < N

In the case where the aggregate distance function is max, the locus of the aggregate
distance function is the intersection of N circles, all of which have the same radius.
Therefore, the thresholds of the subsequent landmarks, R1, R2, . . . , RN−1, are the
same as the threshold of the Nth landmark.

On the other hand, for the sum aggregate distance function, the thresholds of the
subsequent landmarks are computed as follows in the order RN−1, . . . , R2, R1. First,
the Nth landmark is eliminated and we compute RN−1 from the other landmarks.
Next, the (N − 1)st landmark is also eliminated and we compute RN−2 from the
remaining landmarks, and so on.

To compute R j, we perform an unbounded binary search [6] to find
out the value of Ri = f (d1, d2, . . . , d j) whose locus contains the locus of

Fig. 10 Unbounded binary
search to compute RN

Geoinformatica

R j+1 = f (d1, d2, . . . , d j+1). Consequently, R j will not prune any moving object that
passes R j+1.

The loci of f (d1, d2, . . . , d j+1) = R j+1 and of f (d1, d2, . . . , d j) = R j are approxi-
mated with polygons during the containment test.

For a convex polygon to be contained in another convex continuous locus, only
the vertices of the first polygon need to be tested for containment inside the locus.
The test for containment is simply to check the sign of the difference between the
current threshold, R j, and the aggregate distance function to the first j’s landmarks,
f (d1, d2, . . . , d j). If the sign is positive, the vertex is inside the second locus, and vice
versa.

Figure 11a shows a containment test of a locus C5 inside a locus C4. This
figure shows that the approximation of the locus C5 using an inscribed polygon
A0 A1 A2 A3 . . . may produce a false-positive containment test. This is why we use
the circumscribing polygon that is formed by the tangents to the locus at the sample
locus points. Figure 11b shows the containment test of C5 inside C4 using the
circumscribing polygon B0 B1 B2 . . ., which does not produce any false-positive tests.

We compute the tangents of the locus of the sum aggregate distance function
analytically as follows. Let X be a sample point on the locus of f (X) = ∑ ||X − Li||.
For any point X = (x, y) and landmark Li = (Li.x, Li.y), the following equations are
used to compute the slope of the tangent at X.

f (x, y) =
N∑

i=1

√
(x − Li.x)2 + (y − Li.y)2

∂ f (x, y)

∂x
=

N∑

i=1

x − Li.x
√

(x − Li.x)2 + (y − Li.y)2

∂ f (x, y)

∂y
=

N∑

i=1

y − Li.y
√

(x − Li.x)2 + (y − Li.y)2

(a) Inscribed polygon A0 A1A2 A3 · · · may
produce false-positive containment test

(b) Circumscribing polygon B0 B1 B2 · · ·
does not produce false-positive containment
test

Fig. 11 Approximating the locus of the curve for the containment test

Geoinformatica

� f (x, y) =
[

∂ f (x, y)

∂x
,
∂ f (x, y)

∂y

]

dy
dx

= −∂ f (x, y)/∂x
∂ f (x, y)/∂y

In Section 6, we show that the time required to compute the thresholds and to
figure out the order of the landmarks is very small.

5.4 Determining the order of the landmarks

The order of the landmarks in computing the aggregate distance function in
ComputeAggDistOrPrune determines how many moving objects are pruned after
computing the distance to each landmark. Different orderings lead to different loci,
which lead into a different total number of distance computations. Notice that the
moving objects that are located inside any locus have their aggregate distance within
the corresponding threshold. Therefore, all moving objects are tested against R1.
Only those that are located inside the dark gray circle in Fig. 9 are tested against R2;
the others are pruned. Similarly, only those moving objects inside the white curve
are tested against R3, and so on. Consequently, the number of distance computations
against any threshold is proportional to the selectivity of the enclosing locus.

As pointed out in Section 5.3, we need to figure out an elimination order for
the landmarks. The N landmarks can be ordered in N! different ways. However,
it is prohibitively expensive to perform an exhaustive search on the order amongst
the N! to find the order producing the least total execution cost. We propose three
elimination order policies to achieve a practical elimination order for the landmarks.
We term the three policies are f irst-f it, best-f it, and worst-f it elimination orders.

Definition 3 The first-fit elimination order is an elimination policy in which, at each
elimination decision, the first landmark in the remaining landmarks is chosen for
elimination.

Definition 4 The best-fit elimination order is an elimination policy in which, at each
elimination decision, the landmark, whose elimination results in a shape with smallest
number of distance computations, is chosen for elimination.

Definition 5 The worst-fit elimination order is an elimination policy in which, at each
elimination decision, the landmark, whose elimination results in a shape with largest
number of distance computations, is chosen for elimination.

The first-fit elimination order picks the next to-be-eliminated landmark in con-
stant time, and thus the total time for determining the landmarks order is O(N).
On the other hand, the best-fit and worst-fit elimination orders pick the next to-be-
eliminated landmark in a linear time (with respect to the number of landmarks), and
hence require a total time for determining the order to be O(N2).

Geoinformatica

The rational behind the best-fit elimination policy is to try to locally minimize
the number of distance computations for the current landmark given the already
determined landmarks. Nevertheless, the rational behind the worst-fit elimination
policy is to minimize the ratio of the number of distance computations performed
against a landmark and the number of distance computations performed against the
prior landmark.

For the sake of presentation, and without loss of generality, we assume in this
paragraph that the moving objects are uniformly distributed in the space. For the
general case, ST-histogram is consulted to get the selectivity of any locus as described
earlier in the paper. Under such assumption, the number of distance computations
against a landmark is proportional to the area of the locus associated with prior land-
mark. Figure 12a–d show the shapes corresponding to three landmarks L1, L2, L3

when the best-fit and worst-fit elimination policies are adopted for both aggregate
distance functions. In the best-fit elimination policy, the landmarks are eliminated
in the order L2 and then L3 producing the loci B1, B2, and B3 respectively.
Consequently, the thresholds corresponding to the landmarks L1, L3, and then L2

are probed in this order. On the other hand, in the worst-fit elimination policy, the
landmarks are eliminated in the order L3 and then L2. Therefore, the thresholds
corresponding to the landmarks L1, L2, and then L3 are probed in this order.

Fig. 12 Examples of different
elimination orders for sum (a,
b) and max (c, d)

(a) best-fit (b) best-fit

(c) worst-fit (d) worst-fit

sum max

Geoinformatica

5.5 Re-optimizing P-CANN

The P-CANN query optimization process results in the execution plan that will
be used to evaluate the continuous aggregate nearest neighbor query answer. The
output of the optimization consists of:

– The order of the landmarks that will be used in computing the aggregate distance
of the moving objects.

– The thresholds associated with each landmark.

This optimization process depends on a selectivity estimator. Since CANN is
a continuous query, the selectivities of the moving objects will change over time.
Consequently, the query execution may be sub-optimal for two reasons: (1) There
might be too many objects that move towards the region containing the query answer.
Therefore, the pruning of many objects will be deferred during ComputeAggDis-
tOrPrune until more landmarks are probed. (2) If many objects, whose aggregate
distance is below RN , move farther away from the region containing the query
answer, the query answer size might be much less than the target k.

In these two cases, the P-CANN query needs to be re-optimized to get a better
execution plan. The frequency upon which we will need to re-optimize depends on
how the selectivities change over time. The first case is detected when the condition
in line 23 of Algorithm 3 is invalid too frequently, which may be verified with a higher
selectivity estimation of the query answer region. The second case is trivially detected
when the query answer size gets much less than k for an extended period.

During the mid-query re-optimization, the execution for P-CANN is suspended.
The query is then re-optimized before the execution is resumed with the new plan.
P-CANN queries have a state associated with it: the answer set (HashedHeap). The
new query evaluation plan will have the same state of the old plan. However, they
differ in the thresholds associated with the landmarks, and possibly the order of the
landmarks used in the aggregated distance computation.

Consider a continuous aggregate nearest neighbor query that runs for a period T
without the need for re-optimization. In Section 6.5, we show that the optimization
cost (in time units) is noticeably small compared to T. For instance, a query might
remain optimal during a rush hour, continues to execute, and then needs to be re-
optimized during a non rush hour.

6 Experimental analysis

We perform extensive experiments to evaluate the performance of the proposed
algorithms. In these experiments, we compare the algorithms proposed in this paper
with the state-of-the-art algorithm for the continuous aggregate nearest neighbor
queries for moving objects; the conceptual partitioning (CPM) algorithm [26].1 We

1The authors of conceptual partitioning kindly provided us with their code of CPM.

Geoinformatica

implemented the proposed algorithms in PLACE, a prototype spatio-temporal data
stream management system [23]. We use the Network-based Generator of Moving
Objects [7] to generate a set of moving objects. The generator generates 50,000
moving objects that move on the road network of Berlin, Germany for 100 time units
with additional 1,000 objects per time unit. Other generator parameters are set to
their default values. Moving objects can be vehicles, cyclists, pedestrians, etc. Table 2
summarizes the parameters under investigation, their ranges and their default values.
For any experiment, we vary one parameter and set the other parameters to their
default values. For all experiments, we use a Xenon 2.0 GHz CPU with 1 GB of
RAM.

We generate 600 continuous queries. Each of these queries is defined by k, f , and
the set of landmarks L. The landmarks are randomly selected with size |L| from the
dataset of work sites that is used in BerlinMOD, a benchmark for spatio-temporal
database management systems [10].

In the experiments, we compare among the conceptual partitioning (CPM) algo-
rithm, H-CANN, and P-CANN, where applicable. Our performance metrics are: (1)
The throughput, i.e., the number of update input tuples processed per second (better
performance corresponds to a higher throughput value). The average time to process
an update input tuple is the reciprocal of the throughput. In a dynamic system where
the moving objects report their locations frequently, the throughput shows how fast
the system can respond to the rate of input tuples. (2) The optimization time. (3)
Memory requirements. We also study how approximate P-CANN is; i.e., what the
average output size of P-CANN is. For the CPM algorithm, we use a 128 × 128
grid as proposed in [26] as the good tradeoff between the CPU time and the space
requirements. We show the experiments for the max and min cases. Since most of
the experiments for the sum case give similar results to those of the MaxDist case,
the performance results for SumDist are omitted for space limitation. We show the
experimental results of SumDist only when there is a difference between the two
cases.

6.1 Effect of number of landmarks

First, we study the effect of the number of landmarks |L| on the performance of
the proposed algorithms. Figure 13a gives the throughput (tuples processed per
second) when the number of landmarks |L| varies for the max aggregate function.
The ratio of throughput of any of the proposed algorithms and the CPM algorithm is
between 280% and 360%. Figure 13a gives the throughput of the three algorithms.
P-CANN outperforms all other algorithms. When the set of landmarks gets larger,

Table 2 System parameters
(ranges and default values)

Parameter Range Default

No. of landmarks: |L| 5, 10, 15, 20 5
Answer size: k 20, 40, 60, 80 20
Elimination order Worst-ever-fit (WEF),

first-fit (FF), FF
best-fit (BF),
worst-fit (WF)

Geoinformatica

0

100000

200000

300000

400000

500000

600000

5 10 15 20
|L|

P-CANN H-CANN CPM

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

(a) max

0

100000

200000

300000

400000

500000

600000

5 10 15 20
|L|

H-CANN CPM

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

(b) min

Fig. 13 Effect of |L| on throughput

the throughput of all operators gets lower (around 24% for H-CANN and 1% for
P-CANN). The ratio of throughput of H-CANN is at least 280% that of CPM.

P-CANN performs much fewer distance computations than H-CANN and the
CPM algorithm. P-CANN allows for the progressive pruning of the search space
without the need to compute the distance to all individual landmarks.

For the min aggregate function case, there is no P-CANN corresponding to this
aggregate function since there is no monotonically increasing evaluator for min
(see Section 3). The performance of the min case when the number of landmarks
changes is given in Fig. 13b for the applicable techniques (H-CANN and CPM). In
Fig. 13b, the throughput of H-CANN is more than 250% the throughput of the CPM
algorithm. Both techniques get lower throughput when the number of landmarks
gets larger. However, the throughput of the CPM algorithm decreases slower than
the decrease in the throughput of H-CANN.

Apart from the trivial case of only few objects reporting their location, we notice
from the experiments that the locus containing the query answer is usually much
smaller than the minimum bounding rectangle of the landmarks. This is why the
search space for CPM is much larger than the search space of P-CANN where most
non-qualifying objects are pruned very early. Similarly, for the case of H-CANN,
the data structures are not modified for almost all non-qualifying objects, in contrast
with CPM where the grid index, with which the moving objects are associated, is
maintained. Moreover, the CPM book-keeping information (and data structures) is
modified with the updates while the influence region is much larger than the actual
region containing the answer set.

It is worth pointing out that the CPM algorithm may be improved by reducing the
influence region using similar techniques as in P-CANN. The influence region may
be the region containing the answer set, which is computed as the innermost locus in
Fig. 9.

6.2 Effect of the output size (k)

Figure 14a gives the throughput when the number of nearest neighbors k varies
for the max aggregate function. The ratio of throughput of any of the proposed
algorithms and the CPM algorithm is between 320% and 360%. Figure 14a gives

Geoinformatica

0

100000

200000

300000

400000

500000

600000

20 40 60 80
k

20 40 60 80
k

P-CANN H-CANN CPM

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

(a) max

0

100000

200000

300000

400000

500000

600000
H-CANN CPM

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

(b) min

Fig. 14 Effect of k on throughput

the throughput of the three algorithms. P-CANN outperforms all other algorithms.
As k gets larger, the throughput of the two proposed algorithms decreases by 2–4%.
The ratio of throughput of H-CANN is at least 320% that of CPM.

P-CANN performs much fewer distance computations than H-CANN and the
CPM algorithm. The number of distance computations for H-CANN is invariant to
the answer size for a fixed number of landmarks. For any positive input update to
H-CANN, the distance of the moving object to all landmarks is computed before any
other processing. Moreover, for the CPM algorithm, the distance from any moving
object in the influence region to all landmarks is computed when this object reports
its location update. We have also discovered from the experiments that the influence
region of the query is larger than the region contained in the loci of P-CANN. This is
because the loci are aggressively computed such that they prune most of the objects
that are not part of the answer as quickly as possible.

Figure 14b gives the throughput as a function of the answer size k for H-CANN
and the CPM algorithm when the aggregate distance function is min. From Fig. 14b,
the ratio of the throughput of H-CANN and the CPM algorithm is more than 300%.
When k increases from 20 to 80, the throughput decreases by only 3% (see Fig. 14b).
Nevertheless, the number of distance computations for H-CANN is invariant to the
answer size similar to the sum and max cases.

From the experiments, we see that the performance of P-CANN is much better
that the performance of H-CANN with the increase in the answer set size. We can see
that P-CANN outperforms H-CANN with a factor of 126% when k = 80. P-CANN
takes milliseconds for the optimization process, which directly affects the pruning
strategies. Once the query is optimized, the execution of P-CANN is very fast as
the pruning process itself is simply comparing a running aggregate distance against a
threshold.

For the implementation effort of both algorithms, P-CANN uses a HashedList to
maintain the answer set. H-CANN uses an additional data structure, HashedList,
to maintain the cache region. The optimization of P-CANN involves many func-
tions (e.g., an unbounded binary search, a test for polygon inclusion, optimizing
multivariates functions) that are readily available in many libraries (e.g., OOL [1],
LOPTI [2], NEWUOA [3], CONDOR [4], and Extreme Optimization [5]).

Geoinformatica

6.3 Actual output size of P-CANN

Since P-CANN depends on a selectivity estimator to compute the thresholds asso-
ciated with each landmark, it is intrinsic that the output will be approximate. This
approximation does not produce wrong answers. In fact, the query answer is the
aggregate nearest neighbors of the landmarks. However, for a CANN query that
asks for the k aggregate nearest neighbors, P-CANN may produce less than k if the
selectivity estimator underestimates the selectivity of the inner locus in Fig. 9. If the
selectivity estimator overestimates the selectivity, the k aggregate nearest neighbors
are output.

Figure 15a gives the effect of this approximation with different values of requested
k. We measure this effect by the average percentage of k that gets output of P-
CANN. In the case of k = 20, the average value of the output size is 19.45; i.e.,
97.25%. When k = 80, the average value of the output size is 76; i.e., 95%. The
number of landmarks does not have a noticeable effect on the average percentage
of k that gets output from P-CANN as shown in Fig. 15b. The standard deviation
of the percentage of k that gets output does not exceed 4% and the obeserved
minimum percentage does not fall below 88% for the cases of k ∈ {20, 40, 60, 80}
or |L| ∈ {5, 10, 15, 20}.

In Section 6.5, we show the low optimization cost that will be incurred if the
application wants to re-optimize to get better values for the thresholds in case the
selectivity estimator is refined and produces more accurate estimates over time.

6.4 Elimination order policies

Next, we study the performance of the various elimination order policies when
using P-CANN (see Section 5.4). The optimal elimination order is the order that
produces the least number of distance computations. For comparison purposes
only, the optimal order is achieved using an exhaustive search on the n! different
elimination orders. This experiment computes the penalty incurred for using an
elimination order for P-CANN other than the optimal order. With a 99% confidence
level, the confidence interval for the relative additional distance computations when

(a) (b)

Fig. 15 Percentage of k that is output of P-CANN (sum)

Geoinformatica

0%

5%

10%

15%

20%

25%

WEF FF BF WF

 R
el

at
iv

e
A

dd
iti

on
al

 C
PU

 C
os

t .

(a) sum

0%

20%

40%

60%

80%

100%

120%

140%

160%

WEF FF BF WF

 R
el

at
iv

e
A

dd
iti

on
al

 C
PU

 C
os

t .
(b) max

Fig. 16 Performance of different elimination order policies (99% confidence level)

using the first-fit, best-fit, worst-fit policies as well as the worst-ever-fit order is
computed. The worst-ever-fit order is the elimination order that produces the worst
number of distance computations. While searching for the optimal order, we also
find the worst-ever-fit order. In this experiment, more than 3,600 random sets of
landmarks are used. For any set, the size of the set is random, and the relative
locations of the landmarks are also random. To make the results of this experiment
independent of the moving objects behavior and selectivity in the city, we assume a
uniform distribution of the moving objects. Under this assumption, the number of
distance computations inside each operator, which is proportional to the selectivity
of the moving objects inside the shape associated with the operator, turns out to be
proportional to the area of that shape. Since it is prohibitively expensive to get the
optimal order, a penalty is incurred when we use a sub-optimal elimination order.

Figure 16a gives the confidence interval for the additional distance computations
for the sum case. The additional distance computations directly reflects on the
additional CPU time required to process the location updates. The penalty is less
than 27% in the worst case when we use the worst-ever-fit order. The first-fit

Fig. 17 Optimization time
(sum)

0

200

400

600

800

5 10 15 20
|L|

O
pt

im
iz

at
io

n
T

im
e

(m
se

c) first-fit

best-fit

worst-fit

Geoinformatica

elimination policy, which calls for the elimination of the first remaining landmark
(in a random landmark order) incurs 16% more distance computations. The worst-
fit elimination policy (despite its name) outperforms all the other policies in the
figure and it only incurs 14% additional distance computations, whereas the best-
fit elimination policy incurs 20% penalty.

Interestingly, the case for max is different. Figure 16b gives the confidence interval
for the additional CPU cost for the max case. The worst-ever-fit order results in
additional 130% CPU time over the optimal order. The first-fit elimination policy
incurs 43% more distance computations. The best-fit elimination policy outperforms
all the other policies in the figure and it only incurs 12% additional distance
computations, whereas the worst-fit elimination policy performs badly and incurs
a penalty of 88%.

6.5 Optimization cost

Figure 17 gives the time required for optimizing the P-CANN algorithm for sum
aggregate distance function. This optimization consists of the time needed to retrieve
the best elimination order and the thresholds corresponding to each landmark.
Recall from Section 5.4 that the optimization cost using the first-fit elimination order
policy is O(N) and is O(N2) for either the best-fit or worst-fit elimination order
policies, which is the price shown in this figure. For all elimination order policies,
the cost of optimization is in milliseconds. It takes less than 120 ms for optimizing
the query pipeline in the case of adopting the first-fit elimination order. This figure
illustrates the applicability of the P-CANN in the domain of continuous queries.

7 Conclusion

In this paper, we proposed two algorithms to be used for continuously answering
the aggregate nearest neighbor queries. H-CANN is a holistic algorithm. It decides
whether to prune an object after computing its aggregate distance to all landmarks.
P-CANN is a best-effort progressive algorithm that associates thresholds with the
individual landmarks. These thresholds are used to eagerly prune the moving objects.
Different elimination order policies are identified to specify the order of the land-
marks in the computation of the aggregate distance in P-CANN. The optimization of
P-CANN and how to assign the thresholds are addressed.

From the performed extensive experiments, we achieve cases whose performance
is improved by up to a factor of 3 from the state-of-the-art algorithm. P-CANN
outperforms both H-CANN and the CPM algorithm (the state of the art). For the
optimization of P-CANNs, the worst-fit elimination policy gives the least penalty
for sum (additional 14% CPU cost away from optimal) when we do not use the
prohibitively expensive optimal order. On the other hand, the best-fit elimination
policy gives the least penalty for the max case. The optimization time of P-CANN is
about 100 msec for typical CANN queries. P-CANN, which is a best-effort algorithm
might produce 95% of the required output size on the average.

As for future work, we will investigate the continuous aggregate nearest neighbor
queries on moving objects in road networks. On the one hand, we would like to
develop similar incremental algorithms using the road network distance instead of

Geoinformatica

the Euclidean distance between the objects. On the other hand, we would like to
make a first-class operator in a data stream management system such that the CANN
operator is considered while optimizing the query evaluation plan.

References

1. Open Optimization Library. http://ool.sourceforge.net/
2. LOPTI - Mathematical Optimization Library. http://volnitsky.com/project/lopti/
3. SCILAB-NEWUOA Interface. http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.

html
4. Matlab-Condor. http://www.applied-mathematics.net/optimization/CONDORdownload.html
5. Extreme Optimization Numerical Libraries for .NET. http://www.extremeoptimization.com/
6. Bentley JL, Yao AC-C (1976) An almost optimal algorithm for unbounded searching. Inf Process

Lett:5(3):82–87
7. Brinkhoff T (2002) A framework for generating network based moving objects. Geoinformatica

6(2):153–180
8. Cai Y, Hua KA, Cao G (2004) Processing range-monitoring queries on heterogeneous mobile

objects. In: Proceedings of the international conference on mobile data management, MDM
9. Cho H-J, Chung C-W (2005) An efficient and scalable approach to CNN queries in a road

network. In: Proceedings of the international conference on very large data bases, VLDB,
pp 865–876, Trondheim, Norway

10. Düntgen C, Behr T, Güting RH (2009) BerlinMOD: a benchmark for moving object databases.
VLDB J (The International Journal on Very Large Data Bases) 18(6):1335–1368

11. Elmongui HG, Mokbel MF, Aref WG (2005) Spatio-temporal histograms. In: Proceedings of the
international symposium on advances in spatial and temporal databases, SSTD

12. Gedik B, Liu L (2004) MobiEyes: distributed processing of continuously moving queries on
moving objects in a mobile system. In: Proceedings of the international conference on extending
database technology, EDBT

13. Hadjieleftheriou M, Kollios G, Gunopulos D, Tsotras VJ (2003) On-line discovery of dense areas
in spatio-temporal databases. In: Proceedings of the international symposium on advances in
spatial and temporal databases, SSTD, pp 306–324, Santorini Island, Greece

14. Hu H, Xu J, Lee DL (2005) A generic framework for monitoring continuous spatial queries over
moving objects. In: Proceedings of the ACM international conference on management of data,
SIGMOD

15. Huang Z, Lu H, Ooi BC, Tung AK (2006) Continuous skyline queries for moving objects. IEEE
Trans Knowl Data Eng (TKDE) 18(12):1645–1658

16. Iwerks GS, Samet H, Smith K (2003) Continuous K-nearest neighbor queries for continuously
moving points with updates. In: Proceedings of the international conference on very large data
bases, VLDB, pp 512–523, Berlin, Germany

17. Jensen CS, Lin D, Ooi BC (2004) Query and update efficient B+-tree based indexing of moving
objects. In: Proceedings of the international conference on very large data bases, VLDB

18. Jensen CS, Lin D, Ooi BC, Zhang R (2006) Effective density queries on continuously moving
objects. In: Proceedings of the international conference on data engineering, ICDE, Atlanta,
GA

19. Kang J, Mokbel MF, Shekhar S, Xia T, Zhang D (2007) Continuous evaluation of monochro-
matic and bichromatic reverse nearest neighbors. In: Proceedings of the international conference
on data engineering, ICDE, pp 806–815, Istanbul, Turkey

20. Lazaridis I, Porkaew K, Mehrotra S (2002) Dynamic queries over mobile objects. In: Proceedings
of the international conference on extending database technology, EDBT

21. Li H, Lu H, Huang B, Huang Z (2005) Two ellipse-based pruning methods for group nearest
neighbor queries. In: Proceedings of the ACM symposium on advances in geographic informa-
tion systems, ACM GIS.

22. Mokbel MF, Aref WG (2005) GPAC: generic and progressive processing of mobile queries over
mobile data. In: Proceedings of the international conference on mobile data management, MDM

23. Mokbel MF, Aref WG (2005) PLACE: a scalable location-aware database server for spatio-
temporal data streams. Data Eng Bull 28(3):3–10

http://ool.sourceforge.net/
http://volnitsky.com/project/lopti/
http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.html
http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.html
http://www.applied-mathematics.net/optimization/CONDORdownload.html
http://www.extremeoptimization.com/

Geoinformatica

24. Mokbel MF, Aref WG (2008) SOLE: scalable online execution of continuous queries on
spatio-temporal data streams. VLDB J (The International Journal on Very Large Data Bases)
17(5):971–995

25. Mokbel MF, Xiong X, Aref WG (2004) SINA: scalable incremental processing of continuous
queries in spatio-temporal databases. In Proceedings of the ACM international conference on
management of data, SIGMOD

26. Mouratidis K, Papadias D, Hadjieleftheriou M (2005) Conceptual partitioning: an efficient
method for continuous nearest neighbor monitoring. In: Proceedings of the ACM international
conference on management of data, SIGMOD

27. Mouratidis K, Yiu ML, Papadias D, Mamoulis N (2006) Continuous nearest neighbor monitoring
in road networks. In: Proceedings of the international conference on very large data bases,
VLDB, pp 43–54, Seoul, Korea

28. Papadias D, Shen Q, Tao Y, Mouratidis K (2004) Group nearest neighbor queries. In: Proceed-
ings of the international conference on data engineering, ICDE

29. Papadias D, Tao Y, Mouratidis K, Hui CK (2005) Aggregate nearest neighbor queries in spatial
databases. ACM Trans Database Syst (TODS) 30(2):529–576

30. Song Z, Roussopoulos N (2001) K-nearest neighbor search for moving query point. In: Proceed-
ings of the international symposium on advances in spatial and temporal databases, SSTD

31. Tao Y, Papadias D (2003) Spatial queries in dynamic environments. ACM Trans Database Syst
(TODS) 28(2):101–139

32. Tao Y, Papadias D, Shen Q (2002) Continuous nearest neighbor search. In: Proceedings of the
international conference on very large data bases, VLDB

33. U LH, Mamoulis N, Yiu ML (2007) Continuous monitoring of exclusive closest pairs. In: Pro-
ceedings of the international symposium on advances in spatial and temporal databases, SSTD,
Boston, MA

34. Xia T, Zhang D (2006) Continuous reverse nearest neighbor monitoring. In: Proceedings of the
international conference on data engineering, ICDE, Atlanta, GA

35. Xiong X, Mokbel MF, Aref WG (2005) SEA-CNN: scalable processing of continuous K-nearest
neighbor queries in spatio-temporal databases. In: Proceedings of the international conference
on data engineering, ICDE

36. Yiu ML, Mamoulis N, Papadias D (2005) Aggregate nearest neighbor queries in road networks.
IEEE Trans Knowl Data Eng (TKDE) 17(6):820–833

37. Yu X, Pu KQ, Koudas N (2005) Monitoring K-nearest neighbor queries over moving objects. In:
Proceedings of the international conference on data engineering, ICDE

Hicham G. Elmongui (BS, MS: Alexandria University, 1998, 2001; MS, PhD: Purdue University,
2003, 2009) is assistant professor of Computer and Systems Engineering at Alexandria University,
Egypt. He is also adjunct professor with the department of Electrical and Computer Engineering
and the department of Computer Science at Virginia Tech, USA. His research interests are in query
processing and optimization, location-based services, data security, and software engineering. His

Geoinformatica

work has been published in major database conferences including VLDB, ACM SIGMOD, and
IEEE ICDE and journals including ACM TODS. He is author of two books and has two patent
applications pending with the United States Patent and Trademark Office. He was awarded several
excellence and outstanding teaching and service awards from Purdue University, USA. He is member
of IEEE, ACM, Upsilon Pi Epsilon, CERIAS Alumni, and Microsoft Research Alumni Network.
For more information, please visit: http://eng.alexu.edu.eg/∼elmongui/

Mohamed F. Mokbel (PhD: Purdue University, 2005; BS, MS: Alexandria University, 1996, 1999)
is an associate professor in the Department of Computer Science and Engineering, University of
Minnesota. His current main research interests include database systems, location-based services,
and GIS. He is the main architect for the PLACE, Casper, and CareDB systems that provide a
database support for location-based services, location privacy, and personalization, respectively. He
has over 90 publications in major database and GIS conferences including VLDB, ACM SIGMOD,
and IEEE ICDE and journals including ACM TODS, IEEE TKDE, and VLDB Journal. His
research work has gained more than 2,200 citations (per Google Scholar) and has been recognized
by three Best Paper Awards at IEEE MASS 2008, MDM 2009, and SSTD 2011. He is a recipient
of the NSF CAREER award in 2010; the National Science Foundation’s most prestigious award in
support of junior faculty in USA. He has served as the general co-chair for SSTD 2011, program
co-chair for ACM SIGSPATIAL GIS 2008-2010, MDM 2011, DMSN 2011, and LBSN 2011, and
proceeding chair for ACM SIGMOD 2010. He is in the editorial board of IEEE Data Engineering
Bulletin, Distributed and Parallel Databases Journal, and Journal of Spatial Information Science.
He is a member of ACM and IEEE and a founding member of ACM SIGSPATIAL. For more
information, please visit: www.cs.umn.edu/mokbel.

http://eng.alexu.edu.eg/~elmongui/
http://www.cs.umn.edu/mokbel

Geoinformatica

Walid G. Aref is a professor of computer science at Purdue. His research interests are in extending
the functionality of database systems in support of emerging applications, e.g., spatial, spatio-
temporal, multimedia, biological, and sensor databases. He is also interested in query processing,
indexing, data mining, and geographic information systems (GIS). Professor Aref’s research has been
supported by the National Science Foundation, the National Institute of Health, Purdue Research
Foundation, CERIAS, Panasonic, and Microsoft Corp. In 2001, he received the CAREER Award
from the National Science Foundation and in 2004, he received a Purdue University Faculty Scholar
award. Professor Aref is a member of Purdue’s CERIAS and Discovery Park Cyber Center. He is a
senior member of the IEEE, and a member of the ACM. Professor Aref is the current chair of the
ACM Special Interest Group on Spatial Information (SIGSPATIAL). For more information, please
visit: http://www.cs.purdue.edu/people/faculty/aref/.

http://www.cs.purdue.edu/people/faculty/aref/

	Continuous aggregate nearest neighbor queries
	Abstract
	Introduction
	Related work
	Conceptual partitioning algorithm
	The spatio-temporal histogram (ST-histogram)

	Preliminaries
	System environment
	Formal problem definition
	Classification of aggregate functions
	Loci of aggregate distance functions
	Frequently used symbols

	H-CANN: a holistic CANN algorithm
	Algorithm overview
	Running example
	Computation of cache region
	Data structures
	Algorithm details

	P-CANN: a progressive algorithm for CANN
	Overview of P-CANN
	P-CANN algorithm
	Computing the thresholds
	Overview
	Running example
	Details: computing RNQ2
	Details: computing Ri, 1 i < NQ2

	Determining the order of the landmarks
	Re-optimizing P-CANN

	Experimental analysis
	Effect of number of landmarks
	Effect of the output size (k)
	Actual output size of P-CANN
	Elimination order policies
	Optimization cost

	Conclusion
	References

