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ABSTRACT
Most recommendation methods (e.g., collaborative filtering) con-
sist of (1) a computationally intense offline phase that computes a
recommender model based on users’ opinions of items, and (2) an
online phase consisting of SQL-based queries that use the model
(generated offline) to derive user preferences and provide recom-
mendations for interesting items. Current application usage trends
require a completely online recommender process, meaning the
recommender model must update in real time as new opinions en-
ter the system. To tackle this problem, we propose RecStore, a
DBMS storage engine module capable of efficient online model

maintenance. Externally, models managed by RecStore behave as
relational tables, thus existing SQL-based recommendation queries
remain unchanged while gaining online model support. RecStore

maintains internal statistics and data structures aimed at provid-
ing efficient incremental updates to the recommender model, while
employing an adaptive strategy for internal maintenance and load
shedding to realize a balance between efficiency in updates or query
processing based on system workloads. RecStore is also extensible,
supporting a declarative syntax for defining recommender mod-
els. The efficacy of RecStore is demonstrated by providing the im-
plementation details of three state-of-the-art collaborative filtering
models. We provide an extensive experimental evaluation of a pro-
totype of RecStore, built inside the storage engine of PostgreSQL,
using a real-life recommender system workload.

1. INTRODUCTION
Recommender systems have grown popular in both commercial [6,
21] and academic settings [1, 5, 23]. The purpose of recommender
systems is to help users identify useful, interesting items or con-
tent (data) from a considerably large search space. For example,
recommender systems have successfully been used to help users
find interesting books and media from a massive inventory base
(Amazon [21]), news items from the Internet (Google News [6]),
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and movies from a large catalog (Netflix, Movielens [23]). By far,
the most popular recommendation method used is collaborative fil-
tering [18, 30], which consists of two phases: (1) A computation-
ally expensive offline model generation phase that uses commu-
nity opinions (e.g., user ratings) of data items in order to derive
meaningful correlations between users and/or items. (2) An online
recommendation generation phase that uses the model to produce
recommendations. From a database perspective, the recommenda-
tion process is simply a set of SQL-based recommender queries

built to provide answers according to a particular recommendation
method [19]. Examples of recommendation methods include user-
based [29] or item-based [31] collaborative filtering.

To be effective, recommender systems must evolve with their con-
tent. For example, new users enter the system changing the col-
lective opinions of items, the system adds new items widening the
recommendation pool, or user tastes change. These actions affect
the recommender model, that in turn affect the system’s recom-
mendation quality. Traditionally, most systems have been able to
tolerate using an offline process that builds a fresh model daily or
weekly in order to adapt to changes in the underlying content [17,
24, 31]. However, these traditional practices are no longer valid in
an increasingly dynamic online world. In an age of staggering web
use growth and ever-popular social media applications (e.g., Face-
book [9], Google Reader [12]), users are expressing their opinions
over a diverse set of data (e.g., news stories, Facebook posts, retail
purchases) faster than ever. In such an environment, forcing rec-
ommender systems to use an offline model building phase is unac-

ceptable, as the system must adapt quickly to its diverse and ever-
changing content. Recommender systems cannot wait weeks, days,
or even hours to rebuild their models [6]. The rate that new items or
users enter the system (e.g., Facebook updates, news posts), and the
rate that which users express opinions over items (e.g., Diggs [8],
Facebook “likes" [10]), requires recommender models to change in
minutes or seconds, implying models be updated online.

Recent work from the data management community has shown
that many popular recommendation methods (including collabo-
rative filtering) can be expressed with conventional SQL, effec-
tively pushing the core logic of recommender systems within the
DBMS [19]. However, the approach does nothing to address the
pressing problem of online model maintenance, as collaborative
filtering still requires a computationally intense offline model gen-
eration phase when implemented with a DBMS.

In this paper, we address the problem of providing online recom-
mender model maintenance for DBMS-based recommender sys-
tems. We present RecStore, a module built inside the storage engine



of a relational database system. RecStore enables online model sup-
port for DBMS-based recommender systems (e.g., [19]) through
efficient incremental updates to only parts of the model affected
by a rating update. Thus, updating the recommender model does
not involve significant overhead, nor regeneration of the model
from scratch. RecStore exposes the model to the query processor
as a standard relational table, meaning that existing recommender
queries can remain unchanged.

The basic idea behind RecStore is to separate the logical and inter-
nal representations of the recommender model. RecStore receives
updates to the user/item rating data (i.e., the base data for a collab-
orative filtering models) and maintains its internal representation
based on these updates. As RecStore is built into the DBMS stor-
age engine, it outputs tuples to the query processor though access
methods that transform data from the internal representation into
the logical representation expected by the query processor.

RecStore is designed with extensibility in mind. RecStore’s ar-
chitecture is generic, and thus the logic for a number of different
recommendation methods can easily be “plugged into" the Rec-

Store framework, making it a one-stop solution to support a num-
ber of popular recommender models within the DBMS. We provide
a generic definition syntax for RecStore, and provide implemen-
tation case studies for various memory-based [1, 3] collaborative
filtering methods (e.g., item-based [31] and user-based [29]). We
also discuss support for other non-trivial recommendation methods
(e.g., [3, 20]).

RecStore is also adaptive to system workloads, tunable to realize a
trade-off that makes query processing more efficient at the cost of
update overhead, and vice versa. At one extreme, RecStore has low-
est query latency by making update costs more expensive; appro-
priate for query-intense workloads. At the other extreme, RecStore

minimizes update costs by pushing computation into query pro-
cessing; appropriate for update-intense workloads. For particularly
update-intense workloads, RecStore also performs load-shedding to
process only important updates that significantly alter the recom-
mender model and change the answers to recommender queries.

RecStore requires a small code footprint, which is advantageous to
implementation in existing database engines. Our prototype of Rec-

Store, built inside PostgreSQL [28], between the storage engine and
query processor, requires approximately 600 lines of either modi-
fied or new code. Rigorous experimental study of our RecStore

prototype using a real workload from the popular MovieLens [26]
recommender system shows that RecStore exhibits desirable per-
formance in both updates and query processing compared to ex-
isting DBMS approaches that support online recommender models
using regular and materialized views.

The rest of this paper is organized as follows. Section 2 provides
a preliminary background. Related work is covered in Section 7.
Section 3 introduces the RecStore architecture. Section 4 describes
the functionality of RecStore. Section 6 provides an experimental
evaluation of RecStore. Finally, Section 8 concludes the paper.

2. COLLABORATIVE FILTERING AND

THE DBMS
This section provides an overview of collaborative filtering, the pri-
mary recommendation method we are concerned with in this paper;
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Figure 1: Item-based Model Generation

support for other methods is discussed later in Section 5. Collab-
orative filtering assumes a set of n users U = {u1, ..., un} and a
set of m items I = {i1, ..., im}. Each user uj expresses opinions
about a set of items Iuj

⊆ I. In this paper, we assume opinions
are expressed through an explicit numeric rating (e.g., one through
five stars), but other methods are possible (e.g., hyperlink clicks,
Facebook “likes" [10], Diggs [8]). An active user ua is given a set
of recommendations Ir such that Iua ∩ Ir = ∅, i.e., the user has
not rated the recommended items. The recommendation process
is usually broken into two phases: (1) an offline model genera-

tion phase that creates a model storing correlations between items
and/or users, and (2) an online recommendation generation phase
that uses the model to generate recommended items. There are
several methods to perform collaborative filtering including item-
based [31], user-based [29], regression-based [31], or approaches
that use more sophisticated probabilistic models (e.g., Bayesian
Networks [3]).

Below we describe the details of item-based [31] and user-
based [29] collaborative filtering, by far two of the most popu-
lar recommendation methods in use today (e.g., Amazon [21]).
These methods are classified as “memory-based” recommendation
approaches [3, 1], so called because they “remember" the opinion
history of the entire user base in order to provide recommendations.
Details of other methods are discussed in Section 5.

2.1 Offline Model Generation
The offline model generation phase analyzes the entire user/item
rating space, and uses statistical techniques to find correlated items
and/or users. These correlations are measured by a score, or weight,
that defines the strength of the relation.

2.1.1 Item-based collaborative filtering
The item-item model builds, for each of the m items I in the
database, a list L of similar items. Given two items ip and iq , we
can derive their similarity score sim(ip, iq) by representing each
as a vector in the user-rating space, and then use a similarity func-
tion over the two vectors to compute a numeric value representing
the strength of their relationship. Figure 1 depicts this item-item
model-building process. Conceptually, we can represent the rat-
ings data as a matrix, with users and items each representing a
dimension, as depicted on the left side of Figure 1. The similar-
ity function, sim(ip, iq), computes the similarity of vectors ip and
iq using only their co-rated dimensions. In our example uj and
uk represent the co-rated dimensions. Finally, we store ip, iq , and
sim(ip, iq) in our model, as depicted on the right side of Figure 1.
The similarity measure need not be symmetric, i.e., it is possible
that sim(ip, iq) 6= sim(iq, ip).

Many similarity measures have been proposed in the literature [17,



31]. On of the most popular measures used is the cosine distance,
calculated as:

sim(ip, iq) = k
~ip · ~iq

‖~ip‖‖~iq‖
(1)

Here, items ip and iq are represented as vectors in the user-rating
space, and k represents a dampening factor that discounts the in-
fluence of item pairs having high scores, but only a few com-
mon ratings [14]; given the co-rating count between two items as
corate(ip, iq), k is defined as:

k =

{

1 corate(ip, iq) ≥ 50
corate(iq, iq)/50 otherwise

(2)

2.1.2 User-based collaborative filtering
The user-user model is similar in nature to the item-item paradigm,
except that the model calculates similarity between users (instead
of items). This calculation is performed by comparing user vectors
in the item-rating space. For example, in Figure 1, focusing on the
user/item matrix, users uj and uk can be represented as vectors in
item space, and compared based on the items they have co-rated
(i.e., ip and iq). The user-user model primarily uses cosine dis-
tance and Pearson correlation as similarity measures [3], much like
that of the item-item paradigm with the exception that similarity is
measured in item space rather than user space.

2.2 Online recommendation generation
The online recommendation generation phase employs the ability
to predict ratings for items that a user ua has not yet rated. Rating
predictions are produced by performing aggregation over the rec-
ommender models. These predictions can be used to (1) give the
user their predicted score for a specific item on request, or (2) pro-
duce a set of top-N recommended items based on highest predicted
scores.

2.2.1 Item-based collaborative filtering
Recommendation generation for the item-based cosine method pro-
duces the top-n items based on predicted score using two steps.
(1) Reduction: cut down the model such that each item i left in the
model is an item not rated by user ua, while i’s similarity list L
contains only items l already rated by ua. (2) Compute: the pre-
dicted rating P(ua,i) for an item i and user ua is calculated as a
weighted sum [31]:

P(ua,i) =

∑

l∈L
sim(i, l) ∗ rua,l

∑

l∈L
sim(i, l)

(3)

The prediction is the sum of the user’s rating for a related item
l, rua,l, weighted by the similarity to the candidate item i. The
prediction is normalized by the sum of scores between i and l.

2.2.2 User-based Collaborative Filtering
Rating prediction in the user-based recommender paradigm is sim-
ilar in spirit to the item-based method. Recall that the similarity
list L in the user-user paradigm is a list of similar users to a par-
ticular user u. A prediction P(ua,i) for an item i given user ua is
calculated as [18]:
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Figure 2: Item-based recommender query

P(ua,i) = rua +

∑

l∈L
(rul,i − rul

) ∗ sim(ua, ul)
∑

l∈L |sim(ua, ul)|
(4)

This value is the weighted average of deviations from a related user
ul’s mean. In this equation, rul,i represents a user ul’s (non-zero)
rating for item i, while rua and rul

represent the average rating
values for users ua and ul, respectively.

2.3 DBMS-based Collaborative Filtering
A DBMS can be used to implement the recommendation pro-
cess just described. Ratings data can be stored in a relation
Ratings(userId,itemId,rating), where userId and itemId represent
unique ids of users and items, respectively.

2.3.1 Model representation
The model can be represented by a three-column ta-
ble Model(item,rel_itm,score) for the item-item model, or
Model(user,rel_user,score) for the user-user model (different
schemas may be necessary for other methods).

2.3.2 Recommender queries
A DBMS-based recommenders will use SQL to produce recom-
mendations. Figure 2 provides an SQL example of the process dis-
cussed in Section 2.2 (listed in two parts for readability). The first
query finds all movies rated by a user X . The second query uses
these results to produce recommendations for user X using Equa-
tion 3. The WHERE clause represents the reduction step, while
the SELECT clause represents the computation step. The query as-
sumes the model relation M(itm,rel_itm,sim) is already generated
offline.

3. RecStore ARCHITECTURE
Figure 3 depicts the high-level architecture of RecStore, built inside
the storage engine of a DBMS. RecStore consists of the following
main components:

• Intermediate store and filter. The intermediate store con-
tains a set of statistics, functions, and/or data structures that
are efficient to update, and can be used to quickly generate
part of the recommender model. The data maintained in the
intermediate store is specific to the recommendation method.
Whenever RecStore receives ratings updates (i.e., insertions,
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Figure 3: RecStore Architecture

deletions, or changes to the ratings table), it applies an inter-

mediate filter that determines whether the update will affect
the contents of the intermediate store (Section 4.1.1).

• Model store and filter. The model store represents the mate-
rialized model that matches the exact storage schema needed
by the recommender method (e.g., (itm, rel_itm, sim) for the
item-based model covered in Section 2). Any changes to
the intermediate store goes through a model filter that de-
termines whether it affects the contents of the model store

(Section 4.1.2).

The DBMS query processor requests data from RecStore while
executing recommender queries. RecStore employs two standard
DBMS access methods to interface with the query processor: scan,
i.e., return all model data, and index, i.e., return only model data
satisfying a given condition (e.g., item id = x). The access meth-
ods can produce tuples (i.e., model values) either directly from the
model store, or on demand from the intermediate store, or the base
ratings data; these query processing details are covered in Sec-
tion 4.2. As an example, consider query plan given in Figure 4
that retrieves all tuples in the Model relation with item ids equal to
those rated by user X (this operation is performed by query two
in Figure 2). This plan performs an index scan over the model
to perform the join between usrXMovies. In our experience, most
access to RecStore will be index-based, as recommendation gener-
ation queries require only a portion of the model (similar to Fig-
ure 4).

4. RecStore: BUILT-IN ONLINE

DBMS-BASED RECOMMENDERS
The main objective of RecStore is to bring online model support
to existing recommender queries for various workloads and rec-
ommendation methods. This objective presents three main chal-
lenges that we address in the rest of this paper: (1) Efficient online
incremental maintenance of the recommender model, i.e., avoid-
ing expensive model regeneration with each update (Section 4.1).
(2) The ability to adapt the system to various workloads, e.g., query
or update-intensive workloads (Section 4.2). (3) The ability to sup-
port various existing recommender methods (Section 5).

4.1 Online Model Maintenance
This section describes the framework for online model mainte-
nance within RecStore. The framework is extensible, and its spe-
cific functionality is determined by the underlying recommendation
method. While this approach may seem overly-tailored to each spe-
cific method, we note that many methods, especially collaborative
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Figure 4: Query plan for 2nd query in Figure 2

filtering, share commonalities in model structure. We defer such
discussion until later in Section 5. For now, we use the example
of the item-based cosine model to illustrate RecStore’s approach to
providing online model maintenance, consisting of two steps.

4.1.1 Step 1: Intermediate Filter
We describe the functionality of the intermediate filter with an ex-
ample using the item-based cosine method described in Section 2.
For this method, the intermediate store contains a “deconstructed”
cosine score (Equation 3), where we store for each item pair (ip,iq)
that share at least one co-rated dimension (1) pdot(ip, iq), their par-
tial dot product, (2) lenp(ip, iq) and lenq(iq , ip), the partial length
of each vector for only the co-rated dimensions, and (3) co(ip, iq),
the number of users who have co-rated items ip and iq . This data is
stored as a six-column relation, where the first two columns store
the item id pairs, while the last four columns store the four statistics
just described.

RecStore employs an intermediate filter upon receiving a rating up-
date R. The intermediate filter performs three tasks in the fol-
lowing order. (1) Filter. This task determines whether R will
be used to update entries in the intermediate store. If not, R is
immediately dropped (but still stored in the ratings data). This
step is required by the adaptive maintenance and load shedding
techniques discussed later Section 4.2. In the general case this
step will not drop any updates. (2) Enumeration. This task de-
termines all intermediate store entries E that will change due to
R. For our item-based cosine example with a new rating for item
ip, E would contain all entries (ip,iq) for which items ip and iq
are co-rated by the user u. (3) Updates. Finally, all statistics,
functions, or data structures in the intermediate store associated
with an entry e ∈ E are updated. These updates are then for-
warded to the model filter. For our item-based cosine example,
the stored statistics are updated as follows, assuming a new rating
for item ip with value sp: pdot(ip, iq) = pdot(ip, iq) + sp × sq ,
lenp(ip, iq) = lenp(ip, iq)+sp, lenq(iq , ip) = lenq(iq , ip)+sq,
and co(ip, iq) = co(ip, iq) + 1.

Together, the intermediate filter and store are the keys to effi-
cient online model maintenance in RecStore. The filter reduces
update processing overhead by allowing RecStore to only process
the updates necessary to maintain an accurate intermediate repre-
sentation. The contents of the intermediate store keep computa-
tional overhead low for online maintenance by allowing RecStore

to quickly update the intermediate store and, once updated, quickly
derive a final model score from the intermediate representation.



4.1.2 Step 2: Model Filter
Upon receiving updates from the intermediate filter, the model fil-

ter executes the same three tasks as the intermediate filter (i.e.,
filter, enumeration, and updates), except applied to the model
store instead of the intermediate store. Continuing our item-
based cosine example, its model store contains entries of the form
(ip,iq ,sim(ip,iq)), i.e., the item-based model schema discussed in
Section 2. The model filter uses the statistical updates from the in-
termediate store for item pairs (ip,iq) to update the similarity score
in the model store entry (ip,iq , sim(ip,iq)) as follows per Equa-
tion 2: (1) If statistic co(ip, iq) < 50, then sim(ip, iq) is updated
as:

sim(ip, iq) =
co(ip, iq) ∗ pdot(ip, iq)

50 ∗
√

lenp(ip, iq)
√

lenq(ip, iq)

(2) If statistic co(ip, iq) ≥ 50, we update sim(ip, iq) as:

sim(ip, iq) =
pdot(ip, iq)

√

lenp(ip, iq)
√

lenq(ip, iq)

Updating the similarity score is the final step in the RecStore online
maintenance process.

4.2 Adaptive Strategies for System Work-

loads
This section discusses how RecStore adapts to different workload
characteristics. We first discuss generic maintenance strategies that
help realize an update and query efficiency trade-off. We then dis-
cuss load-shedding for update-intensive workloads.

4.2.1 Update vs. Query Efficiency Trade-off
While the intermediate and model store are beneficial to RecStore,
their sizes may lead to non-trivial maintenance costs. For instance,
in item-item or user-user collaborative filtering, the size of the
model can reach O(n2), where n is the number of items (or users).
In this case, RecStore could be responsible for updating and main-
taining data for O(n2) items (or users) in its intermediate and model
store, leading to burdensome maintenance costs. In this section, we
explore a trade-off: reducing the storage and maintenance of data
in the intermediate store and model store (i.e., the internal main-

tenance approach) in return for sacrificing query processing (i.e.,
recommendation generation) efficiency.

RecStore can be tuned to realize an efficiency trade-off between
updates and query processing. The basic idea is to maintain α en-
tries in the intermediate store, β entries in the model store, and
require the invariant that α ≥ β, i.e., all entries in the model store
are also maintained in the intermediate store. Both values cannot
be greater than M: the total possible number of entries, a model-
specific value (e.g., for item-based models M = I2).

Low values of α and β imply low incremental update latency as the
filters update fewer entries in the intermediate and model stores. On
the other hand, during query processing, the access methods must
service requests from the query processor by producing model val-
ues in the following order of efficiency: (1) directly from the model
store if the entry is maintained there. (2) If the entry is not main-
tained in the model store but maintained in the intermediate store,
the model value is produced on-demand from the intermediate store

(e.g., from the intermediate statistics covered in Section 4.1.1 for
the item-based cosine method). (3) If the entry is not maintained
in the intermediate nor the model store, the model value must be
produced on-demand using the base ratings data (e.g., using Equa-
tion 1 for the item-based cosine method). Thus, as α and β de-
crease, query processing latency increases as more model values
must be produced on demand. Larger values of α and β have a
reverse effect on update and query processing efficiency.

Using the maintenance parameters α and β allows RecStore to be
tuned for a wide range of workloads. More update-intense work-
loads can lower values of α and β at the cost of increasing recom-
mender query latency. Meanwhile, query-intense workloads can
use larger values of α and β at the cost of increasing update over-
head. We now explore several strategies for α and β settings; ex-
perimental analysis for these strategies is given in Section 6.

• Extreme Approaches. Two extreme approaches can be
taken by RecStore: (1) Materialize all. In this approach
α = β = M, meaning RecStore’s intermediate and model
stores maintain all required model information. RecStore fil-
ters just apply the conditions imposed by the specific similar-
ity functions upon receiving a rating update. Recommenda-
tion generation, i.e., the query processing functionality that
generates recommended items, is most efficient at this ex-
treme. However, storage and maintenance costs are at their
highest with this approach. (2) Materialize none. In this ap-
proach α = β = 0, and basically mimics the use of regular
DBMS views that we recompute model values on demand.
In this approach there is no need for the intermediate store,
model store, nor filters. Recommendation generation for this
approach is very expensive, but incurs no storage and main-
tenance costs as nothing is maintained.

• Intermediate Store Only. In this approach α = M and
β = 0. This approach (abbr. Intermediate Only) repre-
sents a middle ground between Materialize All and Mate-

rialize None, where we materialize the intermediate store in
full for all required model information, while not maintain-
ing the model store. This means that the initial filter will be
applied on all incoming updates as described in Section 4.1,
while there is no filter for the model store. The recommen-
dation generation process for a requested object o (e.g., item
or user) needs to rebuild part of the model store that includes
o using the fully maintained intermediate store. This rebuild-
ing process makes this approach incur higher query process-
ing cost compared to the Materialize All approach, but much
lower query processing cost than the Materialize None ap-
proach. On the other hand, storage and maintenance costs are
lower than the materialize all approach, as the model store is
nonexistent.

• Full Intermediate Store and Partial Model Store. This
approach (abbr. Partial Model) sets α = M and β = N ,
and represents a middle ground between the Materialize all

and Intermediate Only approaches. This approach material-
izes only a portion of the model store, i.e., only N objects
(e.g., items or users), while materializing the intermediate
store in full. We employ hotspot detection (described in Sec-
tion 4.2.2) to select the N items in the model store. This
approach directs the initial filter will be applied to all incom-
ing updates. All updates made to the intermediate store are
still forwarded to the model filter as described in Section 4.1,



however, the model filter only accepts updates for the qual-
ifying N objects, and their related objects, that are main-
tained in the model store. The query processing and stor-
age/maintenance overhead for this approach lies between the
Materialize all and Intermediate Only approaches.

• Partial Intermediate Store and Partial Model Store. This
approach sets α = K and β = N , and is similar to the Par-

tial Model approach, except that we also partially materialize
the intermediate store. The model store still maintains data
for N objects, while the intermediate store maintains data
for K objects. These K and N objects are derived using
hotspot detection (described next in Section 4.2.2). This ap-
proach directs the initial filter only accepts incoming updates
for the K objects (items of users), and their related objects,
that qualify for storage in the intermediate store. The model
filter remains unchanged from the Partial Model approach.
The query processing and storage/maintenance overhead for
this approach lies between the Partial Model and Intermedi-

ate Only approaches.

4.2.2 HotSpot Detection
For the approaches that use partial materialization, α and β should
ideally be set to ensure the maintenance of model hotspots, i.e.,
popular or frequently accessed entries. This setting assures effi-
cient query processing over popular model entries, while sacrific-
ing higher query latency for less popular model entries. We use two
methods to detect hotspots. (1) Most accessed. Keep the α and β
most accessed entries from the model determined by simple usage
statistics from the access methods. (2) Most rated. Keep the α and
β most popular entries in the model determined by association with
the most ratings (e.g., most-rated movies, users who rate the most
movies).

4.2.3 Load Shedding
For the special case of update-intense workloads where the system
is incapable of processing all ratings updates, RecStore is capable
of load-shedding. The goal of load-shedding is to process only up-
dates that significantly alter the recommender model, thus changing
the answer to recommender queries. Load-shedding techniques are
model-specific, and RecStore executes these techniques in a special
filter before the intermediate filter.

As an example, consider the item-based cosine method, where an
update should only be processed if it changes the order in the model
similarity lists. In this case, altered order in any similarity list can
potentially change the answer to a recommender query per Equa-
tion 3. An effective heuristic approach to achieve this goal is to pro-
cess updates that change intermediate store entries with a co-rating
count (i.e., the statistic co(ip, iq)) below a pre-set threshold T . The
intuition here is that low co-rated items have less terms defining
their cosine distance (Equation (1)), thus an update will likely alter
the score significantly compared to more highly co-rated items. Of
course, more sophisticated statistical techniques can apply. How-
ever, any load-shedding approach should remain simple to evaluate
and maintain due to its mission-critical purpose.

5. RECSTORE EXTENSIBILITY
RecStore provides a generic extensible architecture capable of
supporting different recommendation methods. This section first
demonstrates how to register a preference method with RecStore.
We then provide various case studies demonstrating how RecStore

accommodates other item-based collaborative filtering methods.
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Figure 5: Registering a recommendation method

Finally, we discuss how RecStore supports recommendation meth-
ods beyond “memory-based” collaborative filtering.

5.1 Registering a Recommender Method
We provide a syntax for registering a new recommender method
model within RecStore. Figure 5 gives an example for registering
the item-based cosine method. Registration begins by first defin-
ing the model name, and then providing a from and optional where

clause to specify the base data used in the model. For the item-
based cosine model, the base data comes from the Ratings relation,
and the where-clause defines a relational constraint (in the form of
a self-join) declaring that model entries are (non-equal) items that
are co-rated by the same user. The major clauses are:

• WITH INTERMEDIATE STORE: defines the data in the
intermediate store; in this case the intermediate statistics for
the item-based cosine method.

• WITH INTERMEDIATE FILTER: defines the intermedi-
ate filter in two parts. (1) Allow Updates With defines the
logic for filtering incoming updates (task 1 discussed in Sec-
tion 4.1.1), currently contained in a user-defined function.
(2) Update defines how to compute data in the intermediate
store when given a rating update that is not filtered; the logic
can be given directly or contained in a user-defined function.

• WITH MODEL STORE: defines the name and schema of
the model store, this schema is exposed to the rest of the
DBMS and used by the recommender queries. Any attributes
computed from data in the intermediate store are given the
COMPUTED prefix. Our example item-based cosine follows
the schema discussed in Section 4.1.2, where the value sim is
a computed attribute.

• WITH MODEL FILTER: follows the same syntax as the
intermediate filter, with the exception that the compute clause
defines how to update the model store values using data from
the intermediate store.

5.2 Item-Based Collaborative Filtering
We now discuss RecStore registration for two other item-based col-
laborative filtering methods [31], namely probabilistic and Pearson



Probabilistic Pearson

Intermediate
Store

len(ip): partial vector length of for ip
freq(ip): no. ratings for ip
sum(ip ,iq): sum of scores for ip given co-rated item iq

mean(ip): mean rating score for ip
stddev(ip): standard dev. for ip
freq(ip): no. ratings for ip
sum(ip): sum of ratings for ip
sumsq(ip): sum or ratings squared for ip
coprodsum(ip ,iq): sum of product deviation from mean for ip given co-rated dimension iq

Intermediate
Filter

Update sumq(ip,iq) only where user u co-rated ip and
iq , always update other statistics.
Update logic

sum(ip ,iq)=sum(ip,iq)+sp ; len(ip)=len(ip)+s2p;
freq(ip)=freq(ip )+1

Always update mean(ip), stddev(ip), freq(ip), sum(ip), sumsq(ip).Only update coprodsum(ip ,iq)
if user u co-rated ip and iq , andmean(ip) has not changed greater than ∆ since last
coprodsum(ip ,iq)recalculation.
Update logic

freq(ip)=freq(ip )+1; mean(ip)=
sp

freq(ip)
+

(freq(ip)−1)mean(ip)

freq(ip)
;

sum(ip)=sum(ip)+sp ; sumsq(ip)=sumsq(ip)+s2p;

stddev(ip)=

√

freq(ip)∗sumsq(ip)−sum(ip)2

freq(ip)
;

coprodsum(ip ,iq)=coprodsum(ip ,iq)+(sp − mean(ip))(sq − mean(ip))
Model Store (ip ,iq ,sim(ip, iq)) (ip ,iq ,sim(ip, iq))

Model Filter Update entry (ip ,iq ,sim(ip, iq)) for each statistical
update for pair (ip,iq )
Update Logic

sim(ip, iq)=
sumq(ip,iq)

√
len(iq)∗freq(ip)∗(freq(iq ))α

Update entry for each (ip ,iq ,sim(ip, iq)) for each statistical update affecting pair (ip ,iq). Com-
pletely recalculate coprodsum(ip ,iq) if mean(ip) has changed greater than threshold ∆.
Update Logic

If mean(ip) has changed less than ∆, sim(ip, iq)=
coprodsum(ip,iq)

stddev(ip)stddev(iq )
, otherwise

sim(ip, iq)=
coprodsum(ip,iq)=

∑

u∈Uc
(sp−mean(ip))(sq−mean(ip))

stddev(ip)stddev(iq )

Table 1: Realizing probabilistic and Pearson item-based collaborative filtering methods in RecStore, summary of implementation

approach assuming new rating by user u for item ip with score sp

item-based recommenders. We demonstrate each use case assum-
ing a user u has provided a new rating value sp for an item ip.

Item-based probabilistic recommender. This method is similar
to our running example of the item-based cosine recommender, ex-
cept the similarity score sim(ip, iq) is measured as the conditional
probability between two items ip and iq as follows.

sim(ip, iq) =

∑

u∈Uc
ru,iq

Freq(ip)× (Freq(iq))α
(5)

Here, ru,iq represents a rating for item iq normalized to unit-length,
Freq(i) represents the number of non-zero ratings for item i, and
α is a scaling factor [17].

The second column of Table 1 provides an approach to implement-
ing the item-based probabilistic method in RecStore. The interme-
diate store contains (1) the partial vector length for item iq (len(iq)),
(2) the total number of ratings for ip (freq(ip)), and (3) the item-
pair statistic maintains the running sum ratings for item ip given
that it is co-rated with an item iq (sum(ip,iq)). The intermediate
filter updates all single-item statistics, while only updating the pair
statistic for which items ip and iq are both rated by user u. Each
statistic update requires constant time. The model filter, upon re-
ceiving changes to the intermediate statistics, updates the similarity
score sim(ip,iq) for pairs ip,iq in constant time using the interme-
diate statistics (equation given in the last row, second column of
Table 1).

Item-based Pearson recommender. This method is similar to the
item-based cosine method, except it measures the similarity be-
tween objects using their Pearson correlation coefficient as follows.

sim(ip, iq) =

∑

u∈Uc
(Ru,ip −Rip )(Ru,iq −Riq )

σipσiq

(6)

Uc represents users who co-rated items ip and iq , Ru,ip and Ru,iq

represent a user’s ratings, and Rip and Riq represent the average
rating for items ip and iq , respectively. σip and σiq are the standard
deviations for ip and iq

The third column of Table 1 provides an approach to implementing
the Pearson method in RecStore. The intermediate store maintains
for an item ip its mean rating value for an item (mean(ip)), its stan-
dard deviation of rating values (stddev(ip)), the total number of
ratings for ip (freq(ip)), the sum of ratings for ip (sum(ip)), and the
sum of the squared rating values for ip (sumsq(ip)). The intermedi-
ate store also maintains coprodsum(ip ,iq): the sum of the product
of deviations from the mean (i.e., the numerator in Equation 6) for
an item pair (ip,iq) given that they share at least one co-rated di-
mension. The intermediate filter updates all single-item statistics
(those maintained for ip only). The statistic coprodsum(ip ,iq) is
incremented by the product of the deviation of user u’s score for
ip (i.e., sp) from the newly calculated mean(ip), and the deviation
of iq (i.e., sq) from the stored mean for item iq (mean(iq)). Note
that previous rating scores for ip in the sum deviated from different
means, since mean(ip) changed with this update. In essence, we
are willing to forgo this difference in accuracy as long as mean(ip)
has not changed by at least a value ∆ since the last calculation of
coprodsum(ip ,iq). What we gain in this trade-off is efficiency, since
updating coprodsum(ip ,iq) is more efficient than recalculating the
sum from scratch.

The model filter updates the similarity score sim(ip,iq) for pairs
ip,iq in the model store using one of two methods (both given in the
last row, third column of Table 1). (1) If the value mean(ip) had not
changed by ∆ since the last recalculation of coprodsum(ip ,iq), then
we can update sim(ip,iq) efficiently by dividing coprodsum(ip ,iq)
by the product of the standard deviations. Otherwise, we must re-

calculate the value of coprodsum(ip ,iq) from scratch for each entry
using the current value of mean(ip).

5.3 User-based Collaborative Filtering
The model for user-based collaborative filtering [29] is similar to
the item-based approach, except that the model stores groups of
similar users (as described in Section 2). Thus, the use cases previ-
ously discussed for the item-based approach can apply directly to
the user-based approach, with the exception that similarity is mea-
sured over user vectors in the item rating space.
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5.4 Non-“Memory-Based” Collaborative

Filtering within RecStore
Many other recommendation methods use models that are not

similarity-based lists, as is the case with the “memory-based" col-
laborative filtering techniques we have explored. In general, Rec-

Store can support these different recommendation techniques as
long as their models can be represented by sufficient statistics to
update the model incrementally. For instance, recommendation
methods that use sophisticated probabilistic models (e.g., Bayesian
Networks [3], Markov decision processes [32]) do not lend them-
selves well to incremental updates, due to the computationally in-
tense optimization process used to learn their parameters. On the
other hand, methods that use linear regression to learn a rating pre-
diction model [31] can fit easily within RecStore. In this case,
the intermediate store can maintain the general linear model statis-
tics: X (the regression design matrix), XT (X transposed) and
f (the regressand). It is known that these statistics are incremen-

tally updatable and sufficient to learn unknown regression coeffi-
cients by solving the system of equations [11]: XTXβ = XT f ,
where β represents the learned regression coefficients. The source
for these statistics depends on the recommendation method. Ex-
amples include ratings vectors [31], a multi-dimensional ratings
base (e.g., multi-dimensional recommenders [2]), or item attributes
(e.g., content-based recommenders [7]).

6. EXPERIMENTAL EVALUATION
This section experimentally evaluates the performance of a proto-
type of RecStore implemented in between the storage engine and
query processor of the PostgreSQL 8.4 database system [28] using
the real-world Movielens 10M rating data set [27]. We test various
RecStore adaptive maintenance strategies based on α and β pro-
posed in Section 4.2.1: materialize all (abbr. matall) where α =

β = M , intermediate only (ionly) where α=M and β = 0 , par-
tial model hotspot maintenance where α=M and β is set to 20%
of all movies (pm-m), and partial intermediate and model hotspot
maintenance (pm-mi) where α and β are set to 40% and 20% of
all movies. We also compare against regular (viewreg) and ma-
terialized DBMS views (viewmat). The viewreg approach is im-
plemented using a regular PostgreSQL view, but since PostgreSQL
does not support materialized views, we provide a fair simulation
of viewmat within RecStore by maintaining a materialized Model

store without the use of an intermediate store.

We provide experiments for: (1) Partial maintenance strategies
(Section 6.1), (2) update efficiency (Section 6.2), (3) query effi-
ciency using the query given in Figure 2 (Section 6.3), and (4) a
real recommender system workload trace consisting of interleaved
queries and updates (Section 6.4). Each experiment is run for both
the cosine and probabilistic item-based recommendation method
(details of both methods given in Section 5).

The experiment machine is an Intel Core2 8400 at 3Ghz with 4GB
of RAM running Ubuntu Linux 8.04. Our performance metric is
the elapsed time over an average of five runs reported by the Post-
greSQL EXPLAIN ANALYZE command.

6.1 Hotspot Detection Strategies
This experiment studies the effectiveness of our two hotspot de-
tection strategies covered in Section 4.2: most-rated (abbr. rated)
and most-accessed (abbr. accessed). We use a real workload trace
consisting of the continuous arrival of both ratings updates and rec-
ommender queries against the MovieLens system [23, 26]. We
start with a Ratings table that already contains 950K ratings, and
report the total time necessary to process 1K ratings updates in-
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terleaved with 40 recommendation generation queries for different
users. Figures 6(a) and 6(b) report performance for rated and ac-

cessed using both the pm-mi and pm-m approaches implementing
the cosine and probabilistic methods. The update performance is
relatively similar between the rated and accessed strategies for all
cases. However, the query performance of rated over accessed ex-
hibits a 50% speedup, as rated is able to keep model data in the in-
termediate and model store requested by the recommendation gen-
eration queries. Thus, in the rest of this section, we employ the
rated strategy for both pm-mi and pm-m.

6.2 Update Efficiency
This experiment studies update efficiency and scalability. We start
with a Ratings table already containing 950K rating tuples, and
measure the total time it takes to process 500, 2.5K, 4.5K, and 7K
updates, respectively. Figures 7(a) and 7(b) give the results for the
cosine and probabilistic methods, respectively. For both methods,
all approaches exhibit the same relative performance. The materi-
alized view (viewmat) incurs the most overhead of all approaches.
This performance is due to the need, on every update, to recalcu-
late the model score from scratch using the ratings data. The Rec-

Store matall strategy, on the other hand, incurs less update over-
head compared to viewmat due to its intermediate store, that helps
it to efficiently update the model store. This experiment confirms
that RecStore overcomes the update efficiency drawback of mate-
rialized views. Both ionly and pm-mi exhibit better performance,
with ionly doing slightly better due to not having to maintain a
partial model store. Both matnone and pm-mi exhibit the best per-
formance due to the low storage and maintenance costs.

6.3 Query Efficiency
This experiment studies query efficiency and scalability. We mea-
sure the time to perform the recommender query given in Figure 2
for a user X as the number of tuples in the Ratings table increases
from 5K to 70K. We choose user X as the user that has rated the
most movies. Figures 8(a) and 9(a) give the results for the co-

sine and probabilistic recommendation methods, respectively. The
viewreg approach (a regular DBMS view) performs very poorly,
as it must calculate all requested model scores from scratch from
the ratings relation. The pm-mi approach exhibits performance be-
tween matnone and the rest of the approaches, as it must service
a fraction of its requests from the ratings data, similar to viewreg.
Figures 8(b) and 9(b) zoom in on the matall, ionly, and pm-m ap-
proaches for the cosine and probabilistic models, respectively. As
expected, the matall approach exhibits the best query processing
performance as it must only retrieve values from the model store.
Both ionly and pm-m exhibit close performance to matall. We
do not plot the viewmat, since it exhibits the same performance
as matall, as the query operates over a completely materialized
model relation for both approach. Due to both query and update
performance, we can conclude that RecStore provides better sup-
port for online recommender systems compared to existing DBMS
approaches (viewmat and viewreg).

6.4 Update + Query Workload
This experiment uses our real recommender system workload trace
(described in Section 6.1) to test comprehensive update and query
processing performance. Figures 10(a) and 11(a) give the results
of both query and updates for the cosine and probabilistic meth-
ods, respectively. Both viewreg and pm-mi exhibit poor query pro-
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cessing performance for the workload, with viewreg performing
almost an order magnitude worse than other approaches. While
the viewreg performance is expected, the pm-mi performance is
more surprising. Both viewreg and pm-mi exhibit the best update
performance out of all approaches, as confirmed by our previous
experiments (Section 6.2). However, the query processing perfor-
mance of viewreg makes it an unattractive alternative, while the
update/query processing tradeoff for pm-mi is a borderline choice
due to its high query processing penalty. Figures 10(b) and 11(b)
remove the viewreg and pm-mi numbers to zoom in on the other
approaches for the cosine and probabilistic models, respectively.
Both the matall and viewmat approaches exhibit the same query
processing performance that is superior to ionly and pm-m. As
for updates, we note again that matall (RecStore) provides more
efficient update performance over viewmat (materialized views).
Meanwhile, pm-m and ionly show superior update performance to
matall and viewmat, with ionly providing the best performance.

In this experiment, we can observe the update/query processing
trade-off discussed in Section 4.2.1 for high values of α and β
(matall) compared to lower values of α and β (ionly and pm-

mi). Thus, for slightly more update-heavy recommender systems,
the ionly or pm-mi is preferable due to efficient updates with lit-
tle query processing penalty. Meanwhile, for more query-heavy
systems, the matall approach is preferable with tolerable update
penalty.

7. RELATED WORK
Collaborative Filtering. The term collaborative filtering has a
broad definition [1, 3]. We mainly focus on the original memory-

based collaborative filtering approach [18, 29], so called because it
“remembers" the ratings history of the entire user/item spectrum to

provide recommendations [1, 3]. The scope of most work within
collaborative filtering systems has been from a user-centric per-
spective, e.g., providing users with quality [15, 22] and trustwor-
thy recommendations [25]. Other work has explored high-level
approaches to memory-based collaborative filtering (e.g., user-
based [18, 29], item-based [17, 31], hybrid [4]) and their effect on
recommendation quality. There is a scarcity of work that studies
recommenders from a systems perspective, i.e., measuring query
processing efficiency of different architectures. Herlocker et al. in
their 2004 detailed evaluation of recommender systems state [15]:

“We have chosen not to discuss computation performance of rec-

ommender algorithms. Such performance is certainly important,

and in the future we expect there to be work on the quality of time-

limited and memory-limited recommendations.”

To date, the research community is still lacking such important
work on recommender system performance. Further, very little
work has suggested a systems solution to online recommender sys-
tems. An exception is the Google News recommender [6]. How-
ever, this work is specific to the recommendation methods created
specifically for Google’s click logs. In contrast, our work takes a
more generic approach to online recommender systems by offering
a generic and extensible framework within the DBMS engine that
accommodates various recommendation methods.

DBMS and Recommender Systems. Little systems research has
addressed the intersection of database and recommender systems
(as asserted by [16]). The AWESOME system [33] suggests rec-
ommendation methods to use based on the characteristics of the
data stored in a database. Closer to our work is FlexRecs [19],



that studies a flexible model and workflow for expressing a number
of recommendation methods. FlexRecs compiles its workflow into
a series of conventional SQL queries to execute the recommenda-
tion process. This work shows that implementation of many differ-
ent recommendations methods is possible within a DBMS. While
FlexRecs addresses the implementation of recommendation logic
using a DBMS, it still assumes the model building phase for many
recommendation methods is performed offline. Our work addresses
online model support for DBMS-based recommender queries.

Database Views. We can employ DBMS views as a solution to
online collaborative filtering. Views are a fundamental topic within
the data management research community, with a rich volume of
research addressing various view aspects, including, but not limited
to, view composition, materialized view maintenance, and query
processing using views [13]. Views provide a general solution to a
wide range of data management problems, including security (i.e.,
data access restriction), transparency from a physical schema, and
ease-of-use. In this paper, we study the specific data management
problem of online maintenance of recommender models, for which
DBMS views incur serious efficiency drawbacks.

8. CONCLUSION
This paper presented RecStore, an extensible and adaptive DBMS
storage engine module that provides online support for recom-
mender queries. We fist presented the generic architecture of Rec-

Store, and then described how RecStore supports online recom-
mender model maintenance by enabling fast incremental updates
to the model by implementing an intermediate and model store.
We described how RecStore adapts to various system workloads,
and provides load-shedding support for update-intense workloads.
We then demonstrated the extensibility of RecStore by present-
ing a declarative model registration language, and provided case-
studies showing how RecStore accommodates various recommen-
dation methods. Using a real recommender system workload and a
system prototype of RecStore inside PostgreSQL, our experimental
results show that RecStore provides superior performance to exist-
ing DBMS view approaches to support online recommender sys-
tems. Further, the experiments also confirm that RecStore is in-
deed adaptive to update-heavy or query-heavy recommender sys-
tem workloads.
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