PLACE: A Scalable Location-aware Database Server for
Spatio-temporal Data Streams

Mohamed F. Mokbel Walid G. Aref
Department of Computer Science and Department of Computer Science
Engineering, University of Minnesota Purdue University

Minneapolis, MN, 55455 West Lafayette, IN 47907
mokbel @cs.umn.edu aref@cs.purdue.edu
Abstract

In this paper, we overview the PLACE server (Pervasive Location-Aware Computing Environments);
a scalable location-aware database server developed at Purdue University. The PLACE server extends
data streaming management systems to support location-aware environments. Location-aware envi-
ronments are characterized by the large number of continuous spatio-temporal queries and the infinite
nature of spatio-temporal data streams. The PLACE server employs spatio-temporal query operators
that support a wide variety of continuous spatio-temporal queries. In addition, the PLACE server
is equipped with scalable operators that provide shared execution among multiple continuous spatio-
temporal queries. To cope with intervals of high workload of data objects and/or continuous queries,
the PLACE server utilizes object and query load shedding techniques to support a larger number of
continuous queries with approximate answers.

1 Introduction

The wide spread of location-detection devices (e.g., GPS-like devices, RFIDs, handheld devices, and cellular
phones) results in location-aware environments where massive spatio-temporal data streams are continuously
sent from these devices to database servers. Location-aware environments are characterized by the large numbers
of continuously moving objects and moving queries (also known as spatio-temporal queries). Such environments
call for new scalable database servers that deal with the continuous movement and frequent updates of both
spatio-temporal objects and spatio-temporal queries.

In this paper, we overview the PLACE server (Pervasive Location-Aware Computing Environments) [AHPO3,
MXAT04b, MXHAO04]; a scalable location-aware database server developed at Purdue University. The PLACE
server combines the advanced technologies of spatio-temporal databases and data stream management systems
to support efficient execution of a large number of continuous spatio-temporal queries over spatio-temporal
data streams. The PLACE server is equipped with spatio-temporal pipelined query operators that interact with
traditional query operators (e.g., join, distinct, and aggregates) to support a wide variety of continuous spatio-
temporal queries. Furthermore, the PLACE server employs incremental evaluation, shared execution, and load
shedding techniques to support large number of concurrent spatio-temporal queries.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

A Query Processing Engine for Real-time Spatio-temporal Data Streams
NILE Continuous Prediacate-based
A Query Processing Engine for Data Streams Window Queries
Shared Execution of Continuous
PREDATOR Continuous Time-based Spatio-temporal Queries
DBMS Sliding-window Queries Moving Queries
INSIDE inside_clause
SQL Language WINDOW ;
NDOW window_clause kNN knn_clause
W-EXPIRE Operator INSIDE Operator
Query Processor
Negative Tuples kNN Operator
Storage Engine Stream_Scan Operator
Stream of Moving Objects/Queries
Abstract Data Type Stream Data Type

Figure 1: The PLACE Server.

As given in Figure 1, the PLACE server extends the NILE data stream management system [HMAT04]
and the PREDATOR database management system [Ses98] to support: (1) Continuous spatio-temporal queries
over spatio-temporal data streams (i.e., streams of moving objects) [MXHAO4]. (2) The concept of predicate-
based window queries [GAEOS5]. (3) Incremental evaluation of continuous spatio-temporal queries [MXAO4a].
Incremental evaluation is achieved through updating the query answer by positive and negative updates. A
positive/negative update indicates that a certain object needs to be added to/removed from the query answer.
(4) Scalable execution of a large number of continuous spatio-temporal queries [MAO05b, MXAO04a]. (5) Load
shedding techniques for spatio-temporal data streams [MAO5b].

The rest of this paper is organized as follows. Section 2 discusses the challenges of dealing with spatio-
temporal streams. The spatio-temporal pipeline query operators are presented in Section 3. Sections 4 and 5
give a brief highlight of the shared execution and load shedding features of the PLACE server, respectively.
Finally, Section 6 concludes the paper.

2 Spatio-temporal Data Streams

Although there are numerous research efforts that deal with data streams (e.g., see [GO03] for a survey), the
spatial and temporal properties of data streams are addressed only recently in [CMO03, HS04] to solve geometric
problems (e.g., computing the convex hull) and in [EMAOS, TPZL05] to develop spatio-temporal histograms.
On the other side, research efforts in spatio-temporal databases (e.g., [CEP03, MGAOQ3, PCC04]) rely mainly on
indexing and/or storing the incoming data in disk storage, which is not suitable for the streaming environment.
Up to the authors’ knowledge, the PLACE server provides the first attempt to furnish query processors in data
stream management systems to support continuous queries over spatio-temporal data streams.

2.1 Managing the Scarce Memory

With the infinite nature of spatio-temporal data streams, it becomes essential to develop in-memory algorithms
and data structures to support the efficient execution of continuous queries. The PLACE server optimizes the
scarce memory resource by keeping track of only those objects that are considered “significant”. A moving
object P is considered significant if there is at least one outstanding continuous query () that shows interest
in P. Thus, once a new incoming data object P, is received, we go through all the outstanding continuous
queries to check if there is any query that is interested in P,¢,. If no query shows interest, we ignore the arrival
of P,cw. Moreover, due to the continuous movements of both objects and queries, we monitor the status of all

(@)QandPatT, (b) T : @ moves (c) T ,: P moves (a) Q at time T, (b) T, : P, moves (¢) T, : P, moves

Figure 2: Uncertainty in moving queries. Figure 3: Uncertainty in static NN queries.

the stored objects. If a significant stored object becomes insignificant at any time, we immediately drop it from
memory.

2.2 Uncertainty in Continuous Spatio-temporal Queries

Storing only significant objects may result in having uncertainty areas in continuous spatio-temporal queries.
We define the uncertainty area of a query () as the spatial area that may contain potential moving objects that
satisfy), with @ not being aware of contents of this area. Uncertainty areas may result in erroneous query
results in both moving and stationary contiguous spatio-temporal queries.

e Moving queries. Figure 2 gives example uncertainty areas that result from moving range queries. Fig-
ure 2a represents a snapshot at time 7 where point P is outside the area of query (). Thus, P is not
physically stored in the database. At time 73 (Figure 2b), () is moved to cover a new spatial area. The
shaded area in () represents (Js uncertainty area. Although P is inside the new query region, P is not
reported in the query answer, simply, because P is not stored in the database. At 75 (Figure 2¢), object P
moves out of the query region. Thus, P is never reported at the query result, although it was physically
inside the query region in the interval [17, T5].

e Stationary queries. Figure 3 gives an example uncertainty area in stationary k-nearest-neighbor queries
(k = 2). At time T (Figure 3a), the query @ has P; and P as its answer. P5 is outside the query spatial
region, thus P; is not stored in the database. At 7T} (Figure 3b), P moves far from (). Since () is aware of
P and P; only, we extend the spatial region of @) to include the new location of P;. Thus, an uncertainty
area is produced. Notice that () is unaware of P, since P is not stored in the database. At 15 (Figure 3c),
P, moves out of the new query region. Thus, P, never appears as an answer to), although P» should
have been part of the answer in the time interval [17, 7).

2.3 Avoiding Uncertainty by Caching

In PLACE, we avoid uncertainty areas in continuous spatio-temporal queries using a caching technique. The
main idea is to predict the uncertainty area of a continuous query () and cache in-memory all moving objects
that lie in @)’s uncertainty area. Whenever an uncertainty area is produced, we probe the in-memory cache
and produce the result immediately. A conservative approach for caching is to expand the query region in all
directions with the maximum possible distance that a moving object can travel between any two consecutive
updates. Such conservative approach completely avoids uncertainty areas where it is guaranteed that all objects
in the uncertainty area are stored in the cache.

3 Spatio-temporal Operators

In the PLACE server we encapsulate query processing algorithms inside physical pipelined query operators that
can be part of a query execution plan. By having pipelined query operators, we achieve three goals: (1) Spatio-
temporal operators can be combined with other operators (e.g., distinct, aggregate, and join operators) to support

incremental evaluation for a wide variety of continuous spatio-temporal queries. (2) Pushing spatio-temporal
operators deep in the query execution plan reduces the number of tuples in the query pipeline. This reduction
comes from the fact that spatio-temporal operators act as filters to the above operators. (3) Flexibility in the
query optimizer where multiple candidate execution plans can be produced.

The main idea of spatio-temporal operators is to keep track of the recently reported answer of each query @@
in a query buffer termed Q). Answer. Then, for each newly incoming tuple P, we perform two tests: Test I - Is
P part of the previously reported Q. Answer? Test II - Does P qualify to be part of the current answer? Based
on the results of the two tests, we distinguish among four cases:

e Case I: P is part of Q). Answer and P still qualify to be part of the current answer. As we process only
the updates of the previously reported result, P will not be processed.

e Case II: P is part of Q). Answer, however, P does not qualify to be part of the answer anymore. In this
case, we report a negative update P~ to the above query operator.

e Case III: P is not part of Q. Answer, however, P qualifies to be part of the current answer. In this case,
we report a positive update to the above query operator.

e Case IV: P is not part of (). Answer and P still does not qualify to be part of the current answer. In this
case, P has no effect on Q).

Similarly, whenever a query reports movement, it classifies in-memory stored objects into four categories
C1 to Cy as follows:

e (1 C Q.Answer and C satisfies the new). Region. Such objects are not processed where they keep
their status as part of the query answer.

e Oy C Q.Answer, Cy does not satisfy the query region. For each data object in C'5, we report a negative
update.

e (O3 ¢ Q.Answer and (4 satisfies the new ().Region. For each data object in C'3, we report a positive
update.

e Cy ¢ Q.Answer and C4 does not satisfy (Q.Region. Such objects are not processed where they keep
their status as they do not belong to the query answer.

3.1 Generic Pipelined Query Operators

PLACE utilizes a unified framework (e.g., see [MAOQ5a]) to deal with continuous range queries as well as con-
tinuous k-nearest-neighbor queries. In addition, there is no distinction between stationary and moving queries
where both of them are treated similarly. The main idea for dealing with moving queries is to treat data and
queries similarly. Thus, data as well as queries have the ability to change their location and size over time. For
k-nearest-neighbor queries, a kNN query is represented as a circular range query. The only difference is that the
size of the query range may grow or shrink based on the movement of the query and objects of interest. Once
the kNN query is registered in the PLACE server, the first incoming k objects are considered as the initial query
answer. The radius of the circular region is determined by the distance from the query center to the current
kth farthest neighbor. Then, the query execution continues as a regular range query, yet with a variable size.
Whenever a newly coming object P lies inside the circular query region, P removes the kth farthest neighbor
from the answer set (with a negative update) and adds itself to the answer set (with a positive update). The query
circular region is shrunk to reflect the new kth neighbor. Similarly, if an object P, that is one of the k neighbors,
updates its location to be outside the circular region, we expand the query circular region to reflect the fact that

4

P is considered the farthest kth neighbor. Notice that in case of expanding the query region, we do not output
any updates.

3.2 SQL Syntax

As the PLACE server extends both PREDATOR [Ses98] and NILE [HMA™04], we extend the SQL language
provided by both systems to support spatio-temporal operators. A continuous query is registered at the PLACE
server using the SQL:

REGISTER QUERY query_name AS
SELECT select_clause

FROM from_clause

WHERE where_clause

INSIDE inside_clause

kNN knn_clause

WINDOW window_clause

The REGISTER QUERY statement registers the continuous query at the PLACE server with the query_name
as its identifier. A continuous query is dropped form the system using the SQL DROP QUERY query_name.
The select_clause, from_clause, and where_clause are the same as those in the PREDATOR [Ses98] database
management statement. The window_clause is the same as that in the NILE [HMAT04] stream query processor
to support continuous sliding window queries [HFAEQ3]. The inside_clause may represent stationary/moving
rectangular or circular range queries. Moving queries are tied to focal objects. As the focal object reports
movement update to the server, we update the query region. A rectangular range query can have one of the
following two forms:

e Static range query (z1,y1,Z2,¥y2), Where (z1,y1) and (z2,y2) represent the top-left and bottom-right
corners of the rectangular range query.

e Moving rectangular range query ("M’ I D, xdist, ydist), where ' M’ is a flag to indicate that the query is
moving, I D is the identifier of the query focal point, and xdist and ydist are the length and width of the
query rectangle.

A circular range query has the same syntax except that we define only the radius instead of (x, y). Similarly,
the knn_clause for continuous k-nearest-neighbor queries may have one of the following two forms:

e Static kNN query (k, x,y), where k is the number of neighbors to be maintained, and (z, y) is the center
of the query point.

e Moving kNN query ('M’, k,ID), where ' M’ is a flag to indicate that the query is moving, k is the number
of neighbors to be maintained, and I D is the identifier of the query focal point.

4 Shared Execution

In a typical spatio-temporal application (e.g., location-aware services), there are large numbers of concurrent
spatio-temporal continuous queries. Dealing with each query as a separate entity would easily consume the
system resources and degrade the system performance. Figure 4a gives the pipelined execution of N queries
(Q1 to Qn) of various types with no sharing, i.e., each query is considered a separate entity. The input data
stream goes through each spatio-temporal query operator separately. With each operator, we keep track of a
separate buffer that contains all the objects that are needed by this query (e.g., objects that are inside the query

Operator
Buffer
Stream of Stream of
Stream of Moving Objects (P) Moving Spatio-temporal
Objects (P) Queries (Q)
(a) Separate query plan and (b) Shared operator and shared
buffer for each query buffer pool for all queries

Figure 4: Overview of shared execution in the PLACE server.

region or its cache area). With a separate buffer for each single query, the memory can be exhausted with a small
number of continuous queries. Figure 4b gives the pipelined execution of the same N queries as in Figure 4a, yet
with the shared pipelined query operator [MAOSb]. The problem of evaluating concurrent continuous queries is
reduced to a spatio-temporal join between two streams; a stream of moving objects and a stream of continuous
spatio-temporal queries. The shared spatio-temporal join operator has a shared buffer pool that is accessible
by all continuous queries. The output of the shared query operator has the form (Q;, £F;) that indicates the
addition or removal of object P; to/from query ();. The shared query operator is followed by a split operator
that distributes the output either to the users or to the various query operators.

S Load Shedding

Even with the shared execution paradigm in PLACE, the memory resource may be exhausted at intervals of un-
expected massive numbers of queries and moving objects (e.g., during rush hours). To cope with such intervals,
the PLACE server is equipped with a self-tuning approach that tunes the memory load to support a large number
of concurrent queries, yet with an approximate answer. The main idea is to tune the definition of significant
objects based on the current workload. By adapting the definition of significant objects, the memory load will
be shed in two ways: (1) In-memory stored objects will be revisited for the new meaning of significant objects.
If an insignificant object is found, it will be shed from memory. (2) Some of the newly input data will be shed at
the input level.

Figure 5 gives the architecture of self-tuning in the PLACE server. Once the shared join operator incurs
high resource consumption, e.g., the memory becomes almost full, the join operator triggers the execution of
the load shedding procedure. The load shedding procedure may consult some statistics that are collected during
the course of execution to decide on a new meaning of significant objects. While the shared join operator is
running with the new definition of significant objects, it may send updates of the current memory load to the
load shedding procedure. The load shedding procedure replies back by continuously adopting the notion of
significant objects based on the continuously changing memory load. Finally, once the memory load returns to
a stable state, the shared join operator retains the original meaning of significant objects and stops the execution
of the load shedding procedure. Solid lines in Figure 5 indicate the mandatory steps that should be taken by any
load shedding technique. Dashed lines indicate a set of operations that may or may not be employed based on
the underlying load shedding technique.

!

‘ Update
”””””””””””” w

Shared

Join | —
(1) Trigger

(Memory is almost full)

Operator

(2) Update criteria

<C- - - (4) Update criteria

% % (5) STOP (Memory is OK)

Objects Queries

Figure 5: Self-tuning in the PLACE server

6 Conclusion

In this paper, we presented the PLACE (Pervasive Location-Aware Computing Environments) server; a database
server for location-aware environments developed at Purdue University. The PLACE server combines the recent
advances in spatio-temporal query processors and data stream management systems to provide a location-aware
database server that efficiently execute large number of concurrent continuous spatio-temporal queries over
spatio-temporal data streams. The PLACE server is realized by extending both the PREDATOR database man-
agement system and the NILE stream query processor to support the following main features: (1) New physical
spatio-temporal query operators that can interact with traditional query operators in a large query plan. (2) Incre-
mental evaluation through the concepts of positive and negative updates. (3) Shared execution of large number
of concurrent continuous spatio-temporal queries. (4) Load shedding techniques to cope with time intervals of
high workload of incoming data objects and/or queries. (5) Unified framework for a wide variety of continuous
spatio-temporal queries.

Acknowledgments

This work was supported in part by the National Science Foundation under Grants 1IS-0093116, 11S-0209120,
and 0010044-CCR. The authors also would like to thank Hicham Elmongui, Thanaa Ghanem, Susanne Hambr-
usch, Moustafa Hammad, Sunil Prabhakar, and Xiaopeng Xiong for contributing in different stages in realizing
the PLACE server.

References

[AHPO3] Walid G. Aref, Susanne E. Hambrusch, and Sunil Prabhakar. Pervasive Location Aware Comput-
ing Environments (PLACE). http://www.cs.purdue.edu/place/, 2003.

[CEPO3] V. Prasad Chakka, Adam Everspaugh, and Jignesh M. Patel. Indexing Large Trajectory Data Sets
with SETI. In Proc. of the Conf. on Innovative Data Systems Research, CIDR, 2003.

[CMO3] Graham Cormode and S. Muthukrishnan. Radial Histograms for Spatial Streams. Technical
Report DIMACS TR: 2003-11, Rutgers University, 2003.

[EMAOS5]

[GAEOS5]

[GOO03]

[HFAEOQ3]

[HMA104]

[HS04]

[MAO5a]

[MAO5b]

[MGAO3]

[MXAO4a]

[MXA104b]

[MXHAO04]

[PCCO04]

[Ses98]

[TPZLO5]

Hicham G. Elmongui, Mohamed F. Mokbel, and Walid G. Aref. Spatio-Temporal Histograms. In
SSTD, 2005.

Thanaa M. Ghanem, Walid G. Aref, and Ahmed K. Elmagarmid. Exploiting Predicate-window
Semantics over Data Streams. SIGMOD Record. To Appear, 2005.

Lukasz Golab and M. Tamer Ozsu. Issues in data stream management. SIGMOD Record, 32(2):5—
14, 2003.

Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and Ahmed K. Elmagarmid. Schedul-
ing for shared window joins over data streams. In VLDB, 2003.

Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H. Ali, Walid G. Aref, Ann C. Catlin,
Ahmed K. Elmagarmid, Mohamed Eltabakh, Mohamed G. Elfeky, Thanaa M. Ghanem, Robert
Gwadera, Thab F. Ilyas, Mirette Marzouk, and Xiaopeng Xiong. Nile: A Query Processing Engine
for Data Streams (Demo). In ICDE, 2004.

John Hershberger and Subhash Suri. Adaptive Sampling for Geometric Problems over Data
Streams. In PODS, 2004.

Mohamed F. Mokbel and Walid G. Aref. GPAC: Generic and Progressive Processing of Mobile
Queries over Mobile Data. In MDM, 2005.

Mohamed F. Mokbel and Walid G. Aref. SOLE: Scalable Online Execution of Continuous Queries
on Spatio-temporal Data Streams. Technical Report TR CSD-05-016, Purdue University Depart-
ment of Computer Sciences, July 2005.

Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. Spatio-temporal Access Methods.
IEEFE Data Engineering Bulletin, 26(2), 2003.

Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. SINA: Scalable Incremental Process-
ing of Continuous Queries in Spatio-temporal Databases. In SIGMOD, 2004.

Mohamed F. Mokbel, Xiaopeng Xiong, Walid G. Aref, Susanne Hambrusch, Sunil Prabhakar, and
Moustafa Hammad. PLACE: A Query Processor for Handling Real-time Spatio-temporal Data
Streams (Demo). In VLDB, 2004.

Mohamed F. Mokbel, Xiaopeng Xiong, Moustafa A. Hammad, and Walid G. Aref. Continuous
Query Processing of Spatio-temporal Data Streams in PLACE. In Proceedings of the second
workshop on Spatio-Temporal Database Management, STDBM, 2004.

Jignesh M. Patel, Yun Chen, and V. Prasad Chakka. STRIPES: An Efficient Index for Predicted
Trajectories. In SIGMOD, 2004.

P. Seshadri. Predator: A Resource for Database Research. SIGMOD Record, 27(1):16-20, 1998.

Yufei Tao, Dimitris Papadias, Jian Zhai, and Qing Li. Venn Sampling: A Novel Prediction Tech-
nique for Moving Objects. In ICDE, 2005.

