CSci 5271
Introduction to Computer Security
Day 19: Web security, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline
Security web intro (contd)

JavaScript and the DOM

) JavaScript (JS) is a dynamically-typed
prototype-00 language
® No real similarity with Java
©) Document Object Model (DOM): lets JS
interact with pages and the browser

©) Extensive security checks for
untrusted-code model

Same-origin policy

) Origin is a tuple (scheme, host, port)
® Eg, (http, www.umn.edu, 80)
) Basic JS rule: interaction is allowed
only with the same origin
) Different sites are (mostly) isolated
applications

GET, POST, and cookies

) GET request loads a URL, may have

parameters delimited with 7, &, =
m Standard: should not have side-effects

) POST request originally for forms

® Can be larger, more hidden, have
side-effects

) Cookie: small token chosen by server,
sent back on subsequent requests to
same domain

User and attack models

£) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
©) "Network attacker” can view and sniff
unencrypted data
® Unprotected coffee shop WiFi




Outline

SQL injection

Relational model and SQL

£) Relational databases have tables with
rows and single-typed columns

©) Used in web sites (and elsewhere) to
provide scalable persistent storage

£) Allow complex queries in a declarative
language SQL

Example SQL queries

) SELECT name, grade FROM
Students WHERE grade < 60
ORDER BY name;

£) UPDATE Votes SET count =
count + 1 WHERE candidate =
’John’;

Template: injection attacks

©) Your program interacts with an
interpreted language

©) Untrusted data can be passed to the
interpreter

©) Attack data can break parsing
assumptions and execute arbitrary
commands

SQL + injection (A1)

©) Why is this named most critical web
app. risk?

) Easy mistake to make systematically

) Can be easy to exploit

) Database often has high-impact
contents

® E.g, logins or credit cards on commerce
site

Strings do not respect syntax

£) Key problem: assembling commands as
strings

£) "WHERE name = ’$name’ ;"

£) Looks like $name is a string

o Try
$name = "me’ OR grade > 80; --"




Using tautologies

) Tautology: formula that's always true

) Often convenient for attacker to see a
whole table

r) Classic: OR 1=1

Non-string interfaces

) Best fix: avoid constructing queries as
strings
) SQL mechanism: prepared statement
® Original motivation was performance
£) Web languages/frameworks often
provide other syntax

Retain functionality: escape

) Sanitizing data is transforming it to
prevent an attack
) Escaped data is encoded to match
language rules for literal
mEg,\"and\ninC
) But many pitfalls for the unwary:

m Differences in escape syntax between
servers

® Must use right escape for context: not
everything’s a string

Lazy sanitization: whitelisting

) Allow only things you know to be
safe/intended

) Error or delete anything else

) Short whitelist is easy and relatively
easy to secure

©) E.g, digits only for non-negative integer
£) But, tends to break benign functionality

Poor idea: blacklisting

) Space of possible attacks is endless,
don't try to think of them all

©) Want to guess how many more
comment formats SQL has?

) Particularly silly: blacklisting 1=1

Attacking without the program

) Often web attacks don't get to see the
program
® Not even binary, it's on the server
) Surmountable obstacle:

®m Guess natural names for columns
® Harvest information from error messages




Blind SQL injection

) Attacking with almost no feedback

©) Common: only “error” or “no error”

) One bit channel you can make yourself:
if (x) delay 10 seconds

) Trick to remember: go one character at
a time

Injection beyond SQL

£) XPath/XQuery: queries on XML data

) LDAP: queries used for authentication
) Shell commands: example from EX. 1

£) More web examples to come

Outline

Web authentication failures

Per-website authentication

£) Many web sites implement their own
login systems

+ If users pick unique passwords, little
systemic risk

— Inconvenient, many will reuse passwords

— Lots of functionality each site must
implement correctly

— Without enough framework support, many
possible pitfalls

Building a session

©) HTTP was originally stateless, but many
sites want stateful login sessions

©) Building by tying requests together with
a shared session ID

) Must protect confidentiality and
integrity

Session ID: what

) Must not be predictable
® Not a sequential counter
©) Should ensure freshness
® E.g, limited validity window
0 If encoding data in ID, must be

unforgeable
® Eg, data with properly used MAC
® Negative example: crypt(username ||
server secret)




Session ID: where

) Session IDs in URLs are prone to
leaking
® Including via user cut-and-paste
) Usual choice: non-persistent cookie
® Against network attacker, must send only
under HTTPS
) Because of CSRF (next time), should
also have a non-cookie unique ID

Session management (A2)

©) Create new session ID on each login
£ Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
m Needed to protect users who fail to log
out from public browsers

Account management

©) Limitations on account creation
®m CAPTCHA? Outside email address?
) See previous discussion on hashed
password storage
©) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

) For usability, interface should show
what's possible

£) But must not rely on client to perform
checks

) Attackers can read/modify anything on
the client side

©) Easy example: item price in hidden field

Direct object references (A4)

) Seems convenient: query parameter
names resource directly
® E.g, database key, filename (path
traversal)
) Easy to forget to validate on each use

) Alternative: indirect reference like
per-session table

® Not fundamentally more secure, but
harder to forget check

Function-level access control (A7)

©) E.9. pages accessed by URLs or
interface buttons
) Must check each time that user is

authorized
® Attack: find URL when authorized, reuse
when logged off

) Helped by consistent structure in code




Outline

Announcements intermission

John out of town this week

) (At ACM CCS in Berlin)

©) Thursday and Friday office hours
canceled

r) Best to include other staff on emails

Outline

Cross-site scripting

XSS: HTML/JS injection (A3)

©) Note: CSS is "Cascading Style Sheets”
©) Another use of injection template

) Attacker supplies HTML containing
JavaScript (or occasionally CSS)
) OWASP’s most prevalent weakness

® A category unto itself
® Easy to commit in any dynamic page
construction

Why XSS is bad (and named that)

) attacker.com can send you evil JS
directly

©) But XSS allows access to bank. com
data

) Violates same-origin policy
©) Not all attacks actually involve multiple
sites

Reflected XSS

£ Injected data used immediately in
producing a page

£) Commonly supplied as query/form
parameters

) Classic attack is link from bad site to
victim site




Persistent XSS

) Injected data used to produce page
later

) For instance, might be stored in
database
) Can be used by one site user to attack
another user
® E.g, to gain administrator privilege

DOM-based XSS

) Injected occurs in client-side page
construction

) Flaw at least partially in code running
on client

£) Many attacks involve mashups and
inter-site communication

No string-free solution

) For server-side XSS, no way to avoid
string concatenation
) Web page will be sent as text in the
end
® Research topic: ways to change this?

) XSS especially hard kind of injection

Danger: complex language embedding

) JS and CSS are complex languages in
their own
©) Can appear in various places with
HTML
® But totally different parsing rules
©) Example: "..." used for HTML

attributes and JS strings

® What happens when attribute contains
Js?

Danger: forgiving parsers

©) History: handwritten HTML, browser
competition

©) Many syntax mistakes given “likely”
interpretations

©) Handling of incorrect syntax was not
standardized

Sanitization: plain text only

) Easiest case: no tags intended, insert
at document text level

) Escape HTML special characters with
entities like &1t ; for <

) OWASP recommendation:
<> "o /




Sanitization: context matters

©) An OWASP document lists 5 places in

a web page you might insert text
m For the rest, “"don't do that”

) Each one needs a very different kind of
escaping

Sanitization: tag whitelisting

©) In some applications, want to allow
benign markup like <b>

£) But, even benign tags can have JS
attributes
£) Handling well essentially requires an
HTML parser
® But with an adversarial-oriented design

Don't blacklist

©) Browser capabilities continue to evolve

) Attempts to list all bad constructs
inevitably incomplete

) Even worse for XSS than other
injection attacks

Filter failure: one pass delete

©) Simple idea: remove all occurrences of
<script>
©) What happens to <scr<script>ipt>?

Filter failure; UTF-7

©) You may have heard of UTF-8
® Encode Unicode as 8-bit bytes

) UTF-7 is similar but uses only ASCII

) Encoding can be specified in a <meta>
tag, or some browsers will guess

) +ADw-script+AD4-

Filter failure: event handlers

<IMG onmouseover="alert(’xss’)'">
©) Put this on something the user will be
tempted to click on
£) There are more than 100 handlers like
this recognized by various browsers




Use good libraries

) Coding your own defenses will never
work

) Take advantage of known good
implementations
) Best case: already built into your

framework
® Disappointingly rare

Content Security Policy

) New HTTP header, W3C candidate
recommendation
) Lets site opt-in to stricter treatment of
embedded content, such as:
® No inline JS, only loaded from separate
URLs
® Disable JS eval et al.
£) Has an interesting violation-reporting

mode

Outline

More cross-site risks

HTTP header injection

©) Untrusted data included in response
headers

©) Can include CRLF and new headers, or
premature end to headers

£) AKA “response splitting”

Content sniffing

) Browsers determine file type from
headers, extension, and content-based
guessing

® Latter two for ~ 1% server errors

£) Many sites host “untrusted” images
and media

©) Inconsistencies in guessing lead to kind
of XSS

® E.g, "chimera” PNG-HTML document

Cross-site request forgery (A8)

) Certain web form on bank . com used to
wire money

©) Link or script on evil.com loads it
with certain parameters

® Linking is exception to same-origin

o) If I'm logged in, money sent
automatically

) Confused deputy, cookies are ambient
authority




CSRF prevention

) Give site’s forms random-nonce tokens

® E.g, in POST hidden fields
® Not in a cookie, that's the whole point

) Reject requests without proper token
® Or, ask user to re-authenticate

) XSS can be used to steal CSRF tokens

Open redirects (A10)

£) Common for one page to redirect
clients to another
) Target should be validated
® With authentication check if appropriate
£) Open redirect. target supplied in

parameter with no checks

® Doesn't directly hurt the hosting site
® But reputation risk, say if used in phishing
®m We teach users to trust by site

Outline

Confidentiality and privacy

Site perspective (A6)

) Protect confidentiality of authenticators
® Passwords, session cookies, CSRF tokens
) Duty to protect some customer info
® Personally identifying info (“identity theft”)
® Credit-card info (Payment Card Industry
Data Security Standards)
m Health care (HIPAA), education (FERPA)
®m Whatever customers reasonably expect

You need to use SSL

) Finally coming around to view that
more sites need to support HTTPS

m Special thanks to WiFi, NSA
) If you take credit cards (of course)

©) If you ask users to log in

® Must be protecting something, right?
® Also important for users of Tor et al.

Server-side encryption

) Also consider encrypting data “at rest”
) (Or, avoid storing it at all)
) Provides defense in depth

® Reduce damage after another attack

©) May be hard to truly separate keys

® OWASP example: public key for website
— backend credit card info




Adjusting client behavior

©) HTTPS and password fields are basic
hints
) Consider disabling autocomplete

m Usability tradeoff, save users from
themselves
® Finally standardized in HTML5

) Consider disabling caching
® Performance tradeoff
m Better not to have this on user's disk
® Or proxy? You need SSL

User vs. site perspective

©) User privacy goals can be opposed to
site goals
©) Such as in tracking for advertisements

) Browser makers can find themselves in

the middle
m Of course, differ in institutional pressures

Third party content / web bugs

©) Much tracking involves sites other than

the one in the URL bar
® For fun, check where your cookies are
coming from

) Various levels of cooperation

) Web bugs are typically 1x1 images used
only for tracking

ElLike <0

Cookies arms race

) Privacy-sensitive users like to block
and/or delete cookies

) Sites have various reasons to retain

identification
) Various workarounds:
® Similar features in Flash and HTML5
® Various channels related to the cache
m Evercookie: store in n places, regenerate
if subset are deleted

Browser fingerprinting

) Combine various server or JS-visible

attributes passively
® User agent string (10 bits)
®m Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from
exhaustive)

History stealing

) History of what sites you've visited is
not supposed to be JS-visible
£) But, many side-channel attacks have

been possible
® Query link color
® CSS style with external image for visited
links
® Slow-rendering timing channel
® Harvesting bitmaps
m User perception (e.q. fake CAPTCHA)




Browser and extension choices

) More aggressive privacy behavior lives
in extensions
® Disabling most JavaScript (NoScript)
m HTTPS Everywhere (whitelist)
® Tor Browser Bundle
) Default behavior is much more

controversial
® Concern not to kill advertising support as
an economic model

Outline

Even more risks

Misconfiguration problems (A5)

) Default accounts
) Unneeded features

©) Framework behaviors

® Don't automatically create variables from
query fields

Openness tradeoffs

) Error reporting

® Few benign users want to see a stack
backtrace

) Directory listings
® Hallmark of the old days
£) Readable source code of scripts

® Doesn't have your DB password in it, does
it?

Using vulnerable components (A9)

©) Large web apps can use a lot of
third-part code
) Convenient for attackers too

® OWASP: two popular vulnerable
components downloaded 22m times

) Hiding doesn't work if it's popular
£) Stay up to date on security
announcements

Clickjacking

) Fool users about what they're clicking
on
® Circumvent security confirmations
® Fabricate ad interest

) Example techniques:
® Frame embedding
® Transparency

® Spoof cursor
® Temporal “bait and switch”




Crawling and scraping Next time

©) A lot of web content is free-of-charge,
but proprietary
® Yours in a certain context, if you view

ads, etc. ) Firewalls, NATs, and network intrusion

) Sites don't want it downloaded detection
automatically (web crawling)

) Or parsed and user for another
purpose (screen scraping)

©) High-rate or honest access detectable




