
CSci 5271
Introduction to Computer Security

Day 17: PKI and ‘S’ protocols
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Cryptographic protocols, cont’d

More causes of crypto failure

Key distribution and PKI

HW1 debrief

SSH

SSL/TLS

DNSSEC

Robot-in-the-middle attacks

Adversary impersonates Alice to Bob
and vice-versa, relays messages

Powerful position for both
eavesdropping and modification

No easy fix if Alice and Bob aren’t
already related

Envelopes analogy

Encrypt then sign, or vice-versa?

On paper, we usually sign inside an
envelope, not outside. Two reasons:

Attacker gets letter, puts in his own
envelope (c.f. attack against X.509)
Signer claims “didn’t know what was in
the envelope” (failure of non-repudiation)

Design robustness principles

Use timestamps or nonces for
freshness

Be explicit about the context

Don’t trust the secrecy of others’
secrets

Whenever you sign or decrypt, beware
of being an oracle

Distinguish runs of a protocol

Implementation principles

Ensure unique message types and
parsing

Design for ciphers and key sizes to
change

Limit information in outbound error
messages

Be careful with out-of-order messages



Outline

Cryptographic protocols, cont’d

More causes of crypto failure

Key distribution and PKI

HW1 debrief

SSH

SSL/TLS

DNSSEC

Random numbers and entropy

Cryptographic RNGs use cipher-like
techniques to provide indistinguishability
But rely on truly random seeding to
stop brute force

Extreme case: no entropy ! always
same “randomness”

Modern best practice: seed pool with
256 bits of entropy

Suitable for security levels up to 2
256

Netscape RNG failure

Early versions of Netscape SSL
(1994-1995) seeded with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit
encryption)

But worse because many bits
guessable

Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme
using /dev/urandom

Also mixed in some uninitialized
variable values

“Extra variation can’t hurt”

From modern perspective, this was the
original sin

Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out
some lines to fix a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all
but 16 bits)

Brief mailing list discussion didn’t lead
to understanding

Broken library used for �2 years before
discovery

Detected RSA/DSA collisions
Up to about 1% of the SSL and SSH
keys on the public net are breakable

Some sites share complete keypairs
RSA keys with one prime in common
(detected by large-scale GCD)

One likely culprit: insufficient entropy in
key generation

Embedded devices, Linux /dev/urandom

vs. /dev/random

DSA signature algorithm also very
vulnerable



Side-channel attacks

Timing analysis:
Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired
Equivalent Privacy (WEP)

F&S: designed by a committee that
contained no cryptographers
Problem 1: note “privacy”: what about
integrity?

Nope: stream cipher + CRC = easy bit
flipping

WEP shared key

Single key known by all parties on
network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key
(export restrictions) plus 24-bit IV =
64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes
hours
Worse: random or everyone starts at zero

WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key,
similar IV)
First stream bytes used

Not a practical problem for other RC4
users like SSL

Key from a hash, skip first output bytes

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by
your adversary

In a public spec, most worrying are
unexplained elements

Best practice: choose constants from
well-known math, like digits of �



Dual EC DRBG (1)

Pseudorandom generator in NIST
standard, based on elliptic curve

Looks like provable (slow enough!) but
strangely no proof

Specification includes long unexplained
constants
Academic researchers find:

Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of
constants allows prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to
US govt. FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed
recently by Snowden leaks

NIST and RSA immediately recommend
withdrawal

Outline

Cryptographic protocols, cont’d

More causes of crypto failure

Key distribution and PKI

HW1 debrief

SSH

SSL/TLS

DNSSEC

Public key authenticity

Public keys don’t need to be secret, but
they must be right

Wrong key ! can’t stop MITM

So we still have a pretty hard
distribution problem

Symmetric key servers

Users share keys with server, server
distributes session keys

Symmetric key-exchange protocols, or
channels

Standard: Kerberos

Drawback: central point of trust

Certificates

A name and a public key, signed by
someone else

Basic unit of transitive trust

Commonly use a complex standard
“X.509”



Certificate authorities

“CA” for short: entities who sign
certificates

Simplest model: one central CA

Works for a single organization, not the
whole world

Web of trust

Pioneered in PGP for email encryption

Everyone is potentially a CA: trust
people you know
Works best with security-motivated
users

Ever attended a key signing party?

CA hierarchies

Organize CAs in a tree

Distributed, but centralized (like DNS)

Check by follow a path to the root

Best practice: sub CAs are limited in
what they certify

PKI for authorization

Enterprise PKI can link up with
permissions

One approach: PKI maps key to name,
ACL maps name to permissions
Often better: link key with permissions
directly, name is a comment

More like capabilities

The revocation problem

How can we make certs “go away”
when needed?

Impossible without being online
somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

Cryptographic protocols, cont’d

More causes of crypto failure

Key distribution and PKI

HW1 debrief

SSH

SSL/TLS

DNSSEC



BCVS vulnerabilities

Type 1: Buffer overflows and similar
Some easy to spot, but hard to exploit

Type 2: Logic errors in running
programs, file accesses, etc.

Usually easier to exploit once found

BCVS exploiting overflows

Make sure control flow reaches the
return

Compensate for collateral damage

Find your shellcode

Writing shellcode

BCVS design changes

Avoid unnecessary changes to benign
functionality

Restricting length or character sets of
arguments
Though, what is the benign functionality?

Not a great candidate for privilege
separation

Final crypto textbook show and tell

Paar and Pelzl, Understanding
Cryptography

A real textbook, but pretty practical

Gives full details of DES and AES, for
instance

Outline

Cryptographic protocols, cont’d

More causes of crypto failure

Key distribution and PKI

HW1 debrief

SSH

SSL/TLS

DNSSEC

Short history of SSH

Started out as freeware by Tatu Ylönen
in 1995

Original version commercialized

Fully open-source OpenSSH from
OpenBSD

Protocol redesigned and standardized
for “SSH 2”



OpenSSH t-shirt SSH host keys

Every SSH server has a public/private
keypair

Ideally, never changes once SSH is
installed
Early generation a classic entropy
problem

Especially embedded systems, VMs

Authentication methods

Password, encrypted over channel

.shosts: like .rhosts, but using client
host key
User-specific keypair

Public half on server, private on client

Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

1.x had only CRC for integrity
Worst case: when used with RC4

Injection attacks still possible with CBC
CRC compensation attack

For least-insecure 1.x-compatibility,
attack detector

Alas, detector had integer overflow
worse than original attack

Newer crypto vulnerabilities

IV chaining: IV based on last message
ciphertext

Allows chosen plaintext attacks
Better proposal: separate, random IVs

Some tricky attacks still left
Send byte-by-byte, watch for errors
Of arguable exploitability due to abort

Now migrating to CTR mode

SSH over SSH

SSH to machine 1, from there to
machine 2

Common in these days of NATs

Better: have machine 1 forward an
encrypted connection (cf. HW1)

1. No need to trust 1 for secrecy

2. Timing attacks against password typing



SSH (non-)PKI

When you connect to a host freshly, a
mild note

When the host key has changed, a
large warning

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!
It is also possible that a host key has just been changed.

Outline

Cryptographic protocols, cont’d

More causes of crypto failure

Key distribution and PKI

HW1 debrief

SSH

SSL/TLS

DNSSEC

SSL/TLS

Developed at Netscape in early days of
the public web

Usable with other protocols too, e.g. IMAP

SSL 1.0 pre-public, 2.0 lasted only one
year, 3.0 much better
Renamed to TLS with RFC process

TLS 1.0 improves SSL 3.0

TLS 1.1 and 1.2 in 2006 and 2008, only
gradual adoption

IV chaining vulnerability

Like SSH, TLS 1.0 uses old ciphertext
for CBC IV
But, easier to attack in TLS:

More opportunities to control plaintext
Can automatically repeat connection

“BEAST” automated attack in 2011: TLS
1.1 wakeup call

Compression oracle vuln.

Compr(S k A), where S should be
secret and A is attacker-controlled

Attacker observes ciphertext length

If A is similar to S, combination
compresses better

Compression exists separately in HTTP
and TLS

But wait, there’s more!

Too many vulnerabilities to mention
them all in lecture
Meyer and Schwenk have longer list

“Lessons learned” are variable, though

Meta-message: don’t try this at home



HTTPS hierarchical PKI

Browser has order of 100 root certs
Not same set in every browser
Standards for selection not always clear

Many of these in turn have sub-CAs

Also, “wildcard” certs for individual
domains

Hierarchical trust?

No. Any CA can sign a cert for any
domain

A couple of CA compromises recently

Most major governments, and many
companies you’ve never heard of, could
probably make a google.com cert

Still working on: make browser more
picky, compare notes

CA vs. leaf checking bug

Certs have a bit that says if they’re a
CA

All but last entry in chain should have it
set

Browser authors repeatedly fail to
check this bit

Allows any cert to sign any other cert

MD5 certificate collisions

MD5 collisions allow forging CA certs

Create innocuous cert and CA cert with
same hash

Requires some guessing what CA will do,
like sequential serial numbers
Also 200 PS3s

Oh, should we stop using that hash
function?

CA validation standards

CA’s job to check if the buyer really is
foo.com
Race to the bottom problem:

CA has minimal liability for bad certs
Many people want cheap certs
Cost of validation cuts out of profit

“Extended validation” (green bar) certs
attempt to fix

HTTPS and usability

Many HTTPS security challenges tied
with user decisions

Is this really my bank?

Seems to be a quite tricky problem
Security warnings often ignored, etc.
We’ll return to this as a major example
later



Outline

Cryptographic protocols, cont’d

More causes of crypto failure

Key distribution and PKI

HW1 debrief

SSH

SSL/TLS

DNSSEC

DNS: trusted but vulnerable

Almost every higher-level service
interacts with DNS
UDP protocol with no authentication or
crypto

Lots of attacks possible

Problems known for a long time, but
challenge to fix compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability

First cut: signatures and certificates

Each resource record gets an RRSIG

signature
E.g., A record for one name!address
mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY

RRs

Recursive chain up to the root (or other
“anchor”)

Add more indirection

DNS needs to scale to very large flat
domains like .com

Facilitated by having single DS RR in
parent indicating delegation

Chain to root now includes DSes as well

Negative answers

Also don’t want attackers to spoof
non-existence

Gratuitous denial of service, force fallback,
etc.

But don’t want to sign “x does not
exist” for all x

Solution 1, NSEC: “there is no name
between acacia and baobab”



Preventing zone enumeration

Many domains would not like people
enumerating all their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses
password-like salt and repeated hash,
allows opt-out

DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named
Entities”

DNS contains hash of TLS cert, don’t
need CAs

How is DNSSEC’s tree of certs better
than TLS’s?

Signing the root

Political problem: many already distrust
US-centered nature of DNS
infrastructure

Practical problem: must be very secure
with no single point of failure
Finally accomplished in 2010

Solution involves ‘key ceremonies’,
international committees, smart cards,
safe deposit boxes, etc.

Deployment

Standard deployment problem: all cost
and no benefit to being first mover

Servers working on it, mostly top-down

Clients: still less than 10%

Will be probably common: insecure
connection to secure resolver

Next time

Web security, server side


