CSci 5271
Introduction to Computer Security
Day 10: OS security: access control

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Basics of access control

Mechanism and policy

) Decision-making aspect of OS

) Should subject S (user or process) be
allowed to access resource (e.g, file) R?

©) Complex, since admin must specify
what should happen

Access control matrix

Slicing the matrix

) O(nm) matrix impractical to store,
much less administer
) Columns: access control list (ACL)
® Convenient to store with resource
® Eg, Unix file permissions
©) Rows: capabilities
® Convenient to store by subject
® E.g, Unix file descriptors

gradestxt | /dev/hda | /opt/bcvs/bevs
Alice r rw rx
Bob rw - rx
Carol r - rx
Groups/roles

©) Simplify by factoring out commonality

) Before: users have permissions

) After: users have roles, roles have
permissions

£) Simple example: Unix groups

) Complex versions called role-based
access control (RBAC)

Outline

Unix-style access control

UIDs and GIDs

) To kernel, users and groups are just
numeric identifiers
£) Names are a user-space nicety
s Eg, /etc/passwd mapping

) Historically 16-bit, now 32

) User O is the special superuser root
® Exempt from all access control checks

File mode bits

) Core permissions are 9 bits, three
groups of three

©) Read, write, execute for user, group,
other

) 1s format; rwx r-x r--
) Octal format: 0754

Interpretation of mode bits

) File also has one user and group ID

) Choose one set of bits

m If users match, use user bits
m If subject is in the group, use group bits
m Otherwise, use other bits

£) Note no fallback, so can stop yourself

or have negative groups
mButusualy OCGCU

Directory mode bits

) Same bits, slightly different
interpretation

©) Read: list contents (e.g, 1s)
) Write: add or delete files
) Execute: traverse

©) X but not R means: have to know the
names

Process UIDs and setuid(2)

©) UID is inherited by child processes, and
an unprivileged process can't change it

©) But there are syscalls root can use to
change the UID, starting with setuid

©) E.g, login program, SSH server

Setuid programs, different UIDs

) If 04000 “setuid” bit set, newly execd
process will take UID of its file owner

® Other side conditions, like process not
traced

) Specifically the effective UID is changed,
while the real UID is unchanged

® Shows who called you, allows switching
back

More different UIDs

£) Two mechanisms for temporary
switching:
® Swap real UID and effective UID (BSD)
® Remember saved UID, allow switching to
it (System V)
£) Modern systems support both
mechanisms at the same time
£) Linux only: file-system UID

® Once used for NFS servers, now mostly
obsolete

Setqgid, games

) Setgid bit 02000 mostly analogous to
setuid

) But note no supergroup, so UID O is still
special

) Classic application: setgid games for
managing high-score files

Other permission rules

©) Only file owner or root can change
permissions
©) Only root can change file owner

® Former System V behavior: “give away
chown”

) Setuid/qid bits cleared on chown
m Set owner first, then enable setuid

Non-checks

£) File permissions on stat
) File permissions on link, unlink, rename
) File permissions on read, write

) Parent directory permissions generally
® Except traversal
® |.e, permissions not automatically
recursive

Outline

Announcements intermission

Deadlines reminder

€) Exercise set 1. returned before midterm

©) Homework 1. today is last day for late
submission

) Exercise set 2: Thursday night

©) Ask HWI1 and Ex.2 questions before
midterm

Outline

Multilevel and mandatory access control

MAC vs. DAC

) Discretionary access control (DAC)

® Users mostly decide permissions on their
own files

® If you have information, you can pass it on
to anyone

® E.g, traditional Unix file permissions

) Mandatory access control (MAC)

® Restrictions enforced regardless of
subject choices
® Typically specified by an administrator

Motivation: it's classified

) Government defense and intelligence
agencies user classification to restrict
access to information

©) E.g.: Unclassified, Confidential, Secret,
Top Secret

©) Multilevel Secure (MLS) systems first
developed to support mixing
classification levels under timesharing

Motivation: system integrity

©) Limit damage if a network server
application is compromised
® Unix DAC is no help if server is root
©) Limit damage from
browser-downloaded malware

®m Windows DAC is no help if browser is
“administrator” user

Bell-LaPadula, linear case

) State-machine-like model developed for

US DoD in 1970s

1. A subject at one level may not read a
resource at a higher level

® Simple security property, “no read up”

2. A subject at one level may not write a
resource at a lower level
® * property, “no write down”

High watermark property

) Dynamic implementation of BLP

) Process has security level equal to
highest file read

) Written files inherit this level

Biba and low watermark

©) Inverting a confidentiality policy gives
an integrity one

©) Biba: no write up, no read down

©) Low watermark policy

©) BLP A Biba = levels are isolated

Information-flow perspective

) Confidentiality: secret data should not
flow to public sinks

) Integrity: untrusted data should not flow
to critical sinks

©) Watermark policies are process-level
conservative abstractions

Covert channels

©) Problem: conspiring parties can misuse
other mechanisms to transmit
information
) Storage channel: writable shared state
® Eg, screen brightness on mobile phone
£) Timing channel: speed or ordering of

events
® E.g, deliberately consume CPU time

Multilateral security / compartments

) In classification, want finer divisions
based on need-to-know

) Also, selected wider sharing (e.g., with
allied nations)
©) Many other applications also have this
character
® Anderson's example: medical data

) How to adapt BLP-style MAC?

Partial orders and lattices

©) < on integers is a total order
m Reflexive, antisymmetric, transitive, a < b
orb<a
©) Dropping last gives a partial order

©) A lattice is a partial order plus

operators for:
® Least upper bound or join LI
® Greatest lower bound or meet M

©) Example: subsets with C, U, N

Subset lattice example

{1, 2, 3}

>

{1, 2} {2, 3} {1, 3}

RS N

{1} {2} {3}

1%

Subset lattice example

{1, 2, 3}

AN
W

{2}

)/

Lattice model

©) Generalize MLS levels to elements in a
lattice

©) BLP and Biba work analogously with
lattice ordering

©) No access to incomparable levels

) Potential problem: combinatorial
explosion of compartments

Classification lattice example

Faculty//5271//8271

Faculty//! a //8271

cul
TA//5271//8271
/

TA/IS A//8271

[

A

Lstudent; 1//8271

Student, 71 ent//8271

Student

Lattice BLP example

Faculty//5271//8271

w
Faculty/, a /18271

cul
TA//5271//8271
[—W

RW
[TA/IS A//8271

AR

| staden 1//8271

R
Student, 71 ent//8271

R
Student

MLS operating systems

) 1970s timesharing, including Multics

) “Trusted” versions of commercial Unix
(e.9. Solaris)

) SELinux (called “type enforcement”)

©) Integrity protections in Windows Vista
and later

Multi-VM systems

©) One (e.g., Windows) VM for each
security level

) More trustworthy OS underneath
provides limited interaction

©) Eg, NSA NetTop: VMWare on SELinux
) Downside: administrative overhead

Air gaps, pumps, and diodes

©) The lack of a connection between
networks of different levels is called an
air gap

©) A pump transfers data securely from
one network to another

©) A data diode allows information flow in
only one direction

Chelsea Manning cables leak

£) Manning (née Bradley) was an
intelligence analyst deployed to Iraq

©) PC in a T-SCIF connected to SIPRNet
(Secret), air gapped

) CD-RWs used for backup and software
transfer

) Contrary to policy: taking such a
CD-RW home in your pocket

http://www.fas.org/sgp/jud/manning/022813-statement .pdf

Outline

Capability-based access control

ACLs: no fine-grained subjects

) Subjects are a list of usernames
maintained by a sysadmin

©) Unusual to have a separate subject for
an application

£) Cannot easily subset access (sandbox)

ACLs: ambient authority

©) All authority exists by virtue of identity

©) Kernel automatically applies all available
authority

) Authority applied incorrectly leads to
attacks

Confused deputy problem

©) Compiler writes to billing database

) Compiler can produce debug output to
user-specified file

) Specify debug output to billing file,
disrupt billing

(Object) capabilities

£) A capability both designates a resource
and provides authority to access it
©) Similar to an object reference
® Unforgeable, but can copy and distribute

) Typically still managed by the kernel

Capability slogans (Miller et al.)

) No designation with authority

) Dynamic subject creation

) Subject-aggregated authority mgmt.
) No ambient authority

) Composability of authorities

) Access-controlled delegation

©) Dynamic resource creation

Partial example: Unix FDs

) Authority to access a specific file
©) Managed by kernel on behalf of process

) Can be passed between processes
® Though rare other than parent to child

) Unix not designed to use pervasively

Distinquish: password capabilities

) Bit pattern itself is the capability
® No centralized management
) Modern example: authorization using
cryptographic certificates

Revocation with capabilities

) Use indirection: give real capability via
a pair of middlemen

DA —>BviaA—-F—-R—>B

©) Retain capability to tell R to drop
capability to B

) Depends on composability

Confinement with capabilities

©) A cannot pass a capability to B if it
cannot communicate with A at all

) Disconnected parts of the capability
graph cannot be reconnected

) Depends on controlled delegation and
data/capability distinction

OKL4 and selL4

) Commercial and research microkernels

) Recent versions of OKL4 use capability
design from selL4

£) Used as a hypervisor, eg. underneath
paravirtualized Linux

) Shipped on over 1 billion cell phones

Joe-E and Caja

) Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

©) E.g., of JavaScript in an advertisement

) Note reliance on Java and JavaScript
type safety

Outline

More Unix access control

Special case: /tmp

) Wed like to allow anyone to make files
in /tmp

) So, everyone should have write
permission

) But don't want Alice deleting Bob's files

) Solution: “sticky bit” 01000

Special case: group inheritance

£) When using group to manage
permissions, want a whole tree to have
a single group

£) When 02000 bit set, newly created
entries with have the parent’s group

® (Historic BSD behavior)

©) Also, directories will themselves inherit

02000

"POSIX" ACLs

) Based on a withdrawn standardization
) More flexible permissions, still fairly
Unix-like
) Multiple user and group entries
® Decision still based on one entry
) Default ACLs: generalize group
inheritance

) Command line: getfacl, setfacl

ACL legacy interactions

©) Hard problem: don't break security of
legacy code
® Suggests: “fail closed”
) Contrary pressure: don't want to break
functionality
® Suggests: “fail open”
) POSIX ACL design: old group
permission bits are a mask on all novel
permissions

"POSIX" “capabilities”

) Divide root privilege into smaller (~35)
pieces
©) Note: not real capabilities

) First runtime only, then added to FS
similar to setuid

£) Motivating example: ping
£) Also allows permanent disabling

Privilege escalation dangers

£) Many pieces of the root privilege are
enough to regain the whole thing
m Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP _FOWNER
® CAP_SYS MODULE
® CAP_MKNOD
® CAP PTRACE
® CAP_SYS_ADMIN (mount)

Legacy interaction dangers

) Former bug: take away capability to
drop privileges

) Use of temporary files by no-longer
setuid programs

) For more details: “"Exploiting
capabilities”, Emeric Nasi

Next time

©) Technigues for higher assurance

