
CSci 5271
Introduction to Computer Security
Day 6: Low-level defenses and

counterattacks, part 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

W�X (DEP)

Announcements intermission

Return-oriented programming (ROP)

Control-flow integrity (CFI)

More modern exploit techniques

Basic idea

Traditional shellcode must go in a
memory area that is

writable, so the shellcode can be inserted
executable, so the shellcode can be
executed

But benign code usually does not need
this combination

W xor X, really :(W ^ X)

Non-writable code, X! :W

E.g., read-only .text section

Has been standard for a while,
especially on Unix

Lets OS efficiently share code with
multiple program instances

Non-executable data, W ! :X

Prohibit execution of static data, stack,
heap
Not a problem for most programs

Incompatible with some GCC features no
one uses
Non-executable stack opt-in on Linux, but
now near-universal

Implementing W � X

Page protection implemented by CPU
Some architectures (e.g. SPARC) long
supported W � X

x86 historically did not
One bit controls both read and execute
Partial stop-gap “code segment limit”

Eventual obvious solution: add new bit
NX (AMD), XD (Intel), XN (ARM)

One important exception

Remaining important use of
self-modifying code: just-in-time (JIT)
compilers

E.g., all modern JavaScript engines

Allow code to re-enable execution
per-block

mprotect, VirtualProtect
Now a favorite target of attackers

Counterattack: code reuse

Attacker can’t execute new code

So, take advantage of instructions
already in binary

There are usually a lot of them

And no need to obey original structure

Classic return-to-libc (1997)

Overwrite stack with copies of:
Pointer to libc’s system function
Pointer to "/bin/sh" string (also in libc)

The system function is especially
convenient

Distinctive feature: return to entry point

Chained return-to-libc

Shellcode often wants a sequence of
actions, e.g.

Restore privileges
Allow execution of memory area
Overwrite system file, etc.

Can put multiple fake frames on the
stack

Basic idea present in 1997, further
refinements

Beyond return-to-libc

Can we do more? Oh, yes.

Classic academic approach: what’s the
most we could ask for?

Here: “Turing completeness”

How to do it: coming up next

Outline

W�X (DEP)

Announcements intermission

Return-oriented programming (ROP)

Control-flow integrity (CFI)

More modern exploit techniques

HW1 VMs available

Hosted across CSE Labs cluster

Send list of members to
geddes@cs.umn.edu

Include name(s) and UMN id(s)/login
name(s)

HW1 early submission

Due 11:55pm this Friday, .tar.gz on
Moodle

Outline three of your attacks, including
specific vulnerabilities

Primarily for your benefit: take
advantage!

Reminder: exercise set 1

Due 11:55pm this Thursday

Up to groups of 3

Acknowledge sources

Submit plain-text or PDF via Moodle

Scheduling first project meetings

Plan to start sending invitations tonight
for meetings starting this Wednesday

I’ve requested more times from three
groups

Outline

W�X (DEP)

Announcements intermission

Return-oriented programming (ROP)

Control-flow integrity (CFI)

More modern exploit techniques

Basic new idea

Treat the stack like a new instruction
set

“Opcodes” are pointers to existing
code

Generalizes return-to-libc with more
programmability

ret2pop (Müller)

Take advantage of shellcode pointer
already present on stack
Rewrite intervening stack to treat the
shellcode pointer like a return address

A long sequence of chained returns, one
pop

ret2pop (Müller)

Gadgets

Basic code unit in ROP

Any existing instruction sequence that
ends in a return

Found by (possibly automated) search

Overlapping x86 instructions

push %esi

mov $0x56,%dh sbb $0xff,%al inc %eax or %al,%dh

movzbl 0x1c(%esi),%edx incl 0x8(%eax) ...

0f b6 56 1c ff 40 08 c6

Variable length instructions can start at
any byte

Usually only one intended stream

Where gadgets come from

Possibilities:
Entirely intended instructions
Entirely unaligned bytes
Fall through from unaligned to intended

Standard x86 return is only one byte,
0xc3

Building instructions

String together gadgets into
manageable units of functionality
Examples:

Loads and stores
Arithmetic
Unconditional jumps

Must work around limitations of
available gadgets

Hardest case: conditional branch

Existing jCC instructions not useful

But carry flag CF is

Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

Can also use other indirect jumps,
overlapping not required

Automation in gadget finding and
compilers

In practice: minimal ROP code to allow
transfer to other shellcode

Anti-ROP: lightweight

Check stack sanity in critical functions

Check hardware-maintained log of
recent indirect jumps (kBouncer)
In theory, these have gaps

Let’s see what happens once they’re
deployed

Anti-ROP: still research

Modify binary to break gadgets

Fine-grained code randomization

Beware of adaptive attackers

Next up: control-flow integrity

Outline

W�X (DEP)

Announcements intermission

Return-oriented programming (ROP)

Control-flow integrity (CFI)

More modern exploit techniques

Some philosophy

Remember whitelist vs. blacklist?

Rather than specific attacks, tighten
behavior

Compare: type system; garbage collector
vs. use-after-free

CFI: apply to control-flow attacks

Basic CFI principle

Each indirect jump should only go to a
programmer-intended (or
compiler-intended) target

I.e., enforce call graph

Often: identify disjoint target sets

Approximating the call graph

One set: all legal indirect targets

Two sets: indirect calls and return
points

n sets: needs possibly-difficult
points-to analysis

Target checking: classic

Identifier is a unique 32-bit value

Can embed in effectively-nop
instruction

Check value at target before jump

Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h

jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1: performance

In CCS’05 paper: 16% avg., 45% max.
Widely varying by program
Probably too much for on-by-default

Improved in later research
Common alternative: use tables of legal
targets

Challenge 2: compatibility

Compilation information required

Must transform entire program together

Can’t inter-operate with untransformed
code

Recent advances: COTS

Commercial off-the-shelf binaries

CCFIR (Berkeley+PKU, Oakland’13):
Windows

CFI for COTS Binaries (Stony Brook,
USENIX’13): Linux

COTS techniques

CCFIR: use Windows ASLR information
to find targets

Linux paper: keep copy of original
binary, build translation table

Approximating the call graph: CCFIR

One set: all legal indirect targets

Two sets: indirect calls and return
points

Three sets: segregate returns into
sensitive functions

n sets: needs possibly-difficult
points-to analysis

Outline

W�X (DEP)

Announcements intermission

Return-oriented programming (ROP)

Control-flow integrity (CFI)

More modern exploit techniques

Target #1: web browsers

Widely used on desktop and mobile
platforms

Easily exposed to malicious code

JavaScript is useful for constructing
fancy attacks

Heap spraying

How to take advantage of uncontrolled
jump?

Maximize proportion of memory that is
a target

Generalize NOP sled idea, using benign
allocator

Under W�X, can’t be code directly

JIT spraying

Can we use a JIT compiler to make our
sleds?
Exploit unaligned execution:

Benign but weird high-level code (bitwise
ops. with constants)
Benign but predictable JITted code
Becomes sled + exploit when entered
unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

JIT spray example

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

Use-after-free

Low-level memory error of choice in
web browsers

Not as easily audited as buffer
overflows

Can lurk in attacker-controlled corner
cases

JavaScript and Document Object Model
(DOM)

Sandboxes and escape

Chrome NaCl: run untrusted native
code with SFI

Extra instruction-level checks somewhat
like CFI

Each web page rendered in own,
less-trusted process
But not easy to make sandboxes
secure

While allowing functionality

Chained bugs in Pwnium 1

Google-run contest for complete
Chrome exploits

First edition in spring 2012

Winner 1: 6 vulnerabilities

Winner 2: 14 bugs and “missed
hardening opportunities”

Each got $60k, bugs promptly fixed

Next time

Defensive design and programming

Make your code less vulnerable the
first time

