CSci 5271
Introduction to Computer Security
Day 4: Low-level attacks

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Where overflows come from (contd)

Last time

) Unsafe/misused library functions

® strcpy
B strcat
® sprintf

) Alternatives have their own problems

Off-by-one bugs

£) strlen does not include the terminator
) Comparison with < vs. <=
©) Length vs. last index

) x++ VS, ++x

Even more buffer/size mistakes

) Inconsistent code changes (use
sizeof)

) Misuse of sizeof (eg., on pointer)

) Bytes vs. wide chars (UCS-2) vs.
multibyte chars (UTF-8)

) OS length limits (or lack thereof)

Other array problems

£) Missing/wrong bounds check

® One unsigned comparison suffices
® Two signed comparisons needed

©) Beware of clever loops
® Premature optimization

Outline

Non-buffer problems

Integer overflow

£) Fixed size result # math result

) Sum of two positive ints negative or
less than addend

©) Also multiplication, left shift, etc.
) Negation of most-negative value
£) (low + high)/2

Integer overflow example

int n = read_int();
obj *p = malloc(n * sizeof(obj));
for (i = 0; 1 < n; i++)

pli] = read_obj();

Signed and unsigned

©) Unsigned gives more range for, e.g,,
size_t

£) At machine level, many but not all
operations are the same

©) Most important difference: ordering

©) In C, signed overflow is undefined
behavior

Mixing integer sizes

©) Complicated rules for implicit
conversions
® Also includes signed vs. unsigned
) Generally, convert before operation:
mEg, 1ULL << 63
©) Sign-extend vs. zero-extend
® char ¢ = 0xff; (int)c

Null pointers

©) Vanilla null dereference is usually
non-exploitable (just a DoS)

©) But not if there could be an offset (e,
field of struct)

©) And not in the kernel if an untrusted
user has allocated the zero page

Undefined behavior

) C standard “undefined behavior”:
anything could happen

) Can be unexpectedly bad for security

) Most common problem: compiler
optimizes assuming undefined behavior
cannot happen

Linux kernel example

struct sock *sk = tun->sk;
/] ...
if (!'tun)
return POLLERR;
// more uses of tun and sk

Format strings

©) printf format strings are a little
interpreter

©) printf (msg) with untrusted msg lets
the attacker program it
) Allows:

® Dumping stack contents
® Denial of service
® Arbitrary memory modifications!

Outline

Announcements intermission

HWI1 progress

) Makefile posted

) Watch Moodle forum for latest news
£) VMs: coming soon

) Getting started without a VM

Pre-proposals due Wednesday

©) One page: who, what, why, how, when
©) On web site: links to papers

©) On web site: possible meeting slots
£) Submit on Moodle by 11:55pm

Office hours

©) Mondays: Stephen 10-1lam 4-225E

) Tuesdays: Stephen 2-3pm 4-225E

) Wednesdays: Mike 2:30-3:30pm 2-209
©) Thursdays: John 10-1lam 2-209

) Fridays: John 1-2pm 2-209

Grace Hopper in Minneapolis

) Celebration of Women in Computing
£) October 2-5 in downtown Minneapolis
£) CS&E+CSE providing support + t-shirt
©) http://women.cs.umn.edu/

Outline

Classic code injection attacks

Overwriting the return address

9
#2112 (%ebp)

_~___|8(%ebp)

n
%14 (%ebp)

eetp %ebp

{%e” -4 (%ebp)

-8(%ebp)

"top" of har(8]
stack

%esp 101 |-16(%ebp)

Collateral damage

12 (%ebp)

8(%ebp)

4(%ebp)

[

@ n

s|gg
3

l«— %ebp

-4(%ebp)

-8(%ebp)

lo
"top" of har{8]
sta

%esp 0] |-16(%ebp)

Collateral damage

) Stop the program from crashing early

) 'Overwrite’ with same value, or another
legal one

£) Minimize time between overwrite and
use

Other code injection targets

) Function pointers
® Local, global, on heap

£) longjmp buffers
©) GOT (PLT) / import tables
©) Exception handlers

Indirect overwrites

©) Change a data pointer used to access
a code pointer

r) Easiest if there are few other uses

) Common examples

® Frame pointer
® C+ object vtable pointer

Non-sequential writes

©) E.g. missing bounds check, corrupted
pointer

) Can be more flexible and targeted
) More likely needs an absolute location
©) May have less control of value written

Unexpected-size writes

) Attacks don't need to obey normal
conventions

£) Overwrite one byte within a pointer

£) Use mis-aligned word writes to isolate
a byte

Outline

Shellcode and other targets

Basic definition

) Shellcode: attacker supplied instructions
implementing malicious functionality

£) Name comes from example of starting
a shell

) Often requires attention to
machine-language encoding

Classic execve /bin/sh

£) execve(fname, argv, envp)
system call
) Specialized syscall calling conventions
©) Omit unneeded arguments
) Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

) Common requirement for shellcode in C
string
©) Analogy: broken O key on keyboard

£) May occur in other parts of encoding
as well

More restrictions

©) No newlines

©) Only printable characters

©) Only alphanumeric characters
) “English Shellcode” (CCS'09)

Transformations

©) Fold case, escapes, Latinl to Unicode,
etc.

©) Invariant: unchanged by transformation

©) Pre-image: becomes shellcode only
after transformation

Multi-stage approach

o) Initially executable portion unpacks rest
from another format

©) Improves efficiency in restricted
environments

) But self-modifying code has pitfalls

NOP sleds

) Goal: make the shellcode an easier
target to hit
©) Long sequence of no-op instructions,

real shellcode at the end
® X86: 0x90 0x90 0x90 0x90 0x90
...shellcode

Where to put shellcode?

) In overflowed buffer, if big enough

©) Anywhere else you can get it
® Nice to have: predictable location
) Convenient choice of Unix local
exploits:

Where to put shellcode?

Environment variables

Code reuse

) If can't get your own shellcode, use
existing code
) Classic example: system
implementation in C library
® “Return to libc” attack

) More variations on this later

OXbfffffff
A\USER=smcc[igPATH=/bin: /usr/bin[\0] Environment/
,pISPLAY=:% LANG=en US [0;1686L0] | | AUXV strings
tc\)et;//' sue[\0)/ tmp[io] faioobyted | | argv strings
2\ 409 1171792 15:[1] 0: 0]|auxv

ULL environment
] NULL argv

future\growth

Outline

Exploiting other vulnerabilities

Non-control data overwrite

) Overwrite other security-sensitive data
©) No change to program control flow

) Set user ID to O, set permissions to all,
etc.

Heap meta-data

) Boundary tags similar to doubly-linked
list

©) Overwritten on heap overflow

©) Arbitrary write triggered on free

) Simple version stopped by sanity
checks

Heap meta-data

future|growth
the

"break" | | |
‘ ‘ Unallocated
‘ || area
[Free 1] [1 1| Medium objects
i I [T fee || W/ boundary tags

]| Small objects
|| bucketed by size

Use after free

) Write to new object overwrites old, or
vice-versa

©) Key issue is what heap object is
reused for

) Influence by controlling other heap
operations

Integer overflows

) Easiest to use: overflow in small (8-,
16-bit) value, or only overflowed value
used

) 2GB write in 100 byte buffer

® Find some other way to make it stop
©) Arbitrary single overwrite
® Use math to figure out overflowing value

Null pointer dereference

©) Add offset to make a predictable
pointer
® On Windows, interesting address start low
©) Allocate data on the zero page

® Most common in user-space to kernel
attacks
® Read more dangerous than a write

Format string attack

) Attacker-controlled format: little
interpreter
) Step one: add extra integer specifiers,

dump stack
® Already useful for information disclosure

Format string attack layout

caller locals,
other frames

]

spec.
arg #2

spec.
arg #1 argument
pointer

format
string
ptr \
U %X %X %X %X %X
address
caller frame

printf frame

Format string attack layout

caller loca

Is,

other frames

L

spec.
arg #2

spec.
arg #1

format
string

address
caller frame

printf frame

\argument

pointer

ptr \
return

%X %X %X %X %X

Format string attack: overwrite

©) %n specifier: store number of chars
written so far to pointer arg

) Advance format arg pointer to other
attacker-controlled data

) Control number of chars written with
padding

) On x86, use unaligned stores to create
pointer

Next time

) Defenses and counter-attacks

