CSci 5271: Introduction to Computer Security

Exercise Set 5 due: Thursday, December 5th, 2013

Ground Rules. You may choose to complete these exercises in a group of up to three students.
Each group should turn in one copy with the names of all group members on it. You may use any
source you can find to help with this assignment but you must explicitly reference any source you
use besides the lecture notes or textbook. An electronic (plain text or PDF) copy of your solution
should be submitted on the course Moodle by 11:55pm on Thursday, December 5th.

1. Remailer doppelgangers. (20 pts) The “Sybil” attack is a general attack on security protocols
that involve many computers or identities. The basic idea of the attack is to acquire as many
identities as necessary to violate whatever assumptions the protocol makes about parties working
together. Anonymity schemes could potentially make such attacks easier, although many of the
most popular schemes make it fairly easy to prevent this (for example, it’s easy to block Tor users
from using your website at all, if you want). On the other hand, many anonymity schemes can
themselves be vulnerable to Sybil attacks.

“Remailers” are anonymous email servers that essentially implement a cascade of mixes. The
“basic” mix cascade work as follows: each node assembles a “batch” of messages to decrypt and
jumble together. If the batching works by waiting until N messages are received, the NV — 1 attack
can be applied: the adversary sends N —1 messages to the mix, whose destinations he knows. Then
when a sender sends the N*" message, its destination is obvious. One possible defense against this
is for the mix to wait to mix a batch until it has seen messages from K different senders. Explain
why the Sybil attack makes this defense ineffective.

2. Ganging up on Tor. (30 pts) Continuing with the theme from the previous question, you can
also see why we wouldn’t expect attackers trying to compromise the security of Tor to just run a
single malicious relay: they might try to run a large number of relays. It seems hard to avoid this
problem completely in a low-latency network, but Tor aims to limit the damage to the following
degree: suppose an adversary controls a fraction f of Tor nodes. Then the adversary should be
able to trace at most an f? fraction of connections through Tor. Thus, an attacker who owns even
f =1/2 of the nodes still should only be able to trace 1/4 of the connections.

The reason that Tor has this goal (rather than a stronger one, for example f2 rather than f?2)
is that an adversary who controls the first and last nodes of a Tor connection can trace it in order
to link the real world identity at the entry node to the browsing destination at the exit node. This
is possible even though the cells are under layers of encryption the attacker doesn’t control at the
entry, while they’re decrypted at the exit (thus the attacker can’t just match up the contents of the
cells). Suppose you were an attacker in this situation: how would you best match up the entry-node
and exit-node flows?



3. Vote (often) by mail. (30 pts) The reason many security folks and cryptographers who
work on voting object to “vote-by-mail” or widespread use of absentee ballots is the possibility of
coercion: it is easy to “sell” your vote (where the price could be such things as lack of physical or
mental harm, or continued employment, instead of cash) because the “buyer” can watch you fill
out your ballot and mail it in. One commonly proposed countermeasure to this attack is to allow
each voter to cast multiple ballots, with only the most recently submitted ballot being counted.
Discuss some of the trade-offs involved with this defense. If you were a vote buyer in an election
with this defense deployed, what might you do? Can you think of any other negative side-effects?

4. Cut and Choose. (20 pts) Many cryptographic voting protocols use something called a “zero-
knowledge proof scheme” at some point in the protocol to convince one party that another party
has followed the protocol. For example, one party (the “prover”) may need to prove she knows a
certain secret without revealing the secret to the other party (the “verifier”).

A core idea in many of these protocols is the “cut and choose” technique in which the prover
produces two options for the verifier: if (and only if) the prover can guess which option the verifier
will choose, she can “cheat” the other player. As long as the verifier follows the proof protocol, he
can only be fooled with probability % Repeating this process many times can make it exponentially
difficult for the prover to cheat.

We can also apply this principle to a paper-ballot system. Suppose that a state-level authority
sends ballot boxes to each precinct in the state. These boxes are locked to prevent the precincts
from tampering with them, e.g. by removing votes. However this leaves the possibility of a converse
problem: how do the precinct authorities know that the locked boxes delivered to them are empty?
A malicious state-level authority could “pre-stuff” the ballot boxes before they even get used. On
the other hand, if we just gave the precincts keys, they could open the boxes to see that they were
previously empty, but then they could stuff the boxes themselves.

Suppose the “acoustic side channel” of shaking the boxes to hear if anything rattles is out of
bounds. Describe instead how to use a cut and choose protocol to prevent the state-level authority
from “pre-stuffing” the ballot boxes. Specifically, if there are k precincts, your protocol should
allow the state authority to cheat with probability at most 27*.



