
1

Virtual Memory

Antonia Zhai
Department Computer Science and Engineering

University of Minnesota

http://www.cs.umn.edu/~zhai

CSCI 2021: Machine Architecture and Organization

With Slides from Bryant and O’Hallaron

CSCI 2021 2 4/8/15

A System with Physical Memory Only

Examples: most Cray machines, early PCs, nearly all embedded systems, etc.

Addresses generated by the CPU correspond directly to physical memory!

CPU!

0:!
1:!

N-1:!

Memory!

Physical!
Addresses!

2

CSCI 2021 3 4/8/15

Simplify Memory Management
•  Multiple processes resident in main memory

•  Each process with its own address space
•  Only “active” code and data is actually in memory

•  Allocate more memory to process as needed
Use Physical DRAM as a Cache for the Disk
•  Address space of a process can exceed physical memory size
•  Sum of address spaces of multiple processes can exceed physical

memory
Provide Protection
•  One process can’t interfere with another.

•  because they operate in different address spaces.
•  User process cannot access privileged information

•  different sections of address spaces have different permissions

Motivations for Virtual Memory

CSCI 2021 4 4/8/15

Motivation #1: Memory Management

•  Multiple processes can reside in physical memory.
•  How do we resolve address conflicts?

•  what if two processes access something at the same address?

kernel virtual memory!

Memory mapped region !
forshared libraries!

runtime heap (via malloc)!

program text (.text)!
initialized data (.data)!

uninitialized data (.bss)!

stack!

forbidden!
0!

%esp!

memory invisible to!
 user code!

Linux/x86
process!
memory !

image!

3

CSCI 2021 5 4/8/15

Motivation #2: DRAM a “Cache” for Disk
•  Full address space is quite large:

•  32-bit addresses: ~4,000,000,000 (4 billion) bytes
•  64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion)

bytes
•  Disk storage is ~300X cheaper than DRAM storage

•  80 GB of DRAM: ~ $33,000
•  80 GB of disk: ~ $110

•  To access large amounts of data in a cost-effective manner, the bulk of
the data must be stored on disk

1GB: ~$200 ! 80 GB: ~$110!

Disk!DRAM!

CSCI 2021 6 4/8/15

Address Space

•  Address space
•  An ordered set of nonnegative integer addresses

•  Linear address space
•  Integers in the address space is consecutive

•  Virtual address space
•  The set of addresses generated by the CPU
•  {0, …, N-1} specified by n bits where 2n = N

•  Physical address space
•  Corresponds to the physical memory in the system
•  {0, …, M-1} specified by m bits where 2m = M

4

CSCI 2021 7 4/8/15

VM Address Translation

Normally, M < N
•  Address Translation

•  MAP: V → P U {∅}
•  For virtual address a:

•  MAP(a) = a’
•  if data at virtual address a at physical address a’ in P

•  MAP(a) = ∅
•  if data at virtual address a not in physical memory
•  Either invalid or stored on disk

CSCI 2021 8 4/8/15

Examples:
•  workstations, servers, modern PCs, etc.

n  Address Translation: Hardware converts virtual addresses to
physical addresses via OS-managed lookup table (page table)!

CPU!

0:!
1:!

M-1:!

Memory!

0:!
1:!

P-1:!

Address Translation!

Disk!

Virtual!
Addresses! Physical!

Addresses!

A System with Virtual Memory

5

CSCI 2021 9 4/8/15

Virtual
Address
Space for
Process 1:"

Physical "
Address "
Space
(DRAM)"

VP 1!
VP 2!

PP 2!
Address Translation!0!

0!

N-1!

0!

N-1!
M-1!

VP 1!
VP 2!

PP 7!

PP 10!

(e.g., read/only
library code)!

Separate Virtual Address Spaces
Virtual and physical address spaces divided into equal-sized blocks

•  blocks are called “pages” (both virtual and physical)

Each process has its own virtual address space
•  operating system controls how virtual pages as assigned to physical memory

...!

...!

Virtual
Address
Space for
Process 2:"

CSCI 2021 10 4/8/15

Processor!

Hardware!
Addr Trans!
Mechanism!

Main!
Memory!a!

a'!

physical address!virtual address! part of the !
on-chip!
memory mgmt unit (MMU)!

VM Address Translation: Hit

6

CSCI 2021 11 4/8/15

Processor!

Hardware!
Addr Trans!
Mechanism!

fault!
handler!

Main!
Memory! DISK!

a!
a'!

∅!

page fault!

physical address! OS performs!
this transfer!
(only if miss)!

virtual address! part of the !
on-chip!
memory mgmt unit (MMU)!

VM Address Translation: Miss

CSCI 2021 12 4/8/15

Page Faults
What if an object is on disk rather than in memory?
•  Page table entry indicates virtual address not in memory

•  OS exception handler invoked to move data from disk into memory
•  current process suspends, others can resume
•  OS has full control over placement, etc.

CPU!

Memory!

Addr. Tran!

Disk!

Virtual!
Addresses! Physical!

Addresses!

CPU!

Memory!

Addr. Tran.!

Disk!

Virtual!
Addresses! Physical!

Addresses!

Before fault! After fault!

7

CSCI 2021 13 4/8/15

•  Processor Signals Controller
•  Read block of length P starting

at disk address X and store
starting at memory address Y

•  Read Occurs
•  Direct Memory Access (DMA)
•  Under control of I/O controller

•  I / O Controller Signals Completion
•  Interrupt processor
•  OS resumes suspended process

disk"Disk"disk"Disk"

Memory-I/O bus"

Processor"

Memory"
I/O"

controller"

Reg!

(2) DMA
Transfer"

(1) Initiate Block Read"

(3) Read
Done"

Servicing a Page Fault

CSCI 2021 14 4/8/15

virtual page number" page offset" virtual address!

physical page number" page offset" physical address!
0"p–1"

address translation"

p"m–1"

n–1" 0"p–1"p"

Page offset bits don’t change as a result of translation!

•  P = 2p = page size (bytes).
•  N = 2n = Virtual address limit

•  M = 2m = Physical address limit

VM Address Translation

8

CSCI 2021 15 4/8/15

Memory resident!
page table!

(physical page !
 or disk address)! Physical Memory!

Disk Storage!
(swap file or!
regular file system file)!

Valid!
1!
1!

1!
1!
1!

1!

1!
0!

0!

0!

Virtual Page!
Number!

Page Tables

2 (n-p) entries

CSCI 2021 16 4/8/15

virtual page number (VPN)! page offset!

virtual address!

physical page number (PPN)! page offset!

physical address!

0!p–1!p!m–1!

n–1! 0!p–1!p!
page table base register!

if valid=0!
then page!
not in memory!

valid! physical page number (PPN)!access!

VPN acts
as!
table index!

Address Translation via Page Table

9

CSCI 2021 17 4/8/15

0xdeadb! 0xeef!

0xdeadbeef!

0xabc! 0xeef!

0xabceef!

0!p–1!p!m–1!

n–1! 0!p–1!p!
0x10000000!

0xabc

if valid=0!
then page!
not in memory!

valid! physical page number (PPN)!access!

VPN acts
as!
table index!

Address Translation via Page Table

CSCI 2021 18 4/8/15

0x08042934!

0!p–1!p!m–1!

n–1! 0!p–1!p!
0x10000000!

if valid=0!
then page!
not in memory!

valid! physical page number (PPN)!access!

VPN acts
as!
table index!

Address Translation via Page Table

10

CSCI 2021 19 4/8/15

Translation
•  Separate (set of) page table(s) per process

•  VPN forms index into page table (points to a page table entry)

Computing Physical Address

•  Page Table Entry (PTE) provides information about page
•  if (valid bit = 1) then the page is in memory èUse physical

page number (PPN) to construct address
•  if (valid bit = 0) then the page is on disk è Page fault

Page Table Operation

CSCI 2021 20 4/8/15

Page table entry contains access rights information
•  hardware enforces this protection (trap into OS if violation occurs)

Page Tables!

Process i:!

Physical Addr!Read?! Write?!
 PP 9!Yes! No!

 PP 4!Yes! Yes!

XXXXXXX! No! No!

VP 0:!

VP 1:!

VP 2:!
•!•!•

•!•!•

•!•!•

Process j:!

0:!
1:!

N-1:!

Memory!

Physical Addr!Read?! Write?!
 PP 6!Yes! Yes!

 PP 9!Yes! No!

XXXXXXX! No! No!
•!•!•

•!•!•

•!•!•

VP 0:!

VP 1:!

VP 2:!

Protection

11

CSCI 2021 21 4/8/15

Checking Protection
•  Access rights field indicate allowable access

•  e.g., read-only, read-write, execute-only
•  typically support multiple protection modes (e.g., kernel vs. user)

•  Protection violation fault if user doesn’t have necessary permission

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0pœ1pmœ1

nœ1 0pœ1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0pœ1pmœ1

nœ1 0pœ1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

Page Table Operation

CSCI 2021 22 4/8/15

Multi-Level Page Tables
Given:
•  4KB (212) page size
•  32-bit address space
•  4-byte PTE
Problem:
•  Would need a 4 MB page table!
è220 *4 bytes
Common solution
•  multi-level page tables
•  e.g., 2-level table (P6)

•  Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

•  Level 2 table: 1024 entries, each of
which points to a page

Level 1!
Table!

...!

Level 2!
Tables!

12

CSCI 2021 23 4/8/15

Page directory
•  1024 4-byte page directory entries

(PDEs) that point to page tables
•  one page directory per process.

•  page directory must be in memory when
its process is running

•  always pointed to by PDBR

Page tables:

•  1024 4-byte page table entries (PTEs)
that point to pages.

•  page tables can be paged in and out.

page
directory!

...!

Up to
1024
page
tables!

1024!
PTEs!

1024!
PTEs!

1024!
PTEs!

...!

1024!
PDEs!

An Example for 2 Level Page Table

CSCI 2021 24 4/8/15

Representation of Virtual Address Space

Simplified Example
•  16 page virtual address space

Flags

•  P: Is entry in physical memory?

•  M: Has this part of VA space been mapped?

Page Directory!

PT 3!

P=1, M=1"
P=1, M=1"
P=0, M=0"
P=0, M=1"

•"•"•"•"

P=1, M=1"
P=0, M=0"
P=1, M=1"
P=0, M=1"

•"•"•"•"
P=1, M=1"
P=0, M=0"
P=1, M=1"
P=0, M=1"

•"•"•"•"
P=0, M=1"
P=0, M=1"
P=0, M=0"
P=0, M=0"

•"•"•"•"

PT 2!

PT 0!

Page 0!

Page 1!

Page 2!

Page 3!

Page 4!

Page 5!

Page 6!

Page 7!

Page 8!

Page 9!

Page 10!

Page 11!

Page 12!

Page 13!

Page 14!

Page 15!

Mem Addr!

Disk Addr!

In Mem!

On Disk!

Unmapped!

13

CSCI 2021 25 4/8/15

CPU" TLB"
Lookup"

Main"
Memory"

VA" PA"

Trans-"
lation"

hit"

miss"

Speeding up Translation with a TLB

“Translation Lookaside Buffer” (TLB)
•  Small hardware cache in MMU
•  Maps virtual page numbers to physical page numbers
•  Contains complete page table entries for small number of pages

CSCI 2021 26 4/8/15

virtual address!virtual page number! page offset!

physical address!

n–1! 0!p–1!p!

valid! physical page number!tag!

=!

TLB hit!

TLB!.! .!.!

Address Translation with a TLB

14

CSCI 2021 27 4/8/15

Simple Memory System Example

Addressing
•  14-bit virtual addresses
•  12-bit physical address
•  Page size = 64 bytes

13! 12! 11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

VPO!

PPO!PPN!

VPN!

(Virtual Page Number)" (Virtual Page Offset)"

(Physical Page Number)" (Physical Page Offset)"

CSCI 2021 28 4/8/15

Simple Memory System Page Table

Only show first 16 entries (256 entries total)

VPN PPN Valid VPN PPN Valid

00 28 1 08 13 1

01 – 0 09 17 1

02 33 1 0A 09 1

03 02 1 0B – 0

04 – 0 0C – 0

05 16 1 0D 2D 1

06 – 0 0E 11 1

07 – 0 0F 0D 1

15

CSCI 2021 29 4/8/15

Simple Memory System TLB

TLB
•  16 entries

•  Direct mapped

13! 12! 11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

VPO!VPN!

TLBI!TLBT!

Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
3 – 0 9 0D 1 0 – 0 7 02 1
3 2D 1 2 – 0 4 – 0 A – 0
2 – 0 8 – 0 6 – 0 3 – 0
7 – 0 3 0D 1 A 34 1 2 – 0

CSCI 2021 30 4/8/15

Address Translation Example

•  Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

•  Physical Address

 11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

PPO!PPN!

13! 12! 11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

VPO!VPN!

TLBI!TLBT!

16

CSCI 2021 31 4/8/15

Simple Memory System TLB

TLB
•  16 entries

•  4-way associative

13! 12! 11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

VPO!VPN!

TLBI!TLBT!

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0 03 – 0 09 0D 1 00 – 0 07 02 1

1 03 2D 1 02 – 0 04 – 0 0A – 0

2 02 – 0 08 – 0 06 – 0 03 – 0

3 07 – 0 03 0D 1 0A 34 1 02 – 0

CSCI 2021 32 4/8/15

Address Translation Example #1

•  Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

•  Physical Address

13! 12! 11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

VPO!VPN!

TLBI!TLBT!

11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

PPO!PPN!

17

CSCI 2021 33 4/8/15

Address Translation Example #2

•  Virtual Address 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

•  Physical Address

13! 12! 11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

VPO!VPN!

TLBI!TLBT!

11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

PPO!PPN!

CSCI 2021 34 4/8/15

Address Translation Example #3

•  Virtual Address 0x0040

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

•  Physical Address

13! 12! 11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

VPO!VPN!

TLBI!TLBT!

11! 10! 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!

PPO!PPN!

18

CSCI 2021 35 4/8/15

•  Programmer’s View
•  Large “flat” address space

•  Can allocate large blocks of contiguous addresses
•  Processor “owns” machine

•  Has private address space
•  Unaffected by behavior of other processes

•  System View
•  User virtual address space created by mapping to set of pages

•  Need not be contiguous
•  Allocated dynamically
•  Enforce protection during address translation

•  OS manages many processes simultaneously
•  Continually switching among processes
•  Especially when one must wait for resource

•  E.g., disk I/O to handle page fault

Main Themes

CSCI 2021 36 4/8/15

•  Symbols:
•  Components of the virtual address (VA)

•  TLBI: TLB index
•  TLBT: TLB tag
•  VPO: virtual page offset
•  VPN: virtual page number

•  Components of the physical address (PA)
•  PPO: physical page offset (same as VPO)
•  PPN: physical page number

Review of Abbreviations

19

CSCI 2021 37 4/8/15

Making Use of Virtual Memory

CSCI 2021 38 4/8/15

Virtual Memory of a Linux Process

Kernel code and data"

Memory mapped region "
for shared libraries"

Runtime heap (via malloc)"

Program text (.text)"
Initialized data (.data)"

Uninitialized data (.bss)"

User stack"

Forbidden"
0"

%esp

Process!
virtual!
memory!brk

0xc0000000"

Physical memory"Identical for
each process!

Process-specific data"
structures "

(e.g., page tables,"
task and mm structs, kernel"

stack)" Kernel!
virtual !
memory!

0x40000000"

0x08048000"

Different for
each process!

20

CSCI 2021 39 4/8/15

How Linux Organize Virtual Memory

vm_next

vm_next

task_struct
mm_struct

pgd mm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Text"

Data"

Shared libraries"

0"

0x08048000"

0x0804a020"

0x40000000"

vm_flags

vm_flags

vm_flags

Process virtual memory"

CSCI 2021 40 4/8/15

Creation of new VM area done via “memory mapping”
•  create new vm_area_struct and page tables for area
•  area can be backed by (i.e., get its initial values from) :

•  regular file on disk (e.g., an executable object file)
•  initial page bytes come from a section of a file

•  nothing (e.g., bss)
•  initial page bytes are zeros

•  dirty pages are swapped back and forth between a special swap
file.

Key point: no virtual pages are copied into physical memory until
they are referenced!

•  known as “demand paging”
•  crucial for time and space efficiency

Memory Mapping

21

CSCI 2021 41 4/8/15

Fork() Revisited
•  Make copies of the old process’s

•  mm_struct,
•  vm_area_struct’s, and
•  page tables.
At this point the two processes are sharing all of their pages. How to

get separate spaces without copying all the virtual pages from one
space to another?

•  copy-on-write
•  make pages of writeable areas read-only
•  flag vm_area_struct’s for these areas as private “copy-on-write”.
•  writes by either process to these pages will cause page faults.

•  fault handler recognizes copy-on-write, makes a copy of the
page, and restores write permissions.

•  Net result:
•  copies are deferred until absolutely necessary (i.e., when one of the

processes tries to modify a shared page).

CSCI 2021 42 4/8/15

kernel code/data/stack!

Memory mapped region !
for shared libraries!

runtime heap (via malloc)!

program text (.text)!
initialized data (.data)!

uninitialized data (.bss)!

stack!

forbidden!
0!

%esp!
process!
 VM!

brk!

0xc0!

physical memory!same
for each
process!

process-specific data!
structures !

(page tables,!
task and mm structs)!

kernel !
VM!

To run a new program p in the
current process using exec():

•  free vm_area_struct’s and page
tables for old areas.

•  create new vm_area_struct’s and
page tables for new areas.
•  stack, bss, data, text, shared

libs.
•  text and data backed by ELF

executable object file.
•  bss and stack initialized to

zero.
•  set PC to entry point in .text

•  Linux will swap in code and
data pages as needed. .data!

.text!
p!

demand-zero!

demand-zero!

libc.so!

.data!
.text!

Exec() Revisited

22

CSCI 2021 43 4/8/15

Virtual Memory
•  Supports many OS-related functions

•  Process creation
•  Initial
•  Forking children

•  Task switching
•  Protection

•  Combination of hardware & software implementation
•  Software management of tables, allocations
•  Hardware access of tables
•  Hardware caching of table entries (TLB)

Memory System Summary

