Architecture
Y86 ISA

CSCT 2021: Machine Architecture and Organization

Antonia Zhai
Department Computer Science and Engineering

University of Minnesota

Instruction Set Architecture

* Assembly Language View

+ Processor state Application
- Registers, memory, ... Pr‘ogr‘am
« Instructions
« addl, pushl, ret, .. Compiler (0
+ How instructions are encoded as
bytes ISA
* Layer of Abstraction CPU
+ Above: how to program machine Design
- Processor executes instructions Circuit
in a sequence . Design
+ Below: what needs to be built -
+ Use variety of tricks to make it Chip
run fast Layout

- E.g., execute multiple
instructions simultaneously

With Slides from Bryant and O'Hallaron

Y86 Processor State

RF: Program registers cc: Stat: Program status
Condition
3 o nai codes
seax sesl
secx sedi |z5[s#[oH] DMEM: Memory
%edx %esp PC
Sebx Sebp |

+ Program Registers
- Same 8 as with IA32. Each 32 bits
+ Condition Codes

- Single-bit flags set by arithmetic or logical instructions

+ ZF: Zero SF:Negative
+ Program Counter
- Indicates address of next instruction
+ Program Status

OF: Overflow

- Indicates either normal operation or some error condition

« Memory
- Byte-addressable storage array
- Words stored in little-endian byte order
With Slides from Bryant and O'Hallaron

Y86 Instruction Set #1

Byte

irmovi V, B [3]o]s]re] v |
rmmovl rA, D(rB) [4] o]ra]r8] D |
mrmovl D(rB), rA |5 o|ralr8] D |
jxx Dest [7 [n] Dest |
call Dest [s]o] Dest |

pushl rA nn
popl rA Enn

With Slides from Bryant and O'Hallaron

Y86 Instructions

* Format
+ 1-6 bytes of information read from memory

- Can determine instruction length from first byte
+ Not as many instruction types, and simpler encoding than with

IA32

+ Each accesses and modifies some part(s) of the program state

With Slides from Bryant and O'Hallaron

Y86 Instruction Set #2

rrmovl |2 o]
o —TT]
o cnovt
ermovii rA, rB < emove
irmovi V, 8 [3] o] s8] 7] cmovne
caovt A, DB [1]opALE] 3 enovge
mrmovl D(rB), rA |5 [ofalre] b] \ enovg
3%% Dest L7 lfn] Dest |
call Dest Lelo] Dest |
ret

pushl rA A A

HI

popl rA
With Slides from Bryant and O'Hallaron

Y86 Instruction Set #3

Byte

halt addl

- T o [T

cmovXX rA, rB andl

ot v, 0 CoTERE] 1 | L [T

rmmovl rA, D(rB) [4]ofAlre] d|

mrmovl D(rB), rA |5 ofa 8] D

OF1 rA, rB

jxx Dest [7[fn] Dest |

call Dest | 8 \ 0 | DesTl

ret

pushl rA

popl A [sToFaTe]

With Slides from Bryant and O'Hallaron
Y86 Instruction Set #4
Byte 1 4 5

halt

nop

rrmovl rA, rB

irmovi V, B [3]o]s]re] v |

TR

memovl D(rB), r rAlr

s ea e [l .
1

jxx Dest {7 [fn] Dest |\ ! .

call Dest [s]o] Dest | .

. L] 00 T3]

popl rA 5 [oJrAl 5])

With Slides from Bryant and O'Hallaron

Encoding Registers

* Each register has 4-bit ID

seax | 0 Sesi| 6
Secx | 1 %edi | 7
Sedx | 2 %esp | 4
Sebx | 3 Sebp | 5

+ Same encoding as in TA32

* Register ID 15 (OxF) indicates "no register”
+ Will use this in our hardware design in multiple places

With Slides from Bryant and O'Hallaron

Instruction Example

e Addition Instruction
Generic Form

Encoded Representation

addl rA, rB |6 Olr'Ar'Bl I

+ Add value in register rA to that in register rB
- Store result in register rB
- Note that Y86 only allows addition to be applied to register data
+ Set condition codes based on result
+ eg., addl %eax, %esi Encoding: 60 06
+ Two-byte encoding
- First indicates instruction type
- Second gives source and destination registers

With Slides from Bryant and O'Hallaron

Arithmetic and Logical Operations

Ins‘rg&:jgﬂon Code Function Code | pofer 1o generically as *0p1"
« Encodings differ only by

| addl rA, rB [6]o]rA[rB] I “function code”

- Low-order 4 bytes in first

Subtract (rA from rB) instruction word
« Set condition codes as side

| subl rA, rB |6 ler r'Bl I effect

And

| andl rA, rB |6 2|rA r'Bl I

Exclusive-Or

| xorl rA, rB |6 3|rA r'Bl I

With Slides from Bryant and O'Hallaron

Move Operations

| cemovira, re [2]o]rAlrg] | Register --> Register

| irmoviV, rB |3]0]8]r Vi | Immediate --> Registe
| rrmovl rA, D (rB)[4]0 |rAlrB] D | | Register --> Memory

| mrmovl D (rB), rA [5] 0 [rA[rB] D | I Memory --> Register

+ Like the TA32 movl instruction
+ Simpler format for memory addresses
- Give different names to keep them distinct

With Slides from Bryant and O'Hallaron

Move Instruction Examples

TA32 Y86 Encoding

movl $0xabcd, %edx irmovl $Oxabcd, %edx 30 82 cd ab 00 00
movl %esp, %ebx rrmovl %esp, %ebx 20 43

movl -12 (%ebp), $ecx mrmovl -12 (%ebp), $ecx 50 15 f4 ff ff ff
movl %esi,Ox4lc (%$esp) rmmovl]l %esi,Ox4lc (%esp) 40 64 1c 04 00 00

movl $0xabcd, (%eax) =

movl %eax, 12 (%eax, %edx) =

movl (%ebp, %eax,4),%ecx =

With Slides from Bryant and O'Hallaron

Conditional Move Instructions

Move UncondiTionally

| rrmovl rA, rB [2]o]ralrB] | + Refer to generically as

Move Ile” LeSS (o] UG' E cr '
I

| cmovle rA, rB | 2 1_|_‘_|"A r8 “function code"

Move When Less + Based on values of condition

| cmovl rA, rB | 2|2 |rA r‘Bl | codes

. . 1i .
Move When Equal Variants of rrmovl instruction

+ (Conditionally) copy value
| GO (s (1D [215rAlrg] | from source to destination

Move When Not Equal register

| cmovne rA, rB | 2|4 |r'A r‘Bl I

Move When Greater or Equal

| cmovge rA, rB | 2|5 |r‘A r‘Bl I

Move When Greater

| cmovg rA, rB | 2|6 |rA r‘Bl |

With Slides from Bryant and O'Hallaron

Jump Instructions

Jump Unconditionally

jmp Dest [7] 0] Dest | | - Refertogenerically as *jxx"

Jump When Less or Equal

« Encodings differ only by

“function code"

7 T, —n "
jle Dest | | —les « Based on values of condition

Jump When Less

codes

j1 Dest | 702 | Dest | « Same as IA32 counterparts

Jump When Equal

« Encode full destination address

. Dest |7 3| Sest | + Unlike PC-relative
. addressing seen in TA32

Jump When Not Equal

jne Dest | 7|4 | Dest |

Jump When Greater or Equal

jge Dest | 715 | Dest |

Jump When Greater

jg Dest |7 6| Dest |

With Slides from Bryant and O'Hallaron

Y86 Program Stack

Stack "Bottom” .
Increasing .)
Addresses

sesp
Stack "Top"

Region of memory holding program
data

Used in Y86 (and IA32) for
supporting procedure calls

Stack top indicated by %esp
- Address of fop stack element
Stack grows toward lower addresses
- Top element is at highest
address in the stack
+ When pushing, must first
decrement stack pointer
- After popping, increment stack
pointer

With Slides from Bryant and O'Hallaron

Stack Operations

pushl rA |A 0 |r‘A F |

+ Decrement sesp by 4
+ Store word from rA to memory at $esp
+ Like TA32

popl rA |B Olr‘A Fl

+ Read word from memory at $esp
+ SaveinrA

+ Increment %esp by 4

+ Like IA32

With Slides from Bryant and O'Hallaron

Subroutine Call and Return

call Dest 8|0 Dest

« Push address of next instruction onto stack
+ Start executing instructions at Dest
« Like IA32

ret |9 Ol |

+ Pop value from stack
« Use as address for next instruction
« Like IA32

With Slides from Bryant and O'Hallaron

Miscellaneous Instructions

nop |1 Ol

+ Don't do anything

« Stop executing instructions

+ IA32 has comparable instruction, but can't execute it in user
mode

+ We will use it to stop the simulator

+ Encoding ensures that program hitting memory initialized to
zero will halt

With Slides from Bryant and O'Hallaron

Status Conditions

+ Normal operation
1

AOK

« Halt instruction encountered
| Mnemonic | Code |
HLT 2

Bad address (either instruction or data)

ADR 3

« Invalid instruction encountered

INS 4 . Desired Behavior

+ If AOK, keep going
+ Otherwise, stop program execution

With Slides from Bryant and O'Hallaron

Writing Y86 Code

* Try to Use C Compiler as Much as Possible

« Werite code inC

+ Compile for TA32 with gcc34 -01 -S

- Newer versions of GCC do too

much optimization

- Use 1s /usr/bin/gcc* to find what versions are available

+ Transliterate into Y86
* Coding Example

+ Find number of elements in null-terminated list

int lenl (int afll]):
a 5043
6125 - 3
7395
0

With Slides from Bryant and O'Hallaron

Y86 Code Generation Example

*First Try
+ Worite typical array code
+ Compile with gcc34 -01 -s

*Problem

+ Hard to do array indexing on
Y86

- Since don't have scaled

/* Find number of elements in
null-terminated list */

int lenl (int al[])

{
int len;
for (len = 0; allen]; lent+t)

return len;

addressing modes

L5:
incl %eax

cmpl S0, (%edx,s%eax,4)

Jjne L5

With Slides from Bryant and O'Hallaron

11

Y86 Code Generation Example #2

*Second Try *Result
+ Write with pointer code + Don't need to do indexed
+ Compile with gcc -01 -5 addressing
/* Find number of elements
in
.L11:
null-terminated list */ . o
) len2 (3) incl %ecx
int len2(int a
movl (%edx), %eax
{ addl S4, %Sedx
int len = 0; . .
testl %eax, %eax
while (*a++)
{) jne .L11
len++;
return len;
}
With Slides from Bryant and O'Hallaron
Y86 Code Generation Example #3
*TA32 Code Y86 Code
« Setup . Setup
len2: len2:
pushl %ebp pushl %ebp # Save %ebp
movl %esp, %ebp rrmovl %esp, %ebp # New FP
pushl %esi # Save
irmovl $4, %esi # Constant 4
pushl %$edi # Save
irmovl $1, %edi # Constant 1
movl 8 (%ebp), %edx mrmovl 8 (%ebp), %$edx # Get a
movl $0, %ecx irmovl $0, %ecx # len = 0
movl (%edx), %eax mrmovl (%edx), %eax # Get *a
addl $4, %edx addl %esi, %edx # a++
testl %eax, %eax andl %eax, %eax # Test *a
je .L13 je Done # If zero, goto Done
[m Use andl to test register

= Store in callee-save registers
With Slides from Bryant and O'Hallaron

12

Y86 Code Generation Example #4

*IA32 Code *Y86 Code
« Loop - Loop

.L11: Loop:
incl %ecx addl %edi, %ecx # len++
movl (%edx), %eax mrmovl (%edx), %eax # Get *a
addl $4, %edx addl %esi, %edx # at++
testl %eax, %eax andl %eax, %eax # Test *a
Jjne .L11 jne Loop # If !0, goto Loop

With Slides from Bryant and O'Hallaron

Y86 Code Generation Example #5

*TA32 Code *Y86 Code
- Finish -_Finish
.L13: Done:
movl %ecx, %eax rrmovl $%$ecx, %eax# return len

popl %edi
popl %esi
leave rrmovl %ebp,

popl %ebp

ret ret

Restore %edi

Restore %esi

%esp # Restore SP
Restore FP

With Slides from Bryant and O'Hallaron

13

Y86 Sample Program Structure #1

init: # Initialization

call Main

Program starts at
address O

halt Must set up stack
« Where located
.align 4 # Program data Pointer values
array: ,
Y + Make sure don't
overwrite code!
Main: # Main function Must initialize data
call len2
len2: # Length function
.pos 0x100 # Placement of stack
Stack:
With Slides from Bryant and O'Hallaron
Y86 Program Structure #2
init:

irmovl Stack, %esp # Set up SP
irmovl Stack, %ebp # Set up FP
call Main # Execute main

halt # Terminate

Array of 4 elements + terminating
0

.align 4
array:

.long 0x000d

.long 0x00cO

.long 0x0b00O

.long 0xa000

.long 0

With Slides from Bryant and O'Hallaron

Program starts at
address O

Must set up stack
Must initialize data

Can use symbolic
names

14

Y86 Program Structure #3

Main:
pushl %ebp
rrmovl %esp, sebp

irmovl array, sedx

pushl %edx # Push array
call len2 # Call

len2 (array)
rrmovl %ebp, sesp
popl Sebp
ret

e Set up call to len2
+ Follow IA32 procedure conventions
+ Push array address as argument

With Slides from Bryant and O'Hallaron

Assembling Y86 Program

unix> yas len.ys |

+ Generates "object code" file 1len.yo
- Actually looks like disassembler output

0x014: 0d000000
0x018: c0000000
0x01lc: 000b0000
0x020: 00a00000
0x024: 00000000

.long 0x000d
.long 0x00cO
.long 0x0b00
.long 0xa000
.long 0

0x000: | .pos 0
0x000: 30£f400010000 | init: irmovl Stack, %esp # Set up stack pointer
0x006: 30£500010000 | irmovl Stack, %ebp # Set up base pointer
0x00c: 8028000000 | call Main # Execute main program
0x011: 00 | halt # Terminate program

I

| # Array of 4 elements + terminating 0
0x014: | .align 4
0x014: | array:

I

I

I

I

I

With Slides from Bryant and O'Hallaron

Simulating Y86 Program

unix> yis len.yo |

+ Instruction set simulator
- Computes effect of each instruction on processor state
- Prints changes in state from original

Stopped in 50 steps at PC = 0x1l. Status 'HLT', CC Z=1 S=0 0=0
Changes to registers:

Seax: 0x00000000 0x00000004
secx: 0x00000000 0x00000004
Sedx: 0x00000000 0x00000028
$esp: 0x00000000 0x00000100
%sebp: 0x00000000 0x00000100

Changes to memory:

0x00ec: 0x00000000 0x000000£8
0x00f0: 0x00000000 0x00000039
0x00f4: 0x00000000 0x00000014
0x00£8: 0x00000000 0x00000100
0x00fc: 0x00000000 0x00000011

With Slides from Bryant and O'Hallaron

CISC Instruction Sets

+ Complex Instruction Set Computer
+ Dominant style through mid-80's

Stack-oriented instruction set
+ Use stack to pass arguments, save program counter
+ Explicit push and pop instructions
Arithmetic instructions can access memory
¢ addl %eax, 12 (%ebx, %ecx,4)
- requires memory read and write
- Complex address calculation
Condition codes
+ Seft as side effect of arithmetic and logical instructions
Philosophy
+ Add instructions to perform “typical” programming tasks

With Slides from Bryant and O'Hallaron

16

RISC Instruction Sets

+ Reduced Instruction Set Computer
+ Internal project at IBM, later popularized by Hennessy (Stanford)
and Patterson (Berkeley)
Fewer, simpler instructions
+ Might take more to get given task done
+ Can execute them with small and fast hardware

Register-oriented instruction set
+ Many more (typically 32) registers
+ Use for arguments, return pointer, femporaries
Only load and store instructions can access memory
+ Similar to Y86 mrmovl and rmmovl

No Condition codes
+ Test instructions return 0/1 in register

With Slides from Bryant and O'Hallaron

CISC vs. RISC

Original Debate
+ Strong opinions!
+ CISC proponents---easy for compiler, fewer code bytes
+ RISC proponents---better for optimizing compilers, can make run
fast with simple chip design
Current Status
+ For desktop processors, choice of ISA not a technical issue
+ With enough hardware, can make anything run fast
+ Code compatibility more important
+ For embedded processors, RISC makes sense
- Smaller, cheaper, less power
- Most cell phones use ARM processor

With Slides from Bryant and O'Hallaron

17

Summary

Y86 Instruction Set Architecture
« Similar state and instructions as IA32
+ Simpler encodings
+ Somewhere between CISC and RISC

How Important is ISA Design?
+ Less now than before
+ With enough hardware, can make almost anything go fast
+ Intel has evolved from IA32 to x86-64
- Uses 64-bit words (including addresses)
- Adopted some features found in RISC
* More registers (16)
+ Less reliance on stack

With Slides from Bryant and O'Hallaron

18

