
CSci 2021: Final Review Lecture
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Abstraction layers (in one slide)

(Electrical Engineering)

CSci 1133, 1933, etc.

CPU architecture (Ch. 4)
Logic design

(AACv4)

Data (Ch. 2)

Representation
Caches

(Ch. 6)
Virtual

Memory

(Ch. 9)

Memory

Allocators

Optimi-

zation

(Ch. 5)

Machine Code

(Ch. 3, 8)
Linking

(Ch. 7)

C

x86

Y86

HCL

Implementing high-level code (1)

Machine-level code representation
Instructions, operands, flags
Branches, jump tables, loops
Procedures and calling conventions
Arrays, structs, unions
32-bit versus 64-bit
Buffer overflow attacks

Code optimization
Machine-independent techniques
Instruction-level parallelism

Implementing high-level code (2)

Linking
Symbols and relocation
Libraries, static and dynamic

Dynamic memory allocation
Heap layout and algorithms
Garbage collection
C memory-usage mistakes

What hardware does

Number representation
Bits and bitwise operators
Unsigned and signed integers
Floating point numbers

Memory hierarchy and caches
Disk and memory technologies
Locality and how to use it
Cache parameters and operation
Optimizing cache usage

Virtual memory
Page tables and TLBs
Memory permissions and sharing

Building hardware

Logic design
Boolean functions and combinational circuits
Sequential circuits and state machines

CPU architecture
Y86 instructions
Control logic and HCL
Sequential Y86
Pipelined Y86

Outline

Finish off state machines

Layered course overview

Post quiz 2 topics

Course evaluations

Virtual memory structures

Pages are units of data transfer (e.g., 4KB)
Can be in RAM or on disk

Page table maps virtual addresses to physical
pages

For efficiency, use multiple levels

A TLB is a cache for page-table entries

Virtual memory uses

Avoid capacity limits on RAM

Cache data from disk for speed
Demand paging of code

Implement isolation between processes
Separate page tables
User/kernel protections

Share reused data
Executable code, shared libraries

Memory allocation

Data structures to represent the heap
Boundary tags and the implicit list
Explicit free list(s)

Algorithms for heap management
First fit vs. best fit
Size segregation

Memory errors in C code

Alternative: garbage collection

Linking mechanics

Symbols include functions and variables
Some are file-local, stack variables not even
considered

Symbols are resolved to the correct definition
At most one strong definition, or one of many weak
ones

Code is relocated so it runs correctly at is final
address

Libraries

Collections of reusable code

Static libraries
Several .o files grouped together
Only needed files are selected
Copied into executable just like other object files

Dynamic shared libraries
Not loaded until program startup or later
Single copy can be used by different programs
Uses position-independent code

Boolean functions

Inputs and outputs are finite, just bits

Can always express using minimal abstraction
of gates
Formulas transformed according to Boolean
algebra rules

Truth table is a complete representation
Can use for specification or equivalence checking

Combinational design

Truth table direct to SOP: inefficient

Karnaugh maps
Good for one output, up to 6 inputs
Power-of-two rectangles correspond to product
terms
Look for minimal cover of large rectangles

Bigger: use building blocks, or CAD

Logic building blocks

Combinational:
En/decoders, (de)multiplexers
Half and full adders
ALUs and more complex math

Sequential:
S-R latches: transparent
D, T, and J-K flip-flops: edge triggered
Registers and shift registers

State machines
Convenient representation for systems storing a
small amount of data

Inputs and outputs are just wires
States are encoded a bit patterns, e.g. binary or
one-hot
State bits stored in flip-flops
State update and output are combinational functions

Moore machines:
Output depends only on state
Output changes only sequentially

Mealy machines:
Output depends on state and inputs
Usually need fewer states

Self-promotion

Did you enjoy the bomb and buffer labs?

Want to learn more about security attacks and
defenses?
Later in your studies (after 4061), consider:

CSci 5271, Introduction to Computer Security

Taught in the fall, recently by me

Outline

Finish off state machines

Layered course overview

Post quiz 2 topics

Course evaluations

Why are these important?

Help us do a better job next time

What worked well, what not so well?

If you were running the course, what activities
would you spend more or less time on?
I will read your written comments, after grades
submitted

