
1

1

Logic Design IV

CSci 2021: Machine Architecture and Organization
Lecture #39, May 1st, 2015

Your instructor: Stephen McCamant

2

Sequential Circuits

 Introduce elements that keep state

 Cyclic connections between gates

 Makes more interesting computations possible
 Processing changing inputs over time

 E.g., CPU

 Raises more issues related to timing
 Coordinating timing of operations

 Time margins for reliable operation

 Avoiding transient incorrect results

3

Paired Inverters

 Good: maintains a particular state

 Bad: no way to set

1

1
1

0

0

0

0

1

4

S-R Latch

S

R

!Q

Q

set to 1

reset to 0
normal output

inverted output

Stable state: storing 1
Stable state: storing 0

5

Coordination and Clock Signals

 In sequential design, must control when events occur

 Standard approach: clock signal
 Alternates between 0 and 1

 Same signal used throughout circuit

 Challenge in high-speed designs: propagation speed

 Rate controls speed of entire circuit

 Design circuit to allow highest possible clock speed

 Example: 3.0 GHz CPU

 Use clock to control when sequential devices “read”

6

Level-sensitivity

 First approach:

 Value updated only when an enable signal (E) is high

 Called a “level-sensitive” or “gated” device

 Example: gated S-R latch

 Implementation: AND E with S and R inputs

S

E

R

Q

!Q

2

7

Transparency

 Definition:

 A device is transparent if input changes immediately propagate to
the output

 S-R latch is an example

 Transparent devices in series

 Connect output of one latch to input of another

 Input causes both devices to change at the same time

 Undesirable in many situations

 E.g., remember Y86 pipeline stages

8

Edge-triggered Devices

 Idea: update only on a clock “edge”:

 Positive/rising edge: 0 to 1

 Negative/falling edge: 1 to 0

 One update per clock cycle

 An edge-triggered bit-storage device is a “flip-flop”

 Flip-flops in series:
 Previous output changes only after next input is “read”

 Leads to lock-step propagation, one flip-flop per cycle

9

D Flip-Flop

 Triangle indicates clock input

 No bubble → rising edge triggered

 On edge, store the value of D (“data”)

 This was our main building block for Y86 registers

 !Q is often unused, but available for free

D Q

!Q

10

S-R to D

 D = 1: S = 1, R = 0

 D = 0: S = 0, R = 1

 Avoids ever having S and R together

 Trickier: how to build edge-triggering?

S

R

D

11

Transient Timing

 What does this circuit do?

 Functional perspective:
 (x & !!!x) = (x & !x) = 0, useless?

 Actually, rising edge of x causes a brief output pulse
 Fast path goes to 1 before delayed path goes to 0

x
?

12

Master-slave D Flip-Flop

 Make flip-flop out of two gated latches

 Updates only on rising clock edge
 Master freezes first

 Then slave is enabled

D Q

!QE

D Q

!QE

D

Clock

3

13

T Flip-Flop

 Another input style, T = “toggle”

 Flip-flop behavior summarized by state update formula
 Here, Q’ = (Q ^ T)

 T = 0: unchanged; T = 1: value is negated

 Would this make sense without a clock?

T Q

!Q

14

J-K Flip-Flop

 More powerful input type

 Like combination of S-R and T

 Cases:

 J = K = 0: no change

 J = 1: set; K = 1: reset

 J = K = 1: toggle

 Q’ = (Q & !K) | (!Q & J)

K

Q

!Q

J

15

Propagation Delay and the Clock

 Combinational circuits take time

 Most important: gate input to gate output propagation

 Less significant: signal propagation on wires

 Worst-case circuit timing
 Conceptually, consider all input to output paths

 For each path, sum maximum component times

 Worst case depends on slowest path

 Timing determines maximum clock speed
 Consider slowest flip-flop to flip-flop path

 Too-fast clock causes incorrect results

16

Hazards and Glitches

 Glitch:

 A transient circuit output that differs from the ideal output

 (Logic) hazard:

 Circuit feature that makes glitches possible

 When?

 Unexpected values appear while changes are propagating

 Easiest option:
 Use clocks and flip-flops (registers) so that circuit outputs matter

only after they have settled

 Sometimes needed:

 Redesign circuit or add gates to prevent hazards

17

Logic Hazard Example

 Static-1 hazard:

 (a, b, c) = (1, 1, 1) and (0, 1, 1) should both output 1

 Depending on delay, a 0 glitch may occur

a

b

c

18

Timing for Flip-Flops

 Input must be steady around clock edge for reliable
operation
 Setup time: amount of time before clock input must be right

 Hold time: amount of time after clock that input must right

 Delay before output changes
 Clock-to-output time: delay between clock edge and output edge

 Important fact:

 (hold time) < (clock-to-output time)

 If true of two flip-flops, it is safe to connect output of one to input
of another, on the same clock

4

19

Metastability

 Analogy:

 Flip-flop tries to return to a stable state
 Self-correcting feedback

 But, if close to metastable point:
 Might take a long time to “decide”

 Must avoid this situation for a reliable circuit

0 1

Stable

Metastable

20

Shift Register

 Flip-flops connected in series

 Behavior:

 Sequence of bits each move one stage per clock cycle

 Variations:
 Serial or parallel input

 Series or parallel output

 Shift only one some cycles

D Q

!Q

D Q

!Q

D Q

!Q

D Q

!Q

21

Counters

 Simple kind of time-varying digital system

 Produces a single sequence of states, repeating

 Changes every cycle or on a count pulse

 Example: 3-bit binary up-counter
 Produces 000, 001, 010, 011, 100, 101, 110, 111, 000, 001, …

 Variations:
 Down-counters

 Decade counters (for decimal): 0 through 9

 Gray code: sequence where only one bit changes at a time

 Ring counter: circular shift register producing one-hot outputs

22

State Machines

 State machine perspective:

 If a device has limited memory, we can enumerate its possible
states

 n bits of memory -> at most 2n states

 Inputs cause state transitions

 Outputs depend on state and possibly inputs

 General approach for designing sequential circuits

 Enumerate states

 Determine state transitions and I/O

 Last two summarized in state transition diagram

 Use flip-flops to remember state

 Use combinational logic to implement update and output functions

23

Counters as State Machines

 Simplified special case

 Output is generally identical to state

 No input other than a clock

 State transition diagram is a single cycle

 Three-bit up counter:

000 001 010 011

111 110 101 100

