
1

1

Logic Design III

CSci 2021: Machine Architecture and Organization
Lecture #38, April 29th, 2015

Your instructor: Stephen McCamant

2

Combinational Building Blocks

 Large circuits usually have repeating structures

 E.g., 64-bit arithmetic circuits in a CPU

 Design approach: reuse and replicate blocks

 More practical than Karnaugh-map-style optimization

 Optimize for circuit size over minimal depth

 Learn from prior practice instead of first principles

 CAD systems have “libraries” like software

 Our examples:
 Multiplexers and friends

 Addition and other basic arithmetic

3

Binary vs. One-hot Encoding

 Say we want to represent 4 possibilities

 Binary encoding: 00, 01, 10, 11
 Fewest bits, wires

 Combination can require complex logic

 <50% unused patterns

 One-hot encoding: 0001, 0010, 0100, 1000
 More like “unary” than binary

 More wires needed

 Combination logic is simpler

 Many bit patterns are illegal

4

Encoders and Decoders

 (“Line”) Encoder: convert one-hot to binary

 (“Line”) Decoder: convert binary to one-hot

 Notation conventions:

 Example: 4 combinations, 2 bits in binary

 Binary value is b1b0

 One-hot lines are w0, w1, w2, and w3

5

2-line to 4-line Decoder

 w0 = !b1 & !b0

 w1 = !b1 & b0

 w2 = b1 & !b0

 w3 = b1 & b0

 Basic idea:

 Each one-line corresponds to one product term

b0
b1

w3

b0
b1

w2

b0
b1

w1

b0
b1

w0

6

4-line to 2-line Encoder

 Basic idea:

 Each binary bit is the OR of the one-hot lines in whose number it is
set

 b0 = w1 | w3

 b1 = w2 | w3

w1

w3

w2

w3

b0

b1

2

7

Multiplexers and Demultiplexers

 Similar families to (de/en)coders

 Relate n wires to 2n wires

 But:

 Different purpose: switch one of several values on a wire

 Binary selector is an input to both mux and demux

Encoder Decoder

Mux Demux

8

4:1 Multiplexer

 z = (!s1 & !s0 & w0) | (!s1 & s0 & w1) | (s1 & !s0 & w2) |
(s1 & s0 & w3)

s0
s1

s0
s1

s0
s1

s0
s1
w0

w1

w2

w3

z

9

2:4 Demultiplexer

 w0 = z & !b1 & !b0

 w1 = z & !b1 & b0

 w2 = z & b1 & !b0

 w3 = z & b1 & b0

 Basic idea:

 Like decoder, but with an extra multiplexed/enable signal z

b0
b1 w3

b0
b1 w2

b0
b1 w1

b0
b1 w0

z

10

Multiplexers: Other Perspectives

 2:1 mux is the circuit analog of if-then-else (?:)

 Another construction strategy: smaller muxes
 4:1 mux made out of 2:1 muxes:

D0

D1

D2

D3

S0 S1

out

M
U

X

M
U

X
M

U
X

11

Quiz 2 Statistics

1

2 2 2

10

8

20

14

21

14

21

17 17

10 10

13

3

4

0 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 More≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

N = 190 (both sections)

Mean = 50.2

Median = 51

Standard dev’n = 18.1

12

Binary Addition

 Addition table is simple

 But the result is not always a single bit

 Same situation as carrying in grade-school

 Second bit of result: “carry out”

 Formulas are just XOR and AND

+ 0 1

0 0 1

1 1 2

s 0 1

0 0 1

1 1 0

CO 0 1

0 0 0

1 0 1

3

13

Half Adder

a b

s

Co
XOR

14

Full Adder

 What do we do with the carry?

 Probably include it in another addition

 Need a new input: “carry in”

 Sum of three bits still fits in two output bits

a b ci co s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

15

Why “half” and “full”?

a b

s

Co

Ci
HA

HA

A direct implementation is more
common, because it has fewer delays

16

Ripple Carry Adder

 Basic design for multi-bit adder:

 Chain carries from position to position

 Major disadvantage:
 Long delay for carry propagation

 For 64-bit add, if each adder takes time t, carries take 64t

FA 0FAFAFA
Co

a3 b3 a2 b2 a1 b1 a0 b0

s3 s2 s1 s0

17

Carry Lookahead Ideas

 Basic tradeoff:

 Add more gates to decrease delay

 Design principles:

 Compute as much as possible before the carry-in is available

 Group several bit positions together (commonly 4)

 Fast path for transmission from group to group

 Groups can themselves be grouped (like a tree)

18

Carry Lookahead Formulas

 “Generate”

 Produces carry-out even without carry-in

 gi = ai & bi

 “Propagate”
 Carry-out if there’s a carry in

 pi = ai | bi

 Basic relation:

 ci+1 = gi | (pi & ci)

 Unrolled:

 c4 = g3 | (g2&p3) | (g1&p2&p3) | (g0&p1&p2&p3) | (c0&p0&p1&p2&p3)

 Complex, but only two-level

4

19

Basic ALU Design

 Repeated design (“slice”) for each bit position

 Slices operate in parallel except for carries

 Control inputs select operation, same for all

 Initial carry-in can also be controlled

 Typical supported operations:
 Bitwise NOT, AND, OR, XOR, (NAND, NOR, XNOR, …)

 Add, subtract, negate, add 1

 Shift left one (as a + a)

 Not possible with this design:
 Multiple shift, variable shift, right shift

 Multiply, divide, modulo

 Floating point

20

Barrel Shifter

 Goal: fast implementation of variable shift or rotate

 Idea 1: direct gate implementation
 Complicated: every output depends on every input

 Idea 2: N, N:1 multiplexers
 N-line decoder for control inputs

 Also requires a lot of gates

 Idea 3: (log N) levels of 2:1 multiplexers
 Shift by 0 or 4 based on 22 bit of shift amount, etc.

 Fewer gates, more delay

 Idea 4: crossbar switch
 A switch is a non-gate abstraction, but cheap in this application

21

Crossbar Barrel Shifter

i0

i1

i2

i3

i4

i5

i6

i7

o0 o1 o2 o3 o4 o5 o6 o7 shift by 0

shift right 1

shift left 3

…

22

Sequential Circuits

 Introduce elements that keep state

 Cyclic connections between gates

 Makes more interesting computations possible
 Processing changing inputs over time

 E.g., CPU

 Raises more issues related to timing
 Coordinating timing of operations

 Time margins for reliable operation

 Avoiding transient incorrect results

23

Paired Inverters

 Good: maintains a particular state

 Bad: no way to set

1

1
1

0

0

0

0

1

24

S-R Latch

S

R

!Q

Q

set to 1

reset to 0
normal output

inverted output

Stable state: storing 1
Stable state: storing 0

5

25

Coordination and Clock Signals

 In sequential design, must control when events occur

 Standard approach: clock signal
 Alternates between 0 and 1

 Same signal used throughout circuit

 Challenge in high-speed designs: propagation speed

 Rate controls speed of entire circuit

 Design circuit to allow highest possible clock speed

 Example: 3.0 GHz CPU

 Use clock to control when sequential devices “read”

26

Level-sensitivity

 First approach:

 Value updated only when an enable signal (E) is high

 Called a “level-sensitive” or “gated” device

 Example: gated S-R latch

 Implementation: AND E with S and R inputs

S

E

R

Q

!Q

27

Transparency

 Definition:

 A device is transparent if input changes immediately propagate to
the output

 S-R latch is an example

 Transparent devices in series

 Connect output of one latch to input of another

 Input causes both devices to change at the same time

 Undesirable in many situations

 E.g., remember Y86 pipeline stages

28

Edge-triggered Devices

 Idea: update only on a clock “edge”:

 Positive/rising edge: 0 to 1

 Negative/falling edge: 1 to 0

 One update per clock cycle

 An edge-triggered bit-storage device is a “flip-flop”

 Flip-flops in series:
 Previous output changes only after next input is “read”

 Leads to lock-step propagation, one flip-flop per cycle

29

D Flip-Flop

 Triangle indicates clock input

 No bubble → rising edge triggered

 On edge, store the value of D (“data”)

 This was our main building block for Y86 registers

 !Q is often unused, but available for free

D Q

!Q

30

S-R to D

 D = 1: S = 1, R = 0

 D = 0: S = 0, R = 1

 Avoids ever having S and R together

 Trickier: how to build edge-triggering?

S

R

D

6

31

Transient timing

 What does this circuit do?

 Functional perspective:
 (x & !!!x) = (x & !x) = 0, useless?

 Actually, rising edge of x causes a brief output pulse
 Fast path goes to 1 before delayed path goes to 0

x
?

32

Master-slave D flip-flop

 Make flip-flop out of two gated latches

 Updates only on rising clock edge
 Master freezes first

 Then slave is enabled

D Q

!QE

D Q

!QE

D

Clock

