
1

1

Logic Design II

CSci 2021: Machine Architecture and Organization
Lecture #37, April 27th, 2015

Your instructor: Stephen McCamant

2

Truth Tables

 Combinational circuit = Boolean function

 Combinational: no cycles or memory

 Outputs are determined just by inputs

 Finite size
 A Boolean function has a finite representation

 If i input bits, 2i possible input combinations

 Can study by just writing the output for all possible inputs

 Truth table
 Standard way to write a function

 2i rows, input combinations in increasing order

 One column per intermediate or output

3

Truth Table Example

a b c (a & b) (a & b) | c

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

4

Equivalences with a Truth Table

 Check whether two Boolean formulas are equal

 Write truth table covering both

 Check two columns have all the same entries

 Advantages
 Straightforward

 No algebraic insight needed

 Disadvantages

 Effort exponential in number of input bits

5

Equivalence Example

a b c (b & c) a | (b & c) (a | b) (a | c) (a | b) & (a | c)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

6

Combinational Logic Design

 Given: description of circuit behavior

 Word problem, or truth table

 Goal: efficient circuit implementation

 Usually most important: fewest gates and wires

 Secondarily: reduce number of levels (propagation delay)

 Kinds of techniques
 Up to 6 inputs: pencil and paper approaches

 Large but structured: split into repeated pieces

 Large and unstructured: computer algorithm

2

7

DNF / SOP

 An input or its negation is called a literal

 E.g.: a, !b

 An AND of literals is a product term or cube

 E.g.: (a & c), (a & !b), (!a & !b & !c), c

 An OR of product terms is a sum of products (SOP), or in
disjunctive normal form (DNF)
 E.g.: (a & b) | (a & c)

 (Dual: product of sums (POS), or conjunctive normal form
(CNF))

8

Truth Table → SOP

 Simple but not very efficient

 Create a product term for each 1 entry

 Example with XOR:

 (Also possible: dual with 0s and CNF)

a b a ^ b

0 0 0

0 1 1

1 0 1

1 1 0

(!a & b)

(a & !b)

Result: (!a & b) | (a & !b)

9

Inefficiency of Straight DNF

 Consider another example:

 By algebra, can simplify back to “b”

 Factor, (!a | a) = 1, 1 & b = b

 Can we recognize these patterns earlier?

a b b

0 0 0

0 1 1

1 0 0

1 1 1

Result: (!a & b) | (a & b)

10

Logistics Intermission

 Sorry, no quiz 2s today

 Good chance of grades by tomorrow and papers Wednesday

 Cache Lab due tonight

 Moodle has been having some slowness

 Suggest you allow a little extra time for final submission

 Assignment V out on Wednesday
 Mostly logic design

11

Karnaugh Map Idea

 Write truth table entries in an array

 Product terms represented by certain rectangles

 Visually, find small number of rectangles to cover 1 bits
 OK to cover more than once, combine with OR

 Fewer rectangles = smaller circuit

12

2-variable “Karnaugh Map”

a =

b =

0

0 1

1

3

13

2-variable “Karnaugh Map” example

a =

b =

0

0 1

1

1 1

1 0

Result:
!a | b

14

Extending to 3 and 4 Variables

 Put two variables on a side

 Weird order: 00 01 11 10

 “Gray Code”: change only one bit at a time

 Rectangles can enclose 1, 2, 4, or 8 entries
 Bigger is better

 Rectangles can wrap around the edges
 00 is adjacent to 10

15

4-variable Karnaugh Map Example

0 1 0 1

0 1 0 0

0 1 1 0

0 1 1 0

ab =
00 10 11 01

cd =

00

10

11

01

(a & !b)
|

(a & d)
|

(!a & b
& !c & !d)

16

Extending to 5 and 6 Variables

 2D is no longer enough

 No way to order 3 variables to capture 12 adjacencies

 Approach: stacking

 Make 2 (for 5 inputs) or 4 (for 6 inputs) 4-input Karnaugh maps

 Corresponding entries are “on top of” each other

 Rectangles become 3D

 Usually still drawn as 2D

 With 6, more possibilities for wrapping too

17

5-variable Karnaugh Map Example

0 1 0 1

0 1 0 0

0 1 1 0

0 1 1 0

0 0 0 1

0 0 0 0

0 1 1 0

0 1 1 0

18

Karnaugh Map Tips: Overlap is Good

0 1 0 0

0 1 0 0

0 1 1 0

0 1 1 0

ab =
00 10 11 01

cd =

00

10

11

01

4

19

Karnaugh Map Tips: No 3s

0 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

ab =
00 10 11 01

cd =

00

10

11

01

20

Karnaugh Map Tips: Wrap Around

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

ab =
00 10 11 01

cd =

00

10

11

01

!a & !c

21

Don’t Cares

 Some results don’t matter

 Domain of function is a subset of all n-bit strings

 Unused bit patterns in encodings

 Bits sometimes ignored by other circuits

 “Don’t care” value could be 0 or 1
 Usually denoted by X

 Don’t-cares allow designs to be simpler

 Choose the value that allows a simpler circuit

 In early CPUs, led to undocumented instructions

 Example: x86 ASL vs. SHL

 On modern CPUs, more error checking

22

Karnaugh Map Tips: Don’t Cares

x 0 x 1

0 x x x

x x x x

1 x x x

ab =
00 10 11 01

cd =

00

10

11

01

23

Dual (POS) Karnaugh Maps

1 1 1 1

1 1 0 1

1 1 0 1

1 1 1 1

00 10 11 01

00

10

11

01

 Pretend 0s are 1s

 And vice-versa

 Negate final result

!(a & b & c)

!a | !b | !c

24

Karnaugh Map: Try Yourself

1 0 0 0

1 1 0 0

1 1 1 1

1 1 0 1

ab =
00 10 11 01

cd =

00

10

11

01

5

25

Automated Methods

 Karnaugh maps don’t scale well beyond 6 inputs

 Good job for a computer!

 Quine-McCluskey algorithm
 Tabular analog to Karnaugh maps

 Optimal, but suffers from exponential blowup

 Heuristic methods like “espresso”

 First, greedily achieve coverage

 Then, opportunistically improve

 No optimality guarantee, but good scalability

 Now a standard part of CAD systems
 Like compilers for software

