Virtual Memory: Systems

CSci 2021: Machine Architecture and Organization
Lecture #29-30, April 6-8th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron, Antonia Zhai

Review of Symbols

m Basic Parameters
= N =2": Number of addresses in virtual address space
®= M =2": Number of addresses in physical address space
= P =2P :Page size (bytes)
m Components of the virtual address (VA)
= TLBI: TLBindex
= TLBT: TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number
m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
= PPN: Physical page number
= CO: Byte offset within cache line
® Cl: Cache index
= CT: Cache tag

Simple Memory System Page Table

Only show first 16 entries (out of 256)

VPN PPN | Valid VPN | PPN | Valid
00 28 1 08 13 1
01 = [09 17 1
02 33 1 0A 09 1
03 02 1 0B = 0
04 = o oc = o
05 16 1 0D 2D 1
06 = o OE 11 1
07 = 0 OF 0D 1

Outline

m Simple memory system example
m Case study: Core i7/Linux memory system
m Memory mapping

Simple Memory System Example

n Addressing
® 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes

Physical Page Number

Simple Memory System TLB

m 16 entries
m 4-way associative

Physical Page Offset

Set | Tag | PPN | valid | Tag | PPN | valid | Tag | PPN | valid | Tag | PPN | valid
0 03 -) 09 | op 1 00 - [} 07 | 02 1
1 03 | 20 1 02 - 0 04 - [) [-)
2 02 - 0 08 - [06 - [03 - 0
3 07 - 0 03 | op 1 oA | 34 1 02 - 0

Simple Memory System Cache

m 16 lines, 4-byte block size
m Physically addressed
m Direct mapped

PPN PPO

ldx Tag | Valid B0 B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - = B 0B 0 - - = -
a 32 1 a3 6D 8F 09 C 12 [- - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 c2 DF 03 F 14 0 = - - -

Address Translation Example #2

Virtual Address: 0xOB8F

TLBT TLBI —

12

13 11 0 9 8 7 6 5 4 3 2 1 0
[ofoJafofaJsfaJofoJoa]1]2]1]

VPN VPO
VPN 0x2E TLBI _2_ TLBT 0x0B TLB Hit? N Page Fault? Y PPN: TBD
Physical Address
cr a co —
11 10 9 8 7 6 5 a4 3 2 1 o
I N N O
PPN PPO

co a_ cr

Today

m Simple memory system example
m Case study: Core i7/Linux memory system
m Memory mapping

Address Translation Example #1

Virtual Address: 0x03D4

TLBT
1

TLBI —

13 2 11 10 9 8 7 6 5 4 3 2 1 0
[oJofofoJsf1[a2]of1o]z]of0]

VPN

VPO

VPN OXOF TLBIOX3 TLBT 0x03 TLBHit? Y PageFault? N PPN: 0x0D

Physical Address

[ag (¢}
11 10 9 8 7 6 5 4 3 2 1 (1]
[ololal1lo 1o 1o 1 0 c]
PPN PPO

co —

CI0XS CTOXOD Hit? Y. Byte: 0x36

Address Translation Example #3

Virtual Address: 0x0020

TLBT

TLBI —

13 12 11 0 9 8 7 6 5 4 3 2 1 0
[ofoJofoJofoJoJo[1ofo[ofo]o]

VPN

VPN 0x00 TLBI_O TLBT 0x00

Physical Address

TLB Hit? N

VPO

Page Fault? N PPN: 0x28

cT
1 10 9 8 7

c co —
6 5 4 3 2 1 0

[1[of1JofoJo[1]0f0o]ofo]0]

PPN

00 ao croxs

Hit? N

PPO

Byte: Mem

Intel Core i7 Memory System

Processor package

i Corex4

Registers Instruction
d fetch

MMU
addr translation;

L1 d-cache L1i-cache L1d-TLB
32 KB, 8-wa 32 KB, 8-wa 64 entries, 4-wa

L1i-TLB
128 entries, 4-wa!

L2 unified cache
256 KB, 8-wa

|

L2 unified TLB l

512 entries, 4-way
{—» Toother
QuickPath interconnect £——2 cores
4links @ 25.6GB/seach | | | 1/0
i bridge

L3 unified cache
8 MB, 16-way
(shared by all cores)

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Review of Symbols

m Basic Parameters
®= N=2": Number of addresses in virtual address space
®= M =2": Number of addresses in physical address space
= P =2P :Page size (bytes)
m Components of the virtual address (VA)
= TLBI: TLBindex
= TLBT:TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number
= Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
PPN: Physical page number
CO: Byte offset within cache line
Cl: Cache index
CT: Cache tag

Core i7 Level 1-3 Page Table Entries

63 62 52 51 1211
‘xo‘ Unused ‘ Page table physical base address

7 6 5 4 3 2 1 0
Unused ‘ G ‘Ps‘ ‘ A ‘CD‘WT‘U/S‘R/W‘P:I‘

‘ Available for OS (page table location on disk) ‘ P=o‘

Each entry references a 4K child page table

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.
U/S: User or supervisor (kernel) mode access permission for all reachable pages.
WT: Write-through or write-back cache policy for the child page table.

CD: Caching disabled or enabled for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: “Page size”: if set, entry points to a large page (1GB or 2MB) not a page table.

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

Core i7 Page Table Translation

9 9 9 9 12 Virtual
[wni [wen2 [weN3 [veNa | VPO |
address
et L2pT 13pT Lapt
Pageglobal | Pageupper | Page middle Page
cxs so| directory g directory |49 directory |ag table
Physical
address Offsetinto
of L1PT 12 physical and
et H o[e BpTE | Lof 1apTE e
Physical
address
51268 168 2m8 4kB of page
region region region region
perentry perentry perentry perentry
4
an) 2 Physical
PPN PPO |

address

End-to-end Core i7 Address Translation

32/64
’T:It‘ L2, 13, and
L] main memory
11 L1
hit
L1 d-cache
LB (64 sets, 8 lines/set)
hit pa
TLB |
miss H H
— T T T] e
L1 TLB (16 sets, 4 entries/set)
12 40 6] 6
[pPO| = cT ci[co
Physical
address j m—
(PA)
14
Core i7 Level 4 Page Table Entries
63 62 52 51 5 4 3 2 1 0
[0] unsed | rosepscabasedress | unsed [6] [0] A]co] ol
‘ Available for OS (page location on disk) ‘ P=0 ‘

Each entry references a 4K child page

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor (kernel) mode access

WT: Write-through or write-back cache policy for this page

CD: Caching disabled (1) or enabled (0)

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

Cute Trick for Speeding Up L1 Access

T

Tag Check
40 6 6
address
(PA) | [pen [pro]
i LRI
Address No
Virtual Translation Chanes)
€]
address - 11 Cach
(VA) VPN VPO ache
36 12

m Observation
Bits that determine Cl identical in virtual and physical address
Can index into cache while address translation taking place
Generally we hit in TLB, so PPN bits (CT bits) available next
“Virtually indexed, physically tagged”

Cache carefully sized to make this possible

Discussion Point: TLBs and Processes

m Our system will have multiple processes running at once,
each with their own address space. How does this affect
the way the TLB has to work? (There are several choices)

1. Clear the TLB when you switch processes: simple, but

hurts performance

2. Include a process/address space identifier as part of TLB

entry tags (“tagged TLB”): needs larger TLB

3. Global page flag: non-global entries are cleared on

process switch
= Compromise makes kernel faster
= Used in current x86 processors

Linux Organizes VM as Collection of “Areas”

Process virtual memory
vm_area_struct

task_struct

mm_struct vm_end
i pgd vm_start
vm_prot
mmap vm_flags
Shared libraries
vm_end
d vm_start
u H
P8 . vm_fplrot Data
= Page global directory address vm_flags
® Points to L1 page table
E vm 3
Aprot ’7 Text
= Read/write permissions for v
this area Ym_en
vm_start
n vm_flags vm_prot
= Pages shared with other vm_flags 0
. " vm_next
processes or private to this =
process 2

Today

m Simple memory system example
m Case study: Core i7/Linux memory system
m Memory mapping

Virtual Memory of a Linux Process

Information
about each
process

Identical for
all processes

%esp

0x08048000 (32)
0x00400000 (64)

Process-specific data
structs (ptables,
task and mm structs, Ke "
kernel stack) .eme
virtual
Physical memory memory
Kernel code and data
User stack
Memory mapped region
for shared libraries
Process
t virtual
Runtime heap (malloc) memory
Uni lized data (.bss)
Initialized data (.data)
Program text (.text)
2

Linux Page Fault Handling

vm_area_struct

Process virtual memory

vm_end
vm_start
vm_prot
vm_flags
shared libraries
T read
vm_end
vm_start o
mCprot data read
vm_flags —
‘7 text Q
write
vm_end —
vm_start
vm_prot
vm_flags
vm_next

Memory Mapping

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:

e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

m VM areas initialized by associating them with disk objects.
® Process is known as memory mapping.

m Area can be backed by (i.e., get its initial values from) :
= Regular file on disk (e.g., an executable object file)

= Initial page bytes come from a section of a file
= Anonymous file (e.g., nothing)
= First fault will allocate a physical page full of 0's (demand-zero page)

= Once the page is written to (dirtied), it is like any other page

m Dirty pages are copied back and forth between memory and a

special swap file.

Demand paging

m Key point: no virtual pages are copied into physical
memory until they are referenced!
= Known as demand paging

m Improves time and space efficiency

Sharing Revisited: Shared Objects

Process 1 Physical Process 2

. m Process 2 maps
virtual memory memory virtual memory

the shared
object.

m Notice how the
virtual
addresses can
be different.

o Shared o
object

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 m Instruction writing
virtual memory memory virtual memory to private page

T e triggers
N Q'fyq":ﬂm protection fault.

v

D Handler creates

rite to private

copy-on-write new R/W page.
page = Instruction

restarts upon
N handler return.
D = Copying deferred

Private as long as

copy-on-write object possible!

Sharing Revisited: Shared Objects

Process 1 Physical Process 2 m Process 1 maps
virtual memoi memol virtual memoi
Fmery i AL the shared
object.

o Shared o
object

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2

. = Two processes
virtual memory memory virtual memory

mapping a private
copy-on-write
(cow) object.

], Private g Area flagged as
copy-on-write .
area private copy-on-

5 4 write
S ’ m PTEs in private
SN areas are flagged
D as read-only
o Private o
copy-on-write object

